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Abstract: The optical frequency comb technology is one
of the most important breakthrough in photonics in re-
cent years. This concept has revolutionized the science
of ultra-stable lightwave and microwave signal genera-
tion. These combs were originally generated using ultra-
fast mode-locked lasers, but in the past decade, a sim-
ple and elegant alternativewas proposed, which consisted
in pumping an ultra-high-Q optical resonator with Kerr
nonlinearity using a continuous-wave laser.Whenoptimal
conditions are met, the intracavity pump photons are re-
distributed via four-wave mixing to the neighboring cav-
ity modes, thereby creating the so-called Kerr optical fre-
quency comb. Beyond being energy-efficient, conceptu-
ally simple, and structurally robust, Kerr comb genera-
tors are very compact devices (millimetric down to mi-
crometric size) which can be integrated on a chip. They
are, therefore, considered as very promising candidates to
replace femtosecond mode-locked lasers for the genera-
tion of broadband and coherent optical frequency combs
in the spectral domain, or equivalently, narrow optical
pulses in the temporal domain. These combs are, more-
over, expected to provide breakthroughs in many tech-
nological areas, such as integrated photonics, metrology,
optical telecommunications, and aerospace engineering.
The purpose of this review article is to present a com-
prehensive survey of the topic of Kerr optical frequency
combs.Weprovide anoverviewof themain theoretical and
experimental results that have been obtained so far. We
also highlight the potential of Kerr combs for current or
prospective applications, and discuss as well some of the
open challenges that are to bemet at the fundamental and
applied level.
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1 Introduction
In recent years, the topic of nonlinear phenomena in
monolithic optical resonators has been the focus of a
broadband interest in the scientific community. This re-
search area has gained particular relevance owing to the
new technology platforms that have allowed for the fab-
rication of monolithic resonators with ultra-high qual-
ity factors, such as whispering-gallery mode resonators
(WGMRs) or integrated ring-resonators (RRs). These op-
tical resonators have a size that can range from few mi-
crometers to few millimeters, and accordingly, their free-
spectral range (FSR)may vary from few terahertz to few gi-
gahertz. From a fundamental point of view, the high-Q res-
onators permit to investigate various phenomena-related
light-matter interactions fromboth the classical and quan-
tum perspectives. From the applied viewpoint, ultra-high-
Q resonators are considered as core photonic components
for several microwave photonics systems. They are also
considered as promising central elements for other appli-
cations such as optical filtering, add-drop systems, minia-
ture solid-state lasers, and efficient light modulators, (see
refs. [1–3] and references therein).

In these ultra-high-Qmonolithic resonators, the small
volume of confinement, high photon density, and long
photon lifetime induce a very strong light-matter interac-
tion (see Fig. 1), which may excite the whispering gallery
modes (WGMs) through various nonlinear effects, namely,
Kerr, Raman, or Brillouin. Indeed, the most interesting
nonlinearity in these bulk resonators is undoubtedly in-
duced by the Kerr effect. The Kerr effect is related to the
third-order susceptibility χ(3) and becomes the leading
nonlinear effect in amorphous media and centrosymmet-
ric crystals. This phenomenon originates from the quasi-
instantaneous electronic response of the bulk medium to
the laser excitation. When amonolithic resonator made of
aKerr-nonlinearmaterial is pumpedby a continuous-wave
(CW) laser, the long-lifetime pump photons can undergo a
frequency conversion andpopulate the neighboring eigen-
modes via a degenerate four-wave mixing (FWM) interac-
tion of the kind 2~ωp → ~ωi + ~ωs, where ωp, ωi, and
ωs are the pump, idler, and signal angular frequencies,
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WGM disk-resonator
(side view)

Figure 1: (Color online) Schematical representation of a torus-like
eigenmode in a crystalline WGM disk-resonator (fundamental eigen-
mode with a single extremum in the radial and polar directions).
This eigenmode can trap the intra-cavity photons for a significantly
long time. Both the strong-field confinement (or equivalently, small
mode volume) and the long photon lifetime (typically,∼ 1 µs) con-
tribute to enhance the nonlinear interaction between the intra-
cavity photons. Such resonators typically have a Q-factor of one
billion at 1550 nm.

respectively (three-mode comb), while ~ is the reduced
Planck constant. The pioneering works presenting experi-
mental evidence of this degenerate hyper-parametric os-
cillation were published quasi-simultaneously a decade
ago by two independent research groups [4, 5]. These
contributions have been followed three years later by
a groundbreaking work on broadband Kerr optical fre-
quency comb generation [6], which demonstrated that fur-
ther non-degenerate interactions of the kind ~ωm+~ωp →
~ωn + ~ωq can be triggered as well, where two input pho-
tons m and p interact coherently via the Kerr nonlinearity
to yield two output photons n and q (see Fig. 2). All the ex-
cited modes are then globally coupled through FWM and,
as a result, do excite an even greater number of modes, up
to several hundreds. In the spectral domain, the result of
this cascade of photonic interactions is generally referred
to as a Kerr optical frequency comb, which can, therefore,
bedefinedas a set of equidistant spectral components gen-
erated through the optical pumping of a monolithic res-
onator with Kerr nonlinearity.

The topic of Kerr combs is extremely rich and fruit-
ful [7], as it bridges a wide range of disciplinary areas
in engineering (microwave photonics, integrated photon-
ics, metrology, aerospace and telecommunication engi-
neering, spectroscopy, etc.), fundamental physics (crys-
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Figure 2: (Color online) Schematic representation of FWM in the
frequency domain. In a given family, the eigenmodes of the res-
onators are quasi-equidistantly spaced as ωℓ ≃ ℓΩFSR , so that
they are unambiguously labeled by their azimuthal eigenumber ℓ.
It is convenient to use instead the reduced eigenumber l = ℓ − ℓ0,
with ℓ0 being the central (pumped) mode. (a) Degenerate FWM. Two
photons from one mode (not necessarily the pumped mode l = 0)
are symmetrically up and down converted, following the interaction
2 ~ωm → ~ωn + ~ωq, with 2m = n + q. The reverse interaction
~ωn + ~ωq → 2 ~ωm is degenerate as well. (b) Non-degenerate
FWM. Two photons with eigenumbers m and p are converted into
two output photons n and q through ~ωm + ~ωp → ~ωn + ~ωq
where m + p = n + q, with the four photons being distinct.

tallography, quantum optics, guided and cavity nonlinear
optics, etc.), and theoretical physics (nonlinear dynam-
ics, stochastic analysis, photonic analog computing, etc.),
amongst others.

The research related toKerr optical frequency combs is
abundant and cross-disciplinary, and it intends to address
different types of problems.

The first challenge has been, from the very begin-
ning, the theoretical understanding of the Kerr comb
generation process. The early models were based on a
spectro-temporal (or modal expansion) approach, which
used a large set of coupled nonlinear ordinary differen-
tial equations to track the individual dynamics of the ex-
cited WGMs [5, 8–11]. This formalism, where the variables
are the complex-valued slowly-varying envelopes of the
modal fields, has been useful, as it allowed to understand
many essential features such as thresholdphenomenaand
the role of dispersion [9]. This modal approach, however,
becomes less intuitive for the theoretical analysis of the
comb when the number of excited modes is large. An al-
ternative paradigm based on a spatiotemporal approach
has been introduced later on, relying on the fact that in
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Figure 3: (Color online) An integrated ring-resonator coupled to a
tapered waveguide. Such resonators typically have a Q-factor of one
million at 1550 nm. The tapered section should typically be thinner
than the pump wavelength in order to allow for the evanescent
coupling with the resonator.

the resonator, light circumferentially propagates at the in-
ner boundary of the resonator and can be treated as if it
was propagating along an unfolded trajectory with peri-
odic boundary conditions [12–15]. In this case, the over-
all intracavity field obeys a spatiotemporal equation re-
ferred to as the Lugiato–Lefever equation (LLE), which is
a nonlinear Schrödinger equation (NLSE) with damping,
detuning, and driving [16]. This LLE formalism permits to
understand that Kerr combs are the spectral signature of
extended or localized dissipative patterns in these opti-
cal resonators [17–19]. It was later demonstrated that the
spectro- and spatiotemporal approaches are indeed equiv-
alent and allow to understand the Kerr comb generation
process from two complementary viewpoints [14].

The second challenge in the topic of Kerr combs is
to generate them with the smallest energetical footprint
and mass/volume payload possible. At the earliest stage,
Kerr combs where predominatly investigated using table-
top experiments where such considerations where not a
priority. However, as the research moved toward concrete
applications, a great amount of efforts has been devoted
to develop chip-scale systems with integrated RRs as in
Fig. 3 [20–22], or Kerr combgenerators basedon crystalline
WGMRs packaged in a very small volume [23]. In gen-
eral, this optimization procedure particularly focuses on
achieving the highest Q possible, the most efficient laser
pump in coupling, as well as the highest signal-to-noise
ratio for the lightwave andmicrowave output signals. Such
optimization is critical in order to evidence the suitability
of Kerr combs in comparison to existing or other prospec-
tive technologies [7].

The aim of this review article is to present a com-
prehensive survey of the topic of Kerr optical frequency
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Figure 4: (Color online) The two main coupling configurations for
integrated ring-resonators. The Q-factor associated to every loss
mechanism is indicated in the figure (Qin, Qext,t, and Qext,d for the
intrinsic, through-port, and drop-port losses, respectively). (a) Add-
through coupling. Note that this nomenclature is not standard, but
it is used here for being intuitive. (b) Add-drop coupling.

combs. We provide an overview of the main results that
have already been obtained on this topic, both at the the-
oretical and experimental level, and we discuss as well
some of the open points that are under study in many re-
search groups worldwide or would deserve further consid-
eration.

The plan of the article is the following. In the next sec-
tion, we present the experimental systems used for Kerr
comb generation as well as the various coupling architec-
tures used to pump the resonators and obtain a comb in
the output port. Section 3 is devoted to the presentation
of the two main theoretical approaches used to investi-
gate Kerr optical frequency combs, namely, the spectro-
and spatiotemporal approaches. The far-reaching implica-
tions of these two formalisms will be highlighted and dis-
cussed. The various types of combs that can be generated
by pumping ultra-high-Q resonators are presented in Sec-
tion 4. We show that depending on the sign of the group
velocity dispersion (GVD) and on the pumppower, the sys-
tem can yield roll patterns, solitons, breathers, and even
chaos in the spatiotemporal domain. Then, we discuss in
Section 5 some of the main applications in relation with
Kerr combs. Emphasis is laid on optical communications,
microwave generation, spectroscopy, and quantum appli-
cations. The last section will conclude the article.

2 The experimental system
A Kerr optical frequency comb generator essentially con-
sists in two main elements: an ultra-high-Q resonator and
an input/output coupling system.
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As emphasized in the introduction, the resonators can
be either aWGMRor an integrated RR. They are essentially
caracterized by their intrinsic quality factorQin, which can
be further decomposed as Q−1in = Q−1vol + Q

−1
surf + Q

−1
rad, in

order to account for the volumic, surface scattering, and
radiation losses, respectively. The quality factor is propor-
tional to the intrinsic photon lifetime τph,in and inversely
proportional to the full-linewidth of the resonance follow-
ing Qin = ω0τph,in = ω0/∆ωin, whereω0 is the angular fre-
quency of the mode of interest. A resonator with infinite Q
would, therefore, be lossless (zero-linewidth and infinite
photon lifetime).

Crystalline WGMRs tyically feature a nanometer sur-
face roughness and very low intra-cavity losses, which al-
low them to reach exceptionally high-quality factors, as
high as 3 × 1011 at 1550 nm [24]. The most widespread
bulk materials for such resonators are fluoride crystals
such as calcium fluoride [25, 26], magnesium fluoride [27,
28], lithium fluoride [29], barium fluoride [30], and stron-
tium fluoride [31]. Ultra-high-Q resonators have also been
manufactured with other materials such as fused [32, 33]
and crystalline quartz [34], or even diamond [35].

On the one hand, the typical Q-factor for crystalline
WGMRs is of the order of 109, which typically corresponds
to an intrinsic photon lifetime of ∼1 µs for a resonance
at ∼1550 nm. Such resonators are generally fabricated in-
dividually using a grinding and polishing technique [36].
However, it has been shown that crystalline WGMRs can
be fabricated at a large scale [37] and can be integrated as
well in ultra-compact devices [38].

On the other hand, integrated WGMRs and RRs typi-
cally feature aquality factor of the order of106 at1550nm.
Initially, the chip-scale resonators used for Kerr comb gen-
erationwere the so-called “mushroom”WGMRs,whichare
toroidal resonators suspended on a pedestal. This appela-
tion is an obvious reference to their peculiar geometrical
form, and these resonators are manufactured using fused
silica [6]. Later on, many research group introduced in-
tegrated RRs made of silicon nitride [20–22]. The quality
factors of integrated resonators are indeed three orders of
magnitude smaller than those of crystalline WGMRs, but
integrated RRs still have an important advantage in com-
parison toWGMRs,which is their chip-scale size and struc-
ture. Generally, crystalline WGMRs are of millimeter size,
yielding an FSR in the range of few gigahertz. On the other
hand, because the losses in integrated resonators are dom-
inated by the lineic absorption inside the bulk medium,
they typically have a sub-millimeter size and an FSR in the
terahertz range.

Beyond the intrinsic quality factor Qin of the res-
onators, it is important to account as well for the coupling

(or external) quality factor Qext. The external Q-factor can
itself have several contributions depending on the actual
configuration of the coupling, as shown in Fig. 4. It is note-
worthy that the add-through configuration involves a sin-
gle coupler which is used at the same time to pump the
cavity and extract the comb signal in the through port with
quality factor Qext,t ≡ Qext. Because it involves a single in-
put/output point, this configuration allows for relatively
low coupling losses, but, however, its main disadvantage
is that the output signal is a superposition of the intra-
cavity and throughtput fields [17]. The add-drop configura-
tion uses one coupler to pump the resonator (quality fac-
tor Qext,t) and another to retrieve the comb signal at the
drop port (quality factor Qext,d). This configuration allows
to obtain an output signal that is truly proportional to the
intra-cavity field, but on the other hand, it has the dis-
advantage to increase the coupling losses because Q−1ext =
Q−1ext,t + Q−1ext,d (see refs. [40–42]). For crystalline WGMRs,
the coupling is generally performed using a tapered fiber
or a prism coupling. The first solution is the most energet-
ically efficient because it allows for coupling efficiencies
above 99%, while the second one is more robust, still with
a coupling efficiency ashighas 70%.On theother hand, in-
tegratedRRs almost exclusively use the taperedwaveguide
technique. Other options are of course possible, such as ta-
pered fiber coupling for chip-scale mushroom resonators
or angle-polished coupling for WGMRs.

The dynamics of the intracavity field will essentially
be ruled by the total quality factor Q−1tot = Q−1in + Q−1ext, to
which an overall photon lifetime and resonance linewidth
can be associated through Qtot = ω0τph = ω0/∆ωtot. Since
this total quality factor is necessarily smaller than bothQin
and Qext, it is important to optimize the coupling factor
as well in order to obtain an overall quality factor that is
still ultra-high. The resonator is considered under-coupled
when Qin < Qext, over-coupled when Qin > Qext, and crit-
ically coupled when Qin = Qext. These quality factors can
be experimentally determined using the cavity-ring down
method [39].

Themainmotivation for achievingultra-highQ factors
is that it permits to trigger Kerr combs with smaller pump
powers. More specifically, the threshold pump power to
obtain a Kerr comb scales as 1/Q2

tot, as it will be shown
in the next section. It should also be noted that the choice
of the optimal coupling architecture (add-through or add-
drop), quality factors (under-, critical, over-coupling), and
coupling system (prism, taper, etc.) ultimately depends on
the final application for the output Kerr comb.
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Figure 5: (Color online) Various spatiotemporal solutions and their corresponding spectra (Kerr combs), obtained after simulation of Eq. (3).
The conditions under which these solutions can be excited are investigated in detail in ref. [18]. For all these simulations, we consider a
CaF2 resonator coupled in the add-through configuration, with a = 2.5mm, λL = 1550 nm, Qint = 4Qext = 109, ng = 1.43, g0 = 2π × 60 µHz,
and a free-spectral range ΩFSR /2π = 13.35 GHz. The absolute value of the GVD is set to |ζ2| = 2π × 2.9 kHz for both anomalous and
normal GVD. Note that the pumped mode is l = 0, so that the sidemodes expand as l = ±1, ±2, . . . (a) and (d) Roll pattern of order L = 20
(P = 2.5mW and σ = −∆ωtot/2). (b) and (e) Bright soliton (P = 3.5mW and σ = −∆ωtot). (c) and (f) Bright soliton molecule (P = 3.5mW and
σ = −∆ωtot); (g) and (j): Dark soliton (P = 5.3mW and σ = −1.25 ∆ωtot), (h) and (k): Platicon (P = 17.3mW and σ = −3 ∆ωtot). (i) and (l):
Chaos (P = 15mW and σ = −∆ωtot/2).

3 Modeling Kerr combs
WGMs and RRs are characterized by several geometrical
and material properties that have to be accounted for in
order to achieve an accurate modelling of Kerr optical fre-
quency comb generation.

Generally, the resonators can host a very large set of
eigenmodes families, defined by their radial and polar
eigenumbers. However, the theoretical understanding of
Kerr combs only requires to consider a single family (with
fixed polar and radial eigenumbers) containing a large
number of torus-like azimuthal modes [1–3]. Within the
eigenmode family under study, the modes of interest are
unambiguously defined by a single integer wavenumber ℓ,
which can be interpreted as the mode’s angular momen-
tum or, equivalently, the total number of reflections that
a photon in this mode undergoes during one round trip

in the cavity in the ray-optics interpretation. If we con-
sider that the eigennumber of the pumped is ℓ0 and its
frequency is ωℓ0 , it is convenient to introduce the reduced
eigenumber l = ℓ0 − ℓwhich is such that the pumpedmode
is l = 0, while the sidemodes symmetrically expand as
l = ±1, ±2, . . . with “+” and “−” standing, respectively, for
higher and lower frequency sidemodes.

The spectral distance ωl+1 − ωl between two consec-
utive modes is referred to as the FSR and for a resonator
with closed-path perimeter L, the FSR can be explicitly de-
termined as FFSR = c/ngL = vg/L, where c is the veloc-
ity of light in vacuum, ng is the group-velocity refraction
index at ωl, and vg is the corresponding group velocity.
It should be noted that the FSR is linked to the round-
trip period along the perimeter of the resonator following
TFSR = 1/FFSR .
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Figure 6: Schematic representation of Kerr optical frequency comb
generation using a crystalline disk resonator. In this figure, we con-
sider the case where a continuous-wave input pump creates a roll
pattern (eighth order) inside the disk resonator, which induces a a
periodic intensity modulation along the rim. The output signal spec-
trally corresponds to an optical frequency comb with extremely high
coherence and robustness, featuring an eight-FSR spacing. Depend-
ing on the laser pump power and frequency, many other stationary
(solitons) and non-stationary (chaos, breathers) spatiotemporal
patterns can be excited inside the nonlinear resonator, as shown in
Fig. 5.

The eigenmodes ωl are in fact not strictly equidistant.
Themeasure of this nonequidistance is referred to as over-
all dispersion, which explicitly appears when the eigen-
frequencies of the resonator are Taylor expanded around
the pumped mode following ωl = ω0 +

∑︀kmax
k=1 (ζk/k!) l

k,
where kmax is the order of truncation, ζ1 ≡ 2πFFSR = ΩFSR

is angular frequency FSR, ζ2 represents the second-order
GVD, and ζk for k ≥ 3 corresponds to higher-dispersion
terms. Note that perfect equidistance for the eigenfrequen-
cies would be achieved by setting the dispersion to zero,
that is, ζk ≡ 0 for all k ≥ 2. It is important to note that
dispersion has a geometrical and a material contribution.

Another parameter of interest is the effectivemodevol-
ume Ve�, or equivalently, the effective mode area Ae� =
Ve�/L, of the torus-like eigenmodes within which the
intra-cavity photons are trapped. The smallest mode areas
induce a stronger confinement of the intracavity photons.
Strictly speaking, the mode volume does vary weakly as a
function of the eigenmode order l, but for sake of simplic-
ity, we will consider here that these parameters are degen-
erated and, therefore, equal for all the modes under con-
sideration.

Kerr comb generation is actually mediated by the Kerr
nonlinearity that induces a dependence of the refraction
index with regards to the intracavity electric field follow-
ing n = n0 + n2I, where n0 is the refraction index at the
frequency ω0, n2 is the Kerr coefficient, and I is the irradi-

CW laser

Pump

PD

Kerr comb

Microwave

WGMR

Figure 7: Simplified experimental set-up for microwave generation
using Kerr combs. CW, continuous wave; PD, photodetector. The
very high spectral requirement justifies the utilization of crystalline
WGM Rs with billion quality factor at 1550 nm. The prism is the
preferred coupling solution in this case for the sake of improved
robustness. A stationary and coherent Kerr comb would yield an
ultra-pure microwave after photodetection.

ance of the field (proportionnal to its square modulus). In
the studies led with a cavity electrodynamics mindset, the
intracavity fields are evaluated in terms of number of pho-
tons and the Kerr nonlinearity is generally accounted for
through the FWM gain g0 = n2c~ω2

0/n20Ve� (in rad/s). On
the other hand, in research works undertaken with a non-
linear optics approach, the power of intracavity fields is
measured in watts and the Kerr nonlinearity is accounted
for through the coefficient 𝛾 = ω0n2/cAe� in W−1m−1,
which is, for example, extensively used in fiber optics re-
search [43].

Using the above parameters, Kerr optical frequency
comb dynamics can be modelized using two complemen-
tary approaches, namely, a spectrotemporal approach us-
ing coupled-mode equations (CME), and a spatiotempo-
ral approach using the LLE. These approaches aim to de-
scribe the dynamics of the complex-valued, slowly-varying
envelopes of the intra-cavity fields. They are valid as long
as the temporal dynamics of these fields is typicaly slower
than the round-trip period of the resonator. Both for-
malisms can also be translated into the quantum realm
and yield quantum Langevin equations (QLE). These the-
oretical approaches are reviewed hereafter.

3.1 Spectrotemporal model: coupled-mode
equations (CME)

The first type of models that have been proposed to in-
vestigate the dynamics of Kerr combs are spectrotemporal
models, which are also sometimes referred to as modal-
expansion or coupled-mode models. This approach was
initially developped in [5] for the case of pump, signal and
idler dynamics. It was later on generalized in ref. [9] to ac-
count for an arbitrary number of modes. The main idea of
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this approach is that the optical field of each mode can
be described by its complex-valued slowly-varying enve-
lope Al. Therefore, a set of coupled equations can be es-
tablished to describe the dynamics of each amplitude Al
as a function of losses, dispersion, nonlinearity, as well as
the laser pump and frequency.

It can be demonstrated that the modal fields Al obey
the following set of autonomous, nonlinear, and coupled
ordinary differential equations (see ref. [9]):

Ȧl = −12∆ωtotAl + i
[︃
σ −

kmax∑︁
k=2

ζk
k! l

k
]︃
Al

+ig0
∑︁
m,n,p

δ(m − n + p − l)AmA
*
nAp

+δ(l)
√︀
∆ωext,t Ain , (1)

where the overdot indicates the time derivative, and δ(x)
is the Kronecker delta function that equals 1 when x = 0
and equals zero otherwise. In the above equation, the Kro-
necker function indicates that only the mode l = 0 is
pumped, and that the allowed FWM interactions will be
those for which the total angular momentum of the inter-
acting photons is conserved, following m + p = n + l. An
important parameter of the above equation is the detuning
parameter σ = ωL − ω0, which is the difference between
the angular frequencies of the laser of power P (in watts)
and of the pumpedmode resonance. The term standing for
the pump field is Ain =

√︀
P/~ωL , and it corresponds to the

square root of the input photon flux. The abovemodel also
assumes several simplifications, such as spatial degener-
acy (all the eigenmodes are perfectly overlapped spatially)
and loss degeneracy (all the modes have the same loss co-
efficients).

In the above equation, the frequency reference is set
at the laser frequency and the slowly-varying amplitudes
Al are definedwith respect to the equidistant grid of eigen-
modes,while in the originalmodel of ref. [9], the frequency
reference is set at the pumped resonance frequency, and
the sidemodes are defined with respect to the dispersion-
detuned eigenfrequency grid. Equation (1) has also been
complex conjugated with respect to the original modal ex-
pansion model (see [9, 18]). It is also important to recall
that the fields in Eq. (1) are normalized such that |Al|2 is a
number of photons (dimensionless).

3.2 Spatiotemporal model: the
Lugiato–Lefever equation (LLE)

The complementary approach to the spectrotemporal
model is the spatiotemporal approach, where instead of

tracking the time-domain dynamics of individual modes
Al(t), we follow the spatiotemporal dynamics of the total
intracavity field A(θ, t) =

∑︀
l Al(t)eilθ, where θ ∈ [−π, π]

is the azimuthal angle along the closed-path circumfer-
ence of the resonator. It has been shown in refs. [13–15]
that the total intracavity field A(θ, t) obeys a nonlinear
partial differential equation which is generally referred to
as the Lugiato–Lefever equation (LLE). The LLE was ini-
tially introduced by Lugiato and Lefever almost 30 years
ago as a paradigmatic equation for the understanding of
self-organization and dissipative structures in nonlinear
optics [16]. In the case of Kerr combs, it has been shown in
ref. [14] that the above modal expansion model is exactly
equivalent to the following generalized LLE in the moving
frame

∂A
∂t = −12∆ωtotA + iσA + ivg

kmax∑︁
k=2

(iΩFSR )k
βk
k!
∂A
∂θk

+ig0|A|2A +
√︀
∆ωext,t Ain , (2)

where the new dispersion coefficients βk =
−[vg(−ΩFSR )k]−1 ζk exactly correspond to those generally
used in fiber optics research.

Equation (2) is a nonlinear partial differential equa-
tion with periodic boundary conditions. For that reason,
the numerical simulations of the LLE are optimally per-
formed using the split-step Fourier algorithm, which is
a particularly efficient algorithm that inherently assumes
such periodic boundary conditions because it is based on
the fast Fourier transform (FFT). As a technical note, sev-
eral authors write the LLE with two timescales, and this
particular approach finds its origin in earlier works per-
formed in the context of nonlinear fiber ring cavities [44,
45]. However, this two timescales LLE is strictly equiva-
lent to the spatiotemporal LLE of Eq. (2), which follows the
viewpoint of cavity nonlinear optics. The spatiotemporal
formulation appears to be themost logical in the context of
Kerr combs because the azimuthal angle θ is intrinsically a
periodic variable that inherently respects the physical na-
ture of the boundary conditions and also because l and θ
are natural conjugate variables from the Fourier analysis
standpoint.

The output fields can explicitly be expressed asAout =√︀
∆ωext,tA − Ain in the add-through configuration and as

Aout =
√︀
∆ωext,dA in the add-drop configuration [40]. It is

also useful to note that the intracavity and output fieldsA
andAout can be, respectively, rescaled toE =

√︀
~ΩL /TFSR A

and Eout =
√︀
~ΩL Aout, which have a square modulus in

units of watts.
Most studies restrict their analysis to the case where

higher-order dispersion is neglected (βk ≡ 0 for k ≥ 3). In
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Figure 8: (Color online) Schematic representation of the experimental setup for ultra-high capacity optical coherent telecommunications.
A Kerr comb is used as a multi-wavelength coherent source fo WDM optical telecommunications. EDFA, erbium-doped fiber amplifier; BPF,
bandpass filter; PC, polarization controllers; PolMUX, polarization multiplexing; LO, local oscillator. The signal of a CW laser is first am-
plified and filtered to reject the EDFA noise. This signal is used to pump an ultra-high-Q WGMR, and a coherent Kerr comb (primary comb
corresponding to a roll patern) is obtained at the output port. This comb is amplified, and a notch filter attenuates the center mode to a
level comparable to the first-order side modes of the comb. A programmable filter is used for interleaving, flattening, and filtering the comb
lines. Two EDFAs boost the carriers, which are fed via polarization controllers to two transmiters. The data streams are then multiplexed,
mergedand, launched in the transmission fiber. At the receiver end, the data streams are band-pass filtered and amplified before being co-
herently detected with an external cavity laser serving as a local oscillator. The received data are visualized using constellation diagrams
that display the real and the imaginary part of the optical amplitude in the complex plane. This experiment enabled to transmit data at up to
144 Gbit/s per carrier.

that case, the above equation can be simplified and nor-
malized as

∂ψ
∂τ = −(1 + iα)ψ − i β2

∂2ψ
∂θ2 + i|ψ|2ψ + F, (3)

whereψ(θ, τ) = (2g0/∆ωtot)1/2A(θ, τ) is the total intracav-
ity field, τ = ∆ωtott/2 = t/2τph is the dimensionless time,
α = −2σ/∆ωtot is the cavity detuning, and β = −2ζ2/∆ωtot
is the second-order GVD (defined as normal for β > 0 and
anomalous for β < 0). The driving term of the normal-
ized LLE is F = (8g0∆ωext,t/∆ω3

tot)1/2
√︀
P/~Ω0 and stands

for the external pump excitation. From the mathematical
point of view, Eq. (3) exactly corresponds to the original
equation introduced by Lugiato and Lefever in ref. [16].
However, it is interesting to note that in the original LLE,
the Laplacian term stands for diffraction instead of disper-
sion in the case of Kerr comb generation.

3.3 Quantum Langevin equations (QLE)

As Kerr optical frequency combs result from a cas-
cade of photonic interactions involving individual pho-

tons, purely quantum phenomena based on the non-
classical nature of light can play a significant role in these
combs [46]. The dynamics of Kerr optical frequency combs
at the quantum level is determined using an Hamiltonian
operator (which has the advantage to be helpful for the de-
termination of conservation rules) or using the canonical
quantization (which has the advantage to be more intu-
itive).

On the one hand, the quantum state of each mode
l can be described by the annihilation and creation op-
erators âl and â†l , which are the quantum counterparts
of the slowly varying envelopes Al and A*l , respectively.
These operators are Hermitian conjugates of each other,
and they obey the boson commutation rules [âl , â

†
l′ ] = δl,l′

and [âl , âl′ ] = [â†l , â
†
l′ ] = 0. On the other hand, the semi-

classical photon number Nl = |Al|2 = A*lAl should now be
replaced by its quantum counterpart, which is the photon
number operator n̂l = â†l âl.
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Figure 9: (Color online) Simplified experimental setups for the analysis of the quantum states of Kerr combs. (a) Pump below threshold. The
setup allows to investigate parametric fluorescence and entangled photon pair generation. (b) Pump above threshold. The setup permits to
investigate quantum correlations and two-mode squeezing.

In theHeisenberg picture, quantumKerr combs canbe
described by the following set of differential equations

˙̂al = −
1
2∆ωtot âl + i

[︃
σ −

kmax∑︁
k=2

ζk
k! l

k
]︃
âl

+ ig0
∑︁
m,n,p

δ(m − n + p − l) â†nâmâp

+ δ(l)
√︀
∆ωext,t Ain +

∑︁
s

√︀
∆ωs V̂s,l , (4)

where V̂s,l(t) is the vacuum fluctuation operator that
have to be associated to every loss mechanism for each
mode l, with s being an index running across the vari-
ous loss terms corresponding to the configuration under
study (intrinsic, through-port, and eventually drop-port).
These vacuumfluctuation operators have zero expectation
value and obey the commutation rules [V̂s,l(t), V̂†s′ ,l′ (t

′)] =
δs,s′ δl,l′ δ(t − t′).

The annihilation operator of the total intracavity field
can also be described by the operator â(θ, t) =

∑︀
l âl(t) e

ilθ

that obeys the quantum LLE

∂â
∂t = −

1
2∆ωtot â + iσâ + ivg

kmax∑︁
k=2

(iΩFSR )k
βk
k!
∂kâ
∂θk

(5)

+ ig0 â†â2 +
√︀
∆ωext,t Ain +

∑︁
s

√︀
∆ωs V̂s,

where V̂s(θ, t) =
∑︀

l V̂s,l(t) e
ilθ.

The above QLE permit the quantum analysis of Kerr
combs when the resonators are pumped below and above

threshold, thereby allowing for the understanding of phe-
nomena suchas entanglement, spontaneousFWM,or two-
mode squeezing [46].

4 Various types of solutions and
their corresponding spectra

We present here the main types of Kerr optical frequency
combs that can be obtained both experimentally and the-
oretically. We classify these combs using the dynamical
characteristics of their spatiotemporal waveform, which is
indeed associated to a particular kind of Kerr comb in the
spectral domain. In this review, we restrict the analysis
to the case where only the second-order dispersion is ac-
counted for, so that the system can be analyzed using the
normalized LLE of Eq. (3). It can be shown that the types
of solutions and their basin of attraction strongly depend
on the dispersion regime [18]. In the anomalous dispersion
regime, the stationary solutions are rolls (super- and sub-
critical), bright solitons (isolated or coexisting), and soli-
ton molecules (isolated or coexisting). In the case of nor-
mal dispersion, the stationary solutions can be rolls, dark
solitons (isolated or coexisting), and breathers. Figure 5
displays the various types of solutions that are generally
obtained in both the spatial and spectral domains. The dy-
namical nature of these solutions is explained in the fol-
lowing sub-sections.
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4.1 Rolls

Roll patterns emerge from noise after the breakdown of an
unstable flat background through modulational instabil-
ity, when the resonator is pumped above a certain thresh-
old. This mechanism preferably occurs in the regime of
anomalous GVD, but, however, rolls can also be sustained
in the normal GVD regime, although under very marginal
conditions (typically, very large detuning, see refs. [9, 18,
47]).

When the pump is below the threshold, there is only
one excited mode in the resonator (l = 0), while all the
sidemodes amplitudes Al with l = ̸ 0 are null. From the
spatiotemporal standpoint, the intracavity field is con-
stant (flat background). Under certain conditions, when
the pump F is increased beyond a certain threshold value
Fth, the flat background solution becomes unstable and
breaks down into a roll pattern characterized by a peri-
odic modulation of the intracavity power as a function of
the azimuthal angle (see Fig. 6). This phenomenology is
generally referred to asmodulational instability in nonlin-
ear optics, and as theBenjamin–Feir instability in fluidme-
chanics. As a historical note, this kind of instability has in
fact been foreshadowed for the first time by Alan Turing
in his seminal work on the chemical basis of morphogen-
esis. His toy model was a “continuous ring of tissue,” and
his main finding was that “in the most interesting form sta-
tionary waves appear on the ring” [48]. The work of Turing
became a paradigm for reaction–diffusion systems, and
in that context, the modulational instability is also some-
times referred to as the Turing bifurcation.

It has been demonstrated that the number of rolls
that appear in the azimuthal direction when the cavity
is pumped just above the threshold of modulational in-
stability is equal to the closest integer approximation of
lth = [2

⃒⃒
(α − 2)/β

⃒⃒
] 12 = [2

⃒⃒
(σ + ∆ωtot)/ζ2

⃒⃒
] 12 . In the spec-

tral domain, the Kerr comb corresponding to this roll pat-
tern will feature a multiple-FSR spacing, with a multiplic-
ity exactly equal to lth, and they are sometimes referred to
as primary combs [9].

It is also noteworthy that roll patterns can emerge fol-
lowing either a supercritical bifurcation (soft excitation) or
a subcritical bifurcation (hard excitation), as already em-
phasized in the original work of Lugiato and Lefever [16].
On the one hand, supercritical bifurcations to roll patterns
occur when α < 41/30 in the anomalous GVD regime, and
they correspond to the casewhere the roll pattern (F > Fth)
cannot coexist with the flat background (F < Fth). On
the other hand, still for anomalous GVD, subcritical bifur-
cations arise when α > 41/30. Here we still have a roll
pattern beyond Fth and a flat background below Fth, but,

however, there is a small range below Fth where both the
flat solution and the roll pattern are stable and coexist.
This area of bistability also displays hysteresis, so that the
asymptotic solution depends on the initial condition, and
external perturbations can switch the system from one so-
lution to another [18].

At the experimental level, primary combs have been
evidenced for the first time in ref. [25], and since then, they
have been reported and investigated in numerous studies
(see, e.g., ref. [17]). These particular Kerr comb spectra are
characterized by a very strong mode locking [49], particu-
larly in the supercritical case with low lth and just above
threshold, where the roll pattern is the only stable solu-
tion. It should also be noted that experimentally, primary
combs with a multiplicity higher than 200 have already
been demonstrated [50], and this multiplicity typically in-
creases as |β| → 0.

It has also been shown that the absolute minimum
pumppower to excite a roll pattern in a resonator of radius
a is

Pmin =
~ωL

8g0
∆ω3

tot
∆ωext,t

= 2πa ω2
L

8𝛾v2g
Qext,t
Q3
tot

. (6)

Therefore, a millimeter-sized crystalline resonator with
billion quality factor at 1550 nm would have a threshold
power of the order of fewmilliwatt, while a sub-millimeter
integrated silicon nitride resonator with million quality
factor would rather have a threshold power of a watt. It
can also be demonstrated that Pmin, which is proportional
to Ve�/Q2, iswith an excellent approximation the absolute
minimum value needed to excite any type of comb.

4.2 Bright, dark, and breather solitons

In general, conservative solitons result from the balance
between nonlinearity and dispersion, which defines their
shape. In dissipative cavities, it is necessary to achieve as
well the balance between gain and dissipation, which de-
fines their amplitude. At the opposite of rolls that are ex-
tended dissipative patterns, cavity solitons are localized
dissipative structures that are coexisting with one or two
stable flat background solutions.

Bright solitons are by essence subcritical, because
they correspond to a pulse that has been isolated from
a subcritical roll pattern in the anomalous dispersion
regime [18]. In the spectral domain, Kerr combs corre-
sponding to solitons display up to several hundred phase-
locked modes, with a number of modes that increases as
|β| → 0. Depending on the initial conditions (i.e., on
how the system is excited from a flat background state),
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multipeaked solutions, which are referred to as soliton
molecules, can emerge in the system. The number of peaks
actually depends on the initial conditions and canbe inter-
preted as a set of contiguous pulses that have been carved
out of a subcritical roll pattern. The bright solitons have
also been observed in recent experiments [51], and differ-
ent strategies have been proposed to excite them [52].

Dark solitons are localized structures that are charac-
terized by a “hole” in a flat background. These solitons co-
exist with two stable flat solutions (sometimes referred to
as “up” and “down” solutions) and particular initial con-
ditions are needed to excite them. The dark solitons can
be a dip in the background or can feature a large depres-
sion (and be referred to as a platicon [53]), depending on
the parameters of the system.

Under certain conditions, the solitonsmight lose their
stability and bifurcate to breathers, which are solitons
whose amplitude varies periodically in time. The breath-
ing period is typically very low and remains of the order
of the photon lifetime. These breathers naturally lead to
nonstationary Kerr combs.

The bright, dark, and breather cavity solitons are
localized dissipative structures, and they are not influ-
enced by the boundary conditions as long as their typ-
ical linewidth is smaller than the closed-path perimeter
of the resonator. It is, therefore, possible to excite simul-
taneously several solitons of the same type inside the
resonator, and they remain uncoupled as long as their
linewith remains much smaller than the distance between
them.

4.3 Chaos

A system is considered chaotic when it is determinis-
tic, unpredictable, and sensitive to initial conditions. It is
known that the necessary (but not sufficient) conditions
for the emergence of chaos are nonlinearity and three-fold
dimensionality in the state space. A third condition,which
is rather empirical but intuitively evident, is the require-
ment of “strong” excitation. The equations ruling the dy-
namics of Kerr combs (LLE or CME) can fulfill all these con-
ditions and therefore predict the occurence of spatiotem-
poral chaos. The first unambigous evidence of spatiotem-
poral chaos inKerr combswasprovided in ref. [8] using the
computation of Lyapunov exponents, whichwere found to
be positive in the case of strong pumping. Other studies
such as ref. [54] have also shed more light on the chaotic
dynamics of Kerr combs.

From a more general perspective, two main routes to
chaos can be identified for Kerr combs [55]. The first route

corresponds to the destabilization of roll patterns. In that
case, the rolls start to oscillate chaotically and in the spec-
tral domain, the Kerr comb features very strong spectral
lines corresponding to the primary comb, alongwithmany
spuriousmodes that are subjected to very large chaotic os-
cillations. The second route to chaos corresponds to the
destabilization of solitons. Here, the unstable solitons are
in a “turbulent” regimewhich is characterizedby thepseu-
dorandom emergence of very sharp and powerful peaks.
A statistical analysis shows that these peaks which are of
rare occurence and very high intensity [56] qualify as rogue
waves [57, 58].

The chaotic spectra are prevalent in Kerr comb litera-
ture because they are relatively easy to obtain and they fea-
ture a very large spectrum (strongpump regime). However,
it should be recalled that these pseudo-random spectra
are nonstationary and, therefore, only partially coherent
(even in the hypothetical case of a noise-free system, see
ref. [59]). They are, therefore, not the most suitable combs
for most applications where exceptionaly high coherence
is a strong requirement.

5 Applications

5.1 Ultra-stable microwave generation

Optical frequency combs are known to be one of the
most efficient technology for ultra-stable microwave gen-
eration. Traditionaly, the combs are generated using an
ultra-fast mode-locked laser. Provided that they span over
more than an octave, these combs can be autoreferenced,
thereby allowing for the transfer of the metrological preci-
sion of optical laser frequencies down to the gigahertz or
terahertz range [70]. The Nobel prize of physics has been
awarded in 2005 to Theodor Hänsh and John Hall for their
contributions to the optical frequency comb technique.

One of the early promise of Kerr optical frequency
combs is that they could provide ultra-stable signals both
in the lightwave and microwave frequency domains. Sev-
eral research works have already proven that Kerr combs
can effectively deliver competitive solutions for both os-
cillators (short-term stability) and clocks (long-term stabil-
ity).

The microwaves are generated by photodetection of
the output signal from the Kerr-nonlinear resonator, as
shown in Fig. 7. As far as short-term stability is concerned,
an early result reported a phase noise performance of
−113 dBc/Hz at 10 kHz from a 22-GHz carrier, using a ver-
satile platform that was able to provide resonators with
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Figure 10: (Color online) Representation of some of the fundamental and applied developments related to Kerr combs. This evolutionary
tree permits to visualize the cross-disciplinary nature of this topic.

Q-factors of the order of a billion at 1550 nm [60]. Minia-
ture photonic oscillators based onKerr combs are commer-
cially available today with a phase noise of −115 dBc/Hz
at 10 kHz offset and −130 dBc/Hz at 100 kHz offset from
a 10- or 35-GHz output [61]. These performances have re-
cently been improvedwith aminiature 10-GHzmicrowave
photonic oscillator characterized by a phase noise better
than −60 dBc/Hz at 10 Hz, −90 dBc/Hz at 100 Hz, and
−170 dBc/Hz at 10MHz [23]. From the perspective of long-
term stability, Kerr combs with 140-GHz intermodal fre-
quency have been stabilized with a residual one-second
instability of 10−15, with a microwave reference limited
absolute instability of 10−12 [62]. Kerr combs have been
successfully stabilized to atomic rubidium transitions as
well [63].

It is noteworthy that Kerr combs are capabile to have
a frequency span beyond one octave. For example, a Kerr
frequency combs spanning from 990 to 2170 nm with
a 0.85-THz FSR has been demonstrated experimentally
in ref. [64]. An octave comb pumped at 1562 nm with a
128-THz span and a spacing of 226 GHz was reported in
ref. [65]. Recent experiments have also shown that Kerr
combs can even have a multioctave spectral span [66].
Therefore, Kerr combs can be self-referenced and be useful
formetrological applications. A comprehensive analysis of
noise conversionmechanisms inKerr combs is proposed in
ref. [67].

5.2 Optical coherent telecommunications

As highlighted in the previous sections, Kerr optical fre-
quency combs are characterized by their exceptional
spectral purity and coherence. They are, therefore, ideal
candidates to be coherent multiwavelength emitters for
ultra-high capacity optical fiber telecommunication net-
works, where evenly spaced and phase-locked carriers are
used for the purpose of wavelength division multiplexing
(WDM). These optical telecommunication networks are
still in constant need for ever more transmission band-
width, but, however, it becomes increasingly difficult and
costly to generate a large number of independent and
frequency-locked sub-carriers when they have to be con-
trolled precisely and individually. Kerr combs provide a
simple and cost-effective alternative technology to circum-
vent this drawback.

Early experiments with Kerr combs demonstrated
single-channel 10 Gbit/s transmissions using an on–off
keying modulation scheme [68, 69]. A leapfrog improve-
ments was reported recently with a 1.44 Tbit/s transmis-
sion using quadrature phase shift keying with configura-
tionwhere 20 channelsmodulated at a bitrate of 72Gbit/s
were multiplexed [59]. All the above experimental demon-
strations did use Kerr combs generated with integrated
RRs with million quality factor at 1550 nm. Using the ex-
perimetal setup displayed in Fig. 8, it was shown later that
crystallineWGMRs with billion quality factors at 1550 nm
allows to increase the transmission capacity to 144 Gbit/s
per channel using a 16-quadrature amplitudemodulation
scheme on three multiplexed carriers [59].
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5.3 Spectroscopy and mid-IR combs

Kerr optical frequency combs can be generated in a very
wide range of wavelength and intermodal spacing grids.
For this reason, they are considered promising tools for
spectroscopic and sensing applications [71]. The over-
whelming majority of Kerr combs are generated today
around the telecomwavelength of 1550 nm, but the pump
frequencies can be pushed downwards to 800 nm [72] and
upwards to 4500 nm [73].

Naturally, the (multi-)octave spanning combs provide
someof thewidest frequency spans [64–66].However, par-
ticular efforts have been invested in recent years to explore
the mid-infrared (IR) range where a large set of molecules
of interest have their spectroscopic signature [71]. Some
of the most noticeable results along that line have been
reported in refs. [73–76], where Kerr combs in the mid-IR
have been successfully generated. Active research is also
currently led to understand how the dispersion can be en-
gineered in order to increase the efficiency of mid-IR comb
generation [77].

5.4 Quantum applications

Kerr optical frequency combs involve interactions among
individual photons and, therefore, can feature genuinely
quantum properties when pumped below or above thresh-
old as shown in Fig. 9. This quantum behavior can be un-
derstood using, for example, the QLE presented in Sec-
tion 3.3.

When the system is pumpedbelow threshold, it is clas-
sically assumed that all the sidemodes have zero power
except the pumped mode. However, from the quantum
viewpoint, the pump field actually interacts with the side-
modes through spontaneous FWM, where two pump pho-
tons of frequencyωp ≡ ω0 are symmetrically up anddown
converted in the Fourier domain following 2~ωp → ~ωi +
~ωs, where ωi ≡ ω−L and ωs ≡ ω+L are the idler and sig-
nal angular frequencies, respectively (with L > 0). Sponta-
neous FWM, which is also sometimes referred to as para-
metric fluorescence, is a purely quantumphenomenon that
results from the coupling between the intracavity pump
photons and the vacuum fluctuations of the various side-
modes. The applications of spontaneous FWM belong to
the area of quantum optics engineering, where one of the
main challenge is the generationof entangled twin-photon
pairs with chip-scale RRs [78–90]. These photon pairs are
expected to play a key role in quantum communication
protocols.

Above threshold, the photonic interaction 2~ωp →
~ωi + ~ωs becomes stimulated instead of spontaneous,
through modulational instability, for example. The semi-
classical analysis (CME or LLE) predicts that the power in
the sidemodes ±l is exactly the same, so that the differ-
ence Nout,∆ = Nout,l − Nout,−l of the output photon num-
ber flux is strictly null (this experimentally corresponds
to the difference of optical powers photodetected for the
modes +l and −l). This situation is in contrast with the
the quantum standpoint where the corresponding opera-
tor N̂out,∆ = N̂out,l − N̂out,−l does not vanish, because there
is necessarily a shot-noise floor level after any photodetec-
tion process (standard quantumnoise limit). However, the
system can be tuned to a quantum state where the differ-
ence in the amplitude fluctuations is smaller than the stan-
dard quantum noise limit, and this phenomenon corre-
sponds to the so-called two-mode squeezing [91, 92]. This
phenomenon, predicted by Lugiato and Castelli in ref. [93]
for optical systems ruled by the LLE, has been experimen-
tally observed in Kerr combs in ref. [94]. Squeezing finds
its main application in ultra-high precision optical metrol-
ogy.

6 Conclusion
In this review article, we have provided a general pre-
sentation of the topic of Kerr optical frequency combs.
We have discussed the frameworks of analysis needed to
achieve an insightful understanding of the available theo-
retical and experimental results in that field. We have first
presented the various experimental architectures used for
Kerr comb generation, with an emphasis on the generators
based on crystalline and chipscale resonators. We have
then introduced the two main formalisms for the theoret-
ical understanding of Kerr combs, namely, the coupled-
mode theory and the LLE. The various solutions of inter-
est in the spatial domain have been highlighted, namely,
rolls, solitons, breathers, and chaos, along with their cor-
responding combs in the spectral domain. We have then
discussed some applications of Kerr combs with emphasis
on optical communications, microwave generation, spec-
troscopy, and quantum applications.

Several challenges are still to be met as far as Kerr
combs are concerned. For example, the nonlinear dynam-
ics of the LLE and its bifurcation behavior is extremely
rich and still deserves attention, as a full characteriza-
tion of the existing stationary solutions has not been
completed at this date [18, 95–97]. This nonlinear analy-
sis is also needed in order to gain further insight in the
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wide variety of phase-locking phenomena that are taking
place in Kerr combs [49, 98–100] and also to optimize the
Kerr comb generation process [101]. The phenomenon of
the Raman scattering in ultra-high-Q resonators deserves
much attention, because it arises from the same χ(3) non-
linearity that is at the origin of Kerr combs. These Raman
combs generally have a spectral span that is as large as
few tens of terahertz and they, therefore, require to ac-
count for higher-order dispersion and nondegeneracy of
spatial modes [102]. The issue of dispersion engineering
is also critical, as it directly defines the spectral span of
the comb [103]. Other nonlinear effects that might com-
pete with the Kerr nonlinearity also have to be accounted
for, such as Brillouin scattering [104] or even thermal ef-
fects [105]. From the application standpoint, Kerr combs
can also be combined with other traditional techniques
to provide a versatile set of carriers for coherent optical
telecommunications [106], while the versatility of primary
combs (which can permit to generate combs with an in-
termodal frequency higher than a terahertz) could be ex-
ploited for the purpose of terahertz generation [50]. The
stochastic analysis of Kerr combs is also a topic that will
probably become more prevalent at the time to evaluate
the spectral purity of the lightwave [59] andmicrowave [67]
coherent output signals, and this study will require an
in-depth understanding of the noise sources in the res-
onators [107, 108].

The topic of Kerr combs is definitely far-reaching, in-
terdisciplinary, and transversal from both the fundamen-
tal and applied viewpoints, as shown in Fig. 10, and we
expect the forthcoming developments in this field to be of
the highest relevance in many areas of contemporary sci-
ence.
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