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107 NYASSE Barthélémy Professor on duty

108 TSAMO Etienne Professor on duty

109 DONGO Etienne Associate Professor on duty

110 KAPNANG Henriette Associate Professor on duty

111 MBAFOR Joseph Associate Professor on duty

112 WANDJI Jean Associate Professor on duty
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ABSTRACT

The purpose of this thesis is to study the phenomena of synchronization and pattern

formation in lattices of chaotic oscillators in view of applications to cryptography and

switching in telecommunications.

This work is divided in four chapters.

In the first chapter, we perform the optimization and stability analysis for the

synchronization of coupled chaotic oscillators. We use the Floquet theory to determine

optimal synchronization conditions for coupled system. We also study the neighboring

cases of delayed synchronization and external feedback control.

In the second chapter, the study is extended to the problem of pattern formation

in one-dimensional lattices of diffusely coupled chaotic oscillators. We first focus on

the case of a low dimensional ring, and then generalize the obtained results to lattices

of arbitrary size.

Chapter III focuses on the dynamics and synchronization of chaotic semiconduc-

tor lasers. The two cases of current-modulated and external-cavity semiconductor

lasers are considered, and the stability of their related synchronization manifolds is

investigated. In both cases, the issue of parameter mismatch is also addressed.

The last chapter is devoted to the application of the observed coherent and inco-

herent nonlinear phenomena to cryptography and switching in optical-fiber telecom-

munication networks. We first ensure the secure encryption of digital messages with

hyperchaotic carriers, and we secondly exploit the phenomenon of cluster synchro-

nization in topologically shift-invariant lattices of chaotic semiconductor lasers to

perform the switching in these chaos-secured networks.
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RESUME

L’objet de cette thèse est d’étudier les phénomènes de synchronisation et de formation

de structures dans les réseaux d’oscillateurs chaotiques, en vue de les appliquer à la

cryptographie et à la commutation en télécommunications.

Ce travail est divisé en quatre chapitres.

Dans le premier chapitre, nous effectuons l’optimisation et l’étude de stabilité de la

synchronisation d’oscillateurs chaotiques couplés. Nous utilisons la théorie de Floquet

pour déterminer les conditions de synchronisation optimales pour le système couplé.

Nous étudions aussi les cas voisins de la synchronisation retardée et du contrôle par

rétro-alimentation externe.

Dans le second chapitre, l’étude est étendue au problème de la formation de struc-

tures dans les réseaux unidimensionnels d’oscillateurs chaotiques couplés diffusive-

ment. Nous nous concentrons d’abord sur le cas d’un anneau de basse dimension, et

ensuite nous généralisons les résultats obtenus à des anneaux de longueur arbitraire.

Le chapitre III se concentre sur la dynamique et la synchronisation de lasers à

semiconducteurs chaotiques. Le cas des lasers à semiconducteurs modulés en courant

et celui des lasers à semiconducteurs à cavité externe sont considérés, et la stabilité

de leurs variétés de synchronisation est étudiée. Dans les deux cas, le problème de la

desyntonie en paramètres est analysé.

Le dernier chapitre aura pour point focal l’application des phénomènes cohérents et

incohérents observés à la cryptographie et à la commutation dans les réseaux de fibre

optique en télécommunications. Nous réalisons dans un premier temps le cryptage

de signaux digitaux avec des porteuses hyperchaotiques, et ensuite, pour assurer la

commutation dans ces réseaux sécurisés grâce au chaos, nous exploitons le phénomène

de synchronisation par blocs dans les systèmes de lasers à semiconducteur chaotiques

couplés de manière topologiquement invariante par rotation.

xxi



GENERAL INTRODUCTION

AT the golden age of classical mechanics, determinism and predictability were as-

sumed to be almost equivalent concepts. In a very famous citation [1], Laplace

did enthusiastically express the tight relationship between both, emphasizing that

determinism and predictability should be perfectly equivalent if one could afford an

unlimited computing and analysis ability. However, in the early years of the twentieth

century, Henri Poincaré did gather a convincing set of elements indicating that de-

terminism and predictability do carry intrinsically different physical meanings, since

the interplay between sensitivity to initial conditions and nonlinearity could lead to

the emergence of a complex and apparently random dynamics [2]. Owing to the eclo-

sion of digital computers and monitor graphics, Poincaré’s intuition was confirmed

sixty years later in a seminal article written by the meteorologist Edward Lorenz

[3]: for the first time, a deterministic and unpredictable system was unambiguously

identified. Since then, an ever growing interest has been devoted to investigate the

nature and universality of this phenomenon, which has meanwhile received the name

of chaos.

The very essence of chaos is complexity, unpredictability and sensitivity to initial

conditions. Its ubiquity has yet been confirmed in various scientific fields ranging

from biology to chemistry, passing through almost all the branches of physics and

engineering [4, 5, 6, 7, 8]. During two decades, huge analytical, numerical and exper-

imental efforts have sharpened our knowledge of chaos, from bifurcation scenarii to

measures, characterization and routes to chaos. But today, beyond the identification

and the study of isolated chaotic systems, investigation in chaos theory does particu-

larly focus on the collective dynamics of coupled chaotic oscillators on one hand, and

on innovative technological applications on the other.

It was thought for a long time that the natural extension of chaos in spatially

coupled chaotic systems is spatiotemporal chaos, that is, a state of simultaneous

chaos in the spatial and temporal domains. However, phenomena of self-organization

and spatial coherence have effectively been observed in coupled chaotic oscillators,

and have triggered off a tremendous interest for the study of their spatiotemporal

dynamics. Applications rapidly appeared to be wide: pattern formation modeling,
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coherent collective behavior in nonlinear physical, biological and ecological systems,

oscillatory chemical processes, extended neuronal networks, etc.

For a number of oscillators restricted to two, emphasis is commonly laid upon

the state of synchronization, which occurs when the two identical oscillators con-

tinuously remain in step with each other [9, 10, 11]. Several coupling schemes have

been set up to achieve that purpose. Generally, in the synchronization mechanism, a

“master” system drives or commands the dynamics of a “slave” system, even though

other techniques with mutual coupling which ignore this hierarchy have been devel-

oped. The study of this counter-intuitive behavior of spatial coherence and temporal

incoherence has turned into one of the leading topics of nonlinear dynamics, and

very soon, several key-issues had emerged: the reduction of the undesirable effects

of noise and parameter mismatch [12, 13], the minimization of both the synchro-

nization time and the threshold energy input required for the process [14]. All these

performance constraints can be resumed in one word: optimization. Theoretical anal-

ysis has shown that synchronization is generally optimized when the synchronization

manifold is in the most stable configuration in the state space of the coupled sys-

tem. Consequently, one can in first approximation identify optimization to

a maximal stability criterion, and the development of a general analytic

approach able to define the coupling parameters leading to high-quality

synchronization is still a wide-open problem.

When the number of oscillators is increased, the dynamics of the whole coupled

system becomes much more complex. Beside the well-known and intensively studied

phenomena of spatiotemporal chaos [15] and complete (full) synchronization [16, 17],

recent literature has reported the existence of hybrid configurations consequent to

symmetry breaking and spontaneous spatial reordering, which are sometimes referred

to as cluster synchronization [18, 19, 20, 21]. These intermediary states allow

the chaotic oscillators to synchronize with one another in groups, while there is no

synchronization among the groups. Clustering is mostly witnessed when the coupling

is non-local [20] or non-symmetric [18]. It consequently appears as more fascinating

and more unconventional when it occurs in a system with local and symmetric cou-

pling [19, 21]. Depending on the number of chaotic oscillators, the type of coupling

and the boundary conditions, the dynamical system can display a rich but limited

set of different cluster patterns. In general, the stability of the various clusters is

studied through the variations of the sub-Lyapunov exponents associated to their re-

lated sub-manifolds. Unfortunately, this numerical procedure is very time-consuming

and moreover very repetitive, since the numerical simulation of the sub-Lyapunov
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exponents has to be performed separately for each possible cluster. Therefore, this

approach can no longer be applied when the number of oscillators becomes pro-

hibitively high, as it is typically the case in the thermodynamic limit for the phase

transitions theory of one-dimensional lattices. There is consequently a necessity

for a synthetic theory which would give an analytic insight into the var-

ious transitions that can occur between the possible dynamical states of

the coupled system when the coupling strength or the number of oscil-

lators is varied. Such a theory should ideally interpret within the same

framework the underlying structure of both the states themselves and the

various transitions between them.

As far as technological applications are concerned, chaos has succeeded progres-

sively in imposing itself as an interesting alternative solution for certain classes of

problems. In laser science, a first decisive breakthrough was achieved in 1975 when

Haken demonstrated that the dynamics of resonant single-mode ring-lasers is ruled

by a Lorenz-like set of ordinary differential equations, and therefore can display a

chaotic behavior [22]. Later, chaos will be identified in almost all types of lasers, such

as fiber, solid-state or gas lasers. However, it has very soon been clearly assumed

that technological applications are significantly more promising with semiconductor

lasers, as their microchip structure, suitable wavelength and good efficiency at room

temperature allow their use in the flourishing and strategic fiber telecommunications

industry. The first important achievement in this domain was made in 1980 by Lang

and Kobayashi, when they derived a set of delay differential equations to model the

dynamics of single-mode semiconductor lasers subjected to external optical feedback

[23]. It will further be demonstrated that beside the instability and hysteresis phe-

nomena predicted in their article, the infinite dimensionality induced by the delay

could give rise to an hyperchaotic dynamics [24].

Since then, the topic of chaos in semiconductor lasers has been intensively investi-

gated. Today, several techniques are commonly used to induce chaos in semiconductor

lasers, even though they can be gathered into two principal groups, namely parameter

modulation [25, 26] and external feedback [27, 28, 29, 30, 31, 32, 33]. Following the

mainstream trend of research in chaos theory, great attention has been paid to the

collective dynamics of coupled semiconductor lasers in their chaotic regime. Along

that line, the synchronization of such chaotic lasers became a focus of

strong interest, and currently, the determination of the necessary and/or

sufficient conditions for their synchronization is still a difficult challenge,
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which has turned to be crucial when chaotic semiconductor lasers became

potentially eligible for cryptography [34, 35].

Optical chaos cryptography is by far the most important application of laser chaos

[36]. Nowadays, security in optical-fiber network is ensured by public key crypto-

systems, which are softwares whose guarantee of security is computational complexity.

Even though the level of security is constantly kept high by increasing the key-length

(today, up to 512 bits), brute-force attacks or clever algorithmics may still be able to

decipher the encrypted information. It has therefore been suggested that laser chaos

could strengthen security through a complementary hardware encryption. More pre-

cisely, optical chaos cryptography relies on the synchronization of two semiconductor

lasers operating in the chaotic regime. Typically, an information-bearing signal is en-

crypted within the noise-like output of a chaotic emitter, while a synchronous receiver

recognizes the chaotic component and extracts it to reveal the originally encrypted

signal. Within that framework, it can therefore be said that encryption relies on

the unpredictability of chaotic oscillations, while decryption relies on their deter-

minism. In this context, the use of chaos cryptography will automatically

impose important changes in the network architecture: effectively, hard-

ware encryption is preferably compatible with hardware switching, as well

as software encryption does fit with software switching.

The main purpose of our work is to propose some solutions to the open points

reported above, that is, to contribute to the exploitation of chaos synchronization and

pattern formation for cryptography and switching applications in telecommunications.

For that purpose, we will first study some fundamental aspects of synchronization

and pattern formation in lattices of coupled chaotic oscillators. We further focus on

the synchronization of chaotic semiconductor lasers, and on the related technological

applications.

The thesis is therefore divided into four chapters.

In chapter I, we perform the optimization and stability analysis for the synchro-

nization of unidirectionally coupled chaotic oscillators. We propose a new technique

which enables a geometric interpretation of the dynamical states of the coupled sys-

tem, as well as of the various bifurcations that may occur as the coupling parameter

is varied. We also generalize the results to the neighboring cases of delayed synchro-

nization and external feedback control.

Chapter II is entirely devoted to the problem of pattern formation in rings of

diffusely coupled chaotic oscillators. We first focus on the case of a low dimensional
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ring, for which the case of an external local injection is also analyzed. The results are

generalized to a lattice of arbitrary dimension, and a scaling-law technique is used to

study the dynamics of the system in the thermodynamic limit.

The dynamics and synchronization of chaotic semiconductor lasers is investigated

in chapter III. We first consider the case where chaos is induced by ultra-high fre-

quency pumping-current modulation, and secondly the case where an hyperchaotic

dynamics results from external optical feedback. In both cases, the stability of the

synchronization manifold is analytically investigated, and the detrimental influence

of parameter mismatch on the quality of the synchronization is analyzed.

In chapter IV, the results obtained in the first three chapters are applied to cryp-

tography and switching in optical-fiber telecommunication networks. On the one

hand, we carry out the encryption of digital messages in hyperchaotic carriers, and

on the other, we exploit the phenomenon of cluster synchronization in shift-invariant

lattices of chaotic semiconductor lasers to perform the switching in chaos-secured

networks.

We end with a general conclusion where the principal results of the thesis are

summarized, and where perspectives for future investigation are sketched.
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CHAPTER I

OPTIMIZATION AND STABILITY ANALYSIS

OF CHAOS SYNCHRONIZATION

1.1 Introduction

This first chapter is devoted to the optimization and stability analysis of chaos syn-

chronization. We will first briefly introduce the fundamental concepts of chaos theory,

with a particular emphasis on those which will further be used throughout the thesis.

Hence, we will focus on the issue of chaos synchronization with unidirectional

feedback coupling. The purpose will be to determine conditions under which a satis-

fying and highly stable synchronization can be achieved between two identical chaotic

systems. After an overview of the existing methods, we will present a new technique

based on approximated Fourier expansions and Floquet analysis. To validate our the-

ory, we will demonstrate how it enables to stabilize and optimize the synchronization

of single-well Duffing oscillators. Finally we extend the usefulness of our analytic

technique to the case of external chaos control.

1.2 Chaos

1.2.1 Dynamical systems under study: ordinary and delay differential
equations

In this thesis, we will focus on dynamical systems whose modeling can be achieved

through Ordinary Differential Equations (ODEs) or through Delay Differential Equa-

tions (DDEs).

Let us consider a vectorial variable x = (x1, ..., xn) with n ∈ N∗, a n-dimensional

vectorial flow F, and the ODE which reads

ẋ = F(x) with x(0) = x0 . (1)

The above equation may represent dynamical system if and only if the flow F

fulfills the Lipschitz condition, which guarantees determinism in the sense that it
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does not allow more than one solution for a given initial condition x0
1. In eq. (1), the

initial conditions are defined by the n initial values for the components of the vector

x. Therefore, the dimensionality of the phase space corresponding to the flow F is n

by definition. The above representation is said to be autonomous in the sense that

no explicit dependence on time is accounted for. However, non-autonomous ODEs

can easily be converted into an autonomous representation through a quite simple

transformation.

In DDEs, the dynamics at each instant t depends on the value of the vector x at

the same instant t, but also on the value of x at a previous instant t−T , with T > 0.

If we introduce the delayed variable xT ≡ x(t−T ) and the n-dimensional lipschitzian

vectorial flow G, a DDE should formally read

ẋ = G(x,xT ) with x(t) = g(t) for t ∈ [−T, 0] , (2)

where g is an arbitrary n-dimensional vectorial function of time. Contrary to ODEs

where the initial conditions were given by a discrete and finite set of values, initial

conditions in DDEs should be indicated (by the mean of a function) for all the values

contained into the continuous interval [−T, 0], so that an infinity of values should

be known to characterize the system. That is why unlike the ODEs, DDEs

are infinite-dimensional dynamical systems. They are also referred to in the

literareferred Functional Differential Equations because their initial condition is a

function and not a discrete and finite set of values as it is the case for ODEs.

1.2.2 Definition of chaos

A continuous dynamical system is said to be chaotic when its temporal behavior is

deterministic, unpredictable and extremely sensitive to initial conditions. In

the state space, the corresponding attractor is an invariant manifold of non-integer

(or fractal) dimension, so that it is generally referred to as a strange attractor 2.

Chaotic attractors are the result of a complex interplay between stretching and

folding in the state space. Stretching is a linear process responsible for the sensitive

dependence on initial conditions, while folding is a nonlinear phenomenon responsible

for both the size limitation at macro-scale and fractal structure at micro-scale.

1For example, the flow ẋ =
√

x is non-lipschitzian because it allows two distinct solutions x(t) = 0
and x(t) = 1

4 t2 for the same initial condition x0 = 0. It can therefore not modelize a deterministic
dynamical system.

2Chaotic attractors are always strange, but strange attractors are not always chaotic [37, 38].
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Two fundamental requirements are indispensable for chaos to appear in a con-

tinuous dynamical system. The first one is nonlinearity. Effectively, linear systems

are always predictable, so that they can not be chaotic anyhow. In the state space,

stretching is normally present for linear dynamical systems, but folding does never

occur, as it is intrinsically related to nonlinearity. The second requirement is that the

state space should mathematically be at least three-dimensional. Effectively, despite

nonlinearity, folding is impossible in one-dimensional state spaces because of the No-

intersection theorem while it is impossible in two-dimensional state spaces because of

the Poincaré-Bendixon theorem [8].

When these two necessary (but not sufficient) conditions are fulfilled, chaos is

likely to be observed in ODEs as well as in DDEs, and some quantifiers are needed

to get a deeper insight into its various properties and characteristics.

1.2.3 Measures of chaos

Almost all the measures of chaos in dynamical systems rely on the fundamental

property of sensitivity to initial conditions. This sensitivity is evaluated by calculating

the divergence rate of initially nearby trajectories in the state space. In the case of

ODEs, if we consider two initially nearby state variables x0 and x0+δx0, the deviation

δx further evolves as

δẋ =

[
∂F

∂x

]
x

· δx with δx(0) = δx0 , (3)

where [∂F/∂x] is the Jacobian of the flow F evaluated on x. The n eigenvalues of

this Jacobian are referred to as Lyapunov exponents, and they can numerically be

determined through

λk = lim
t→+∞

1

t
ln

[
|δxk(t)|
|δxk(0)|

]
with k = 1, ..., n . (4)

The n eigenvalues λk constitute the Lyapunov spectrum of the flow F for the initial

condition x0. The average Lyapunov spectrum of an attractor is defined as the space

average of the Lyapunov spectrum over its corresponding basin of attraction. De-

pending on its sign, an average Lyapunov exponent λk expresses convergence (when

negative) or divergence (when positive) of nearby trajectories along the corresponding

eigendirection in the attractor. Therefore, a dynamical system is said to be chaotic

if at least one average Lyapunov exponent λk is positive. The system is

said to be hyperchaotic if more than one average Lyapunov exponent is positive.

Moreover, a greater number of positive λk, as well as greater absolute values for each
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of them when positive indicate a higher complexity in the state space and a higher

unpredictability in the time domain.

Generally, if the initial value x0 is properly chosen, the resulting Lyapunov spec-

trum does not differ substantially from the average Lyapunov spectrum. Therefore,

in this thesis, we will compute Lyapunov exponents without averaging. Sometimes,

a unique Lyapunov exponent is defined as

λ = lim
t→+∞

1

t
ln

[
‖δx(t)‖
‖δx(0)‖

]
, (5)

and its sign directly indicates chaoticity, even though it can not indicate hyperchaotic-

ity.

For DDEs, the variational equation reads

δẋ =

[
∂G

∂x

]
x,xT

· δx +

[
∂G

∂xT

]
x,xT

· δxT with δx(t) = δg(t) for t ∈ [−T, 0] (6)

and in this case, there is an infinity of Lyapunov exponents. That is why hyperchaos

(displaying a very complex dynamics) is more likely to appear in DDEs than in ODEs.

From the Lyapunov exponents, other mathematical quantifiers can be determined

to characterize the chaotic attractor [8]. Their interest principally lies on their very

important physical meaning. The first one is the Kolmogorov-Sinäı entropy, which

is inversely proportional to the time-interval over which the future evolution can be

predicted. If the Lyapunov exponents are decrescently ordered, the Kolmogorov-Sinäı

entropy can be expressed as

hKS =
∑j

k=1
λk , (7)

where j is the index of the last Lyapunov exponent for which the sum is positive.

The second quantifier is the Kaplan-Yorke dimension, which is a measure of

the complexity of the attractor. Kaplan and Yorke did conjecture that this dimension

is identical to the information dimension, which measures the difficulty to determine

the instantaneous location of the system in the state space for a given precision. Using

the Lyapunov exponents, the Kaplan-Yorke dimension is defined as

dKY = j +

∑j
k=1 λk

|λj+1|
= j +

hKS

|λj+1|
. (8)

As we will further see in the last chapter of the thesis for the cryptographic ap-

plications, the Kolmogorov-Sinäı entropy and the Kaplan-Yorke dimension are key

parameters to evaluate the security of chaos-encrypted messages.
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1.3 Chaos synchronization

The concept of chaos synchronization has first been introduced by Fujisaka and

Yamada in 1983 [9], but the topic gained greater attention only seven years later, when

Pecora and Carroll succeeded in constructing a convenient mathematical framework

to analyze the phenomenon [10]. They showed that despite sensitivity to initial con-

ditions, unpredictability and complexity of the attractors, distinct chaotic oscillators

can synchronize when coupled, that is, their temporal oscillations can continuously

remain in step with each other when certain requirements are met [40].

We will here define the general framework of synchronization theory on the base

of unidirectionally coupled ODEs, assuming that the extension to DDEs can straight-

forwardly be achieved.

1.3.1 Definition

Let us consider the following set of unidirectionally coupled n-dimensional chaotic

flows

ẋ = F(x)

˙̃x = F̃(x̃,x) , (9)

fulfilling the additional condition

F̃(x̃, x̃) ≡ F(x̃) . (10)

The first flow F of variable x is independent of the second: it is usually referred to

as the drive or the master system. On the other hand, the second flow F̃ of vector

variables x̃ and x is coupled to the first one: it corresponds to the response or slave

system. Here, the overtilde (˜) has therefore been adopted to label the slave flow and

the slave variables.

The slave system is said to be identically synchronized to the master if and only

there exists a non-empty subset E ⊂ Rn of the chaotic basin of attraction for which

∀ (x0, x̃0) ∈ E2, lim
t→+∞

x̃(t) = x(t) . (11)

In other words, the term identical synchronization refers to a situation where owing

to the coupling, we obtain x̃(t) = x(t) in the asymptotic limit even though x0 6= x̃0.

Various unidirectional coupling schemes can be set up to achieve synchronization.

In this thesis, we will only consider unidirectional continuous feedback syn-

chronization schemes, which is inspired from the continuous feedback chaos control
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scheme proposed by Pyragas [41]. According to this technique, the slave vector-flow

can explicitly be written as

F̃(x̃,x) = F(x̃)−C(x̃− x) with C(0) = 0 , (12)

where the continuous feedback vector-flow C is an arbitrary unidirectional coupling

function. The particular case of linear feedback coupling is one of the most popular,

and it is defined as

F̃(x̃,x) = F(x̃)− [K](x̃− x) . (13)

where K is a constant feedback gain matrix. It is important to note that in both eqs.

(12) and (13), the requirement of condition (10) is always fulfilled. Along the same

line, the original method proposed by Pecora and Carroll was a substitution scheme,

which mathematically corresponds to the case when the elements of the feedback gain

matrix K are either 0 or ±∞.

Even though the notion of identical synchronization is the most simple and the

most intuitive, further investigation has shown that it should be integrated within

the much more general context of general synchronization, which is supposed to occur

when there exists a non-empty subset E ⊂ Rn of the chaotic basin of attraction for

which

∀ (x0, x̃0) ∈ E2, lim
t→+∞

x̃(t) = h [x(t− T )] , (14)

where h is a given vectorial function, and T a real value referred to as the time lag.

From the above definition, some important particular cases do arise. When T = 0,

the synchronization is said to be isochronous, while it is said to be achronous when

T 6= 0. More precisely, the term delayed synchronization is used when T > 0 because

in that case, the slave tracks a past state of the master, while the term anticipated

synchronization is used when T < 0 because this situation paradoxically indicates

that the slave system forecasts the chaotic dynamics of the master. Also, generalized

synchronization naturally degenerates into identical synchronization when h turns to

be the identity vectorial function.

More complete mathematical formalisms have been proposed to define a unifying

framework for the synchronization theory [42, 43, 44], and they intended to include

highly correlated (but not exactly synchronized) states such as the phase synchro-

nization state.
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1.3.2 Conditions for synchronization

An important matter is to define the condition(s) under which synchronization oc-

curs in coupled chaotic systems. This problem mathematically requires to define the

synchronization basin E as a function of the coupling. Unfortunately, this problem is

extremely complex and probably does not have any analytical solution. However, it

is possible for the general case to derive numerically a necessary (but not sufficient)

condition for chaos synchronization.

Let us consider the deviation vector w defined as

w(t) = x̃(t)− x(t) , (15)

which estimates the instantaneous mutual proximity between the master and the slave

systems in the state space. The Euclidian norm ‖w(t)‖ of this deviation vector is

referred to as synchronization error, and synchronization is achieved when this norm

asymptotically converges to 0. At a linear approximation, the deviation vector obeys

ẇ =

[
∂F̃

∂x̃

]
w=0

·w = [J(x)] ·w , (16)

where J(x) is the (sub-)Jacobian of the slave flow evaluated with the master vector

variable. Synchronization is achieved when the sub-Jacobian J(x) asymptotically

drives w(t) to 0. A necessary condition for this to occur is that all the eigenvalues of

the sub-Jacobian J(x), referred to as sub-Lyapunov exponents, should be negative

[10, 11]. However, since this sub-Jacobian is evaluated with the chaotic variable x,

the sub-Lyapunov exponents Λk can only be evaluated numerically as

Λk = lim
t→+∞

1

t
ln

[
|wk(t)|
|wk(0)|

]
with k = 1, ..., n (17)

while analogously to the definition of Lyapunov exponents, a single sub-Lyapunov

exponent defined as

Λ = lim
t→+∞

1

t
ln

[
‖w(t)‖
‖w(0)‖

]
(18)

can directly indicate synchronization when negative.
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1.4 Analytic stability study of synchronization man-

ifolds

1.4.1 Overview of the existing analytical stability techniques

As explained earlier, the stability analysis of identically synchronized nonlinear os-

cillators is commonly carried out through the study of the asymptotical behavior of

the deviation vector w(t) = x̃(t) − x(t) which estimates the instantaneous mutual

proximity between the master and the slave systems in the state space. In general,

depending on the coupling parameter(s), three distinct situations can arise from the

stability study of w(t) as t→ +∞.

The first of them occurs when ‖w(+∞)‖ = 0. In that case, the slave trajec-

tory progressively tracks the master one, and consequently, stable synchronization

is achieved: it is the regime of linear stability. The second situation arises when

0 < ‖w(+∞)‖ < +∞, that is, when the synchronization error does not converge to

zero and does not diverge to infinity either. Here, the synchronization is said to have

failed, since the oscillations of x and x̃ remain uncorrelated despite the coupling:

it is the regime of nonlinear stability. The third and last situation corresponds to

‖w(+∞)‖ = +∞, i. e., the coupling induces a sustained growth to infinity for the

slave system variable: it is the regime of instability. This situation is obviously worst

than the second, as it can lead to catastrophic consequences in real systems.

The aim of the stability study is therefore to determine under which conditions

each of these three scenarii are encountered, and particularly important is to find the

conditions under which the synchronized state is linearly stable. In fact, linear stabil-

ity is not sufficient for applications of chaos synchronization: for example, parameter

mismatch and noise, which are both unavoidable in real systems, can easily destroy a

weakly stable synchronized state. Therefore, a key-issue is to look for the conditions

under which a maximal stability is achieved for the synchronization manifold: it is

said that the coupling has been optimized. As we will further see, chaotic systems have

the best performance when this optimization criterium of maximal stability is fulfilled.

One of the most challenging task in synchronization theory is to derive analytically

the necessary and/or sufficient conditions under which the coupling efficiently com-

pletes a robust and high-quality synchronization. Starting from now, we will use the

non-autonomous vectorial representation which is mathematically less synthetic, but

physically more expressive. In that representation, the master and slave vector-flows

13



can be rewritten as

ẋ = F(x, t)

˙̃x = F(x̃, t)−C(x̃− x) with C(0) = 0 . (19)

At a linear approximation, the deviation related vector w obeys

ẇ =

[(
∂F

∂x̃

)
w=0

−
(
∂C

∂x̃

)
w=0

]
·w = [J(x, t)] ·w , (20)

and as we have earlier noted, synchronization is achieved when the Jacobian matrix

J(x, t) drives w to 0 at long term: for this situation to occur, it is known that the

sub-Lyapunov exponents should necessarily be negative. However, that negativity

condition has further been proved to be insufficient because these exponents describe

the attractor as a whole whereas the stability of the synchronization manifold also

depends on localized invariant sets embedded within that attractor [45]. Moreover,

the sub-Lyapunov exponents can only be derived numerically, and thus do not give

any analytic insight into the stability analysis problem. Therefore, several proposi-

tions have been made to overcome that deficiency.

The most straightforward is the “Ubiquitous Local Stability” method, which sup-

poses that synchronization is stable when the instantaneous eingenvalues of the Jaco-

bian J(x, t) always have negative real parts everywhere within the chaotic attractor.

The main advantage of his method is its simplicity. However, it is not a rigorous

method and counter-examples can easily be found [46]. In fact, this ubiquitous lo-

cal stability criterium is exclusively relevant for the long term behavior, and it fails

to state about the stability of the transient motion, as the continuously changing

eigenvalues and eigenvectors can induce parametric resonance.

Another interesting technique has been introduced by Gauthier and Bienfang [47],

and it belongs to the family of Lyapunov function methods. They proposed to analyze

the eigenvalues of the symmetric part of the Jacobian, that is [J(x, t)+JT (x, t)]. This

method is rigorous, but yields overly strong mathematical constraints for stability.

Finally, a different approach has also been proposed by Brown and Rulkov [48, 49]

for the stability analysis of chaos synchronization. It relies on the decomposition of the

Jacobian matrix into a constant part obtained through time-averaging 〈J(x, t)〉, and a

variable part of mean-value 0 which corresponds to the difference [J(x, t)− 〈J(x, t)〉].
It is also a rigorous method, which is far-reaching in some cases, but whose interest

is more qualitative than quantitative.
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1.4.2 A new approach: Fourier expansion and Floquet analysis

We now introduce a new method to investigate the stability synchronization man-

ifolds. This new analytical technique aims to succeed where the existing methods

commonly fail, that is, in the description of the complex stability patterns which are

obtained numerically as well as experimentally. In fact, the variational equation (20)

resists to exact analytic treatments because the Jacobian is a function of the vector

x which is a chaotic variable. To circumvent that problem, we propose an approach

consisting in the replacement of the chaotic variable x by one of the T -periodic UPOs

(Unstable Periodic Orbits) x embedded within the chaotic attractor, and which like

x obeys

ẋ = F(x, t) . (21)

Since x is multiperiodic, it can be expanded in Fourier series as

x(t) =
+∞∑
k=0

[Ak cos(kωt) + Bk sin(kωt)] with ω =
2π

T
. (22)

Therefore, the vectorial Fourier components Ak and Bk can be recovered through the

Ritz-Galerkin variational criterion according to∫ T

0

[
ẋ− F(x, t)

]
eikωt dt = 0 with k = 0, 1, ...,+∞ (23)

The above equation yields an infinite set of coupled nonlinear algebraic equations

which must be solved to determine the components the Fourier vectors. It is also

an optimization equation in the sense that in general, the Ritz-Galerkin criterium

only gives an approximation of Ak and Bk. Finally, the stability analysis of the

synchronized state is reformulated as a generalized Floquet problem

ẇ = [J(x, t)] ·w . (24)

Obviously, the above equation (24) is not mathematically equivalent to the original

variational equation (20). The main difference is that the asymptotic behavior of

the deviation vector w will now be decided by the Floquet multipliers instead of the

sub-Lyapunov exponents. However, as we will further see, equation (24) offers a ju-

dicious qualitative and quantitative guidance for the choice of the suitable coupling

parameter(s).
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1.5 Example: synchronization of chaotic single-

well Duffing oscillators

1.5.1 The system

The model we use for illustration was first introduced by Duffing in 1918, while

investigating the nonlinear response of springs in mechanical systems [50]. The second

order ODE he thus introduced to address this issue has rapidly turned into one of

the most popular model of nonlinear dynamics, and today, its validity extends from

electronics to atomic vibrations in solid-state physics. Under a generic form, the

Duffing equation can be written as

ẍ+ λẋ+ αx+ γx3 = f(t) , (25)

where λ (> 0) stands for the linear damping, α for the linear stiffness, γ for the

nonlinear stiffness, and f(t) is the explicit time-dependent external excitation. When

α < 0 and γ < 0, the above equation is unstable, and therefore is not of much interest.

But when α < 0 and γ > 0, the system does possess asymmetric pair of stable fixed

points x± = ±
√
−α/γ: this is why it is referred to as the double-well Duffing model

in the literature. On the other hand, when α > 0, equation (25) only has one stable

fixed point x0 = 0 independently of the sign of γ: in this case, the system is referred

to as the single-well Duffing model.

For our analysis, we have chosen to lay emphasis on the single-well model because

it allows a wider diversity of chaotic attractors, since the nonlinear coefficient γ can

be either positive or negative. The linear stiffness parameter α will be normalized to

1 for the sake of mathematical commodity and the external excitation f(t) is chosen

to be a sinusoidal function of amplitude F and frequency ω, so that our model now

explicitly reads

ẍ+ λẋ+ x+ γx3 = F cos(ωt) . (26)

We therefore have two distinct cases.

The first one corresponds to γ > 0, and it aims to describe the hardening effect

of a nonlinear spring (the stiffness increases with the elongation). Depending on the

chosen parameters, the system can display a chaotic behavior [51, 52]. Effectively,

the system presents the classical jump phenomenon and nonlinear resonance for low

forcing amplitude, but high external forcing gives rise to chaotic oscillations owing to

the pseudo-two-wells potential configuration, as it can be seen in figure 1a.
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Figure 1: Chaotic attractors for Single-Well Duffing Oscillators. a) γ > 0 case:
λ = 0.2, γ = 1.0, F = 28.5, ω = 0.86, with initial conditions (0, 0); b) γ < 0 case:
λ = 0.4, γ = −1.0, F = 0.23, ω = 0.5255 with initial condition (0, 0) for the inner
limit-cycle, and (−0.3, 0.7) for the outer chaotic trajectory.

The second case corresponds to γ < 0, and it accurately describes the softening

effect (the stiffness decreases with the elongation). Here, chaos is much more difficult

to spot [53]. For example, the set of parameters in figure 1b can induce two different

stable orbits depending on the initial conditions. We have an inner limit cycle, which

has a relatively large basin of attraction including the trivial center point in the state

space, and also an outer trajectory whose basin of attraction is a thin band separating

the inner limit cycle and the unbounded solutions basins.

Throughout the thesis, the same sets of parameters will be used for these two cases,

which will respectively be referred to as “the γ > 0 case” and “the γ < 0 case”.

Also, the numerical simulations will be performed with the fourth-order Runge-Kutta

algorithm, while all nonlinear algebraic equations will be solved with the Newton-

Raphson algorithm.

1.5.2 Stability analysis

To illustrate the validity of our approach, we aim to study the stability of synchronized

single-well Duffing oscillators when the coupling is ensured through a linear feedback

term. The corresponding set of coupled ODEs can be written as so that our model

now explicitly reads

ẍ+ λẋ+ x+ γx3 = F cos(ωt)

¨̃x+ λ ˙̃x+ x̃+ γx̃3 = F cos(ωt)−K(x̃− x) , (27)
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where the scalar parameter K stands for the feedback unidirectional coupling term

between the master oscillator x and the slave x̃.

The deviation variable can here be chosen as a scalar according to ξ = x̃− x, and

it obeys at the first order to the following linear differential equation

ξ̈ + λξ̇ + (1 +K + 3γx2)ξ = 0 . (28)

This variational equation is the equivalent of equation (20) in the vectorial formalism.

As we earlier noted, synchronization is therefore achieved when ξ asymptotically

decays to zero. In the spirit of equation (24), we need to replace the chaotic variable

x(t) in equation (28) by its related UPO x(t) defined as

x(t) =
+∞∑
k=0

Ck cos(kωt− ϕk) with k = 0, 1, ...,+∞ , (29)

and the scalar Fourier coefficients Ck and ϕk should satisfy the Ritz-Galerkin criterium

following∫ 2π/ω

0

[
F cos(ωt)− (ẍ+ λẋ+ x+ γx3)

]
eikωt dt = 0 with k = 0, 1, ...,+∞ . (30)

Normally, equation (30) yields an infinite set of coupled nonlinear algebraic equations

whose unknowns are the Ck and ϕk coefficients. If we straightforwardly consider

the multiperiodicity of x(t) in equation (28), the stability analysis would require the

resolution of an ODE with multiperiodic parametric excitation. Even though the

related study would logically yield the most satisfying results, it should be noted that

unfortunately, the consequent stability boundaries can hardly be derived in that case,

even within the framework of perturbation theory.

In fact, such a complexity can be avoided when the chaotic attractor is almost

simply folded, or equivalently, when the corresponding Fourier spectrum is overly

dominated by a single spectral frequency. In that case, the stability analysis can be

done with a single pair (Ck, ϕk), instead of the infinite set (k from 0 to +∞). For

example, figure 2 displays the Fourier spectra related to the γ > 0 and γ < 0 cases

respectively. When γ > 0, energy is mainly distributed in very sharp bands around

the odd harmonics of the forcing frequency ω (figure 2a). However, the major part of

the energy lies around the fundamental frequency. On the other hand, when γ < 0,

both the phase portrait (figure 1b) and the Fourier spectrum (figure 2b) agree that

the simple-folding hypothesis is quasi-perfectly fulfilled. Hence, in both cases, the

stability analysis can satisfyingly be done with the single pair (C1, ϕ1), and the UPO

may simply be approximated by

x(t) = C1 cos(ωt− ϕ1) . (31)
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Figure 2: Fourier spectra for Single-Well Duffing Oscillators. a) γ > 0 case; b) γ < 0
case.

Therefore, if we replace the chaotic variable x by the approximated uniperiodic UPO

x of equation (31), the variational equation (28) may be rewritten under the form of

a canonical Mathieu equation

d2η

dτ 2
+ [µ+ 2α cos(2τ − 2ϕ)] η = 0 , (32)

with the following rescalings

τ = ωt

η(τ) = ξ exp

(
λτ

2ω

)

µ =
1

ω2

[
1 +K +

3

2
γC2

1 −
λ2

4

]

α =
3γC2

1

4ω2
. (33)

Also note that the index of ϕ has been removed for the sake of simplicity (ϕ ≡ ϕ1).

It appears from equation (33) that the coupling coefficient K only influences the

Mathieu parameter µ, but not the parameter α anyway.

The solution of the Mathieu equation (32) has the form [54, 55, 56]

η(τ) = eθτ φ(τ) , (34)

where θ is a complex number and

φ(τ) =
+∞∑

n=−∞
φn e

2inτ (35)

is a π-periodic function, so that

η(τ) =
+∞∑

n=−∞
φn e

(θ+2in)τ . (36)
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Inserting equation (36) into equation (32) yields an infinite homogeneous set of linear

algebraic equations, which may have solutions if and only if the associated determi-

nant is equated to zero. In a symbolic form, this tridiagonal determinant can be

expressed as [56]

∆(θ, µ, α) =

∥∥∥∥∥(µ+ (θ + 2in)2) δm,n + α (e2iϕδm,n−1 + e−2iϕδm,n+1)

µ− (2m)2

∥∥∥∥∥ = 0 (37)

where the δm,n are the Kronecker symbols, with m and n varying from −∞ to +∞.

∆(θ, µ, α) is usually referred to as the infinite Hill determinant, and one can show

that

∆(θ, µ, α) = ∆(0, µ, α)−
sin2

(
1
2
iπθ

)
sin2

(
1
2
π
√
µ
) (38)

where i is the unit complex number. Therefore, one can deduce that

θ = ±2i

π
arcsin

√
∆(0, µ, α) sin2

(
1

2
π
√
µ
)

(39)

and since we have

ξ = φ(τ) exp

[(
θ − λ

2ω

)
τ

]
(40)

from equation (33), it therefore results that the ξ oscillations either exponentially de-

cay to zero (linear stability) or exponentially increase to infinity (linear instability),

unless <(θ) = λ/2ω. According to Floquet theory, the transition from stability to

instability (or the inverse) can only occur in two distinct cases:

• π-periodic transition: θ = λ/2ω

∆(0, µ, α) +
sinh2

(
λπ
4ω

)
sin2

(
1
2
π
√
µ
) = 0 (41)

• 2π-periodic transition: θ = i+ λ/2ω

∆(0, µ, α)−
cosh2

(
λπ
4ω

)
sin2

(
1
2
π
√
µ
) = 0 (42)

Equations (41) and (42) define a set of curves in the (µ, α) parametric plane,

as schematically represented in figure 3. They constitute a stability map which is

commonly referred to as the Strutt diagram. In the case of the non-dissipative Mathieu
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Figure 3: The Strutt diagram. The linearly stable area is darkly shaded, the nonlin-
early stable belt is lightly shaded, and the unstable area is in blank. The π-periodic
boundaries are in thick lines, while the 2π-periodic boundaries are in thin lines. The
figurative points of the γ > 0 case (α > 0) and γ < 0 case (α < 0) at K = 0 have
been represented. The two cases have been represented in the same figure for the sake
of simplicity.

equation, the Hopf theorem states that for a given value of α, stable values of µ are

those which are strictly situated between boundaries of different types [54]. In our

dissipative case, it graphically implies that the stability domain is the darkly shaded

area enclosed between the π- and 2π-periodic boundaries in figure 3.

If we mathematically define the new real function

Γ(µ, α) =

∆(0, µ, α) sin2
(

1
2
π
√
µ
)

if µ ≥ 0

−∆(0, µ, α) sinh2
(

1
2
π
√
−µ

)
if µ ≤ 0

, (43)

then the analytic condition of linear stability is the following, according to the Hopf

theorem

− sinh2

(
λπ

4ω

)
< Γ(µ, α) < cosh2

(
λπ

4ω

)
. (44)

Therefore, from a conventional approach, the Strutt diagram is divided into two

distinct areas: the area of linear stability (ξ(t) → 0), and the area of linear instability

(ξ(t) → ±∞). The boundaries between these two areas can either be π-periodic if

Γ(µ, α) = − sinh2(λπ/4ω) (thereby inducing ξ(t) = ξ(t + π/ω)), or 2π-periodic if

Γ(µ, α) = cosh2(λπ/4ω) (thereby yielding ξ(t) = ξ(t+ 2π/ω)).
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However, the Strutt diagram may be divided into two areas only at the linear

approximation. When the variational equations aim to decide the stability of a non-

linear system, the variational nonlinear terms we have discarded in equation (28) play

a predominant stabilizing role, thereby leading to the emergence of a third area in

the Strutt diagram. Effectively, due to these nonlinear variational terms, there is a

buffer zone between the linearly stable and linearly unstable areas: it is an area of

nonlinear stability (which is however linearly unstable), where |ξ(t)| does not decay

to zero and does not grow to infinity either. The inner boundaries of this buffer zone

are the periodic boundaries of the linearly stable area, while its outer boundaries are

very irregular, sometimes fractal-like, and are shared exclusively with the unstable

area. In figure 3, this domain of nonlinear stability has been represented as a lightly

shaded belt surrounding the linearly stable zone, while the unstable domain remains

unshaded.

Let us assume that the local width of this belt is Λ(µ(kπ), α), where the couple

(µ(kπ), α) is the related point situated on a kπ-periodic boundary of the Strutt di-

agram (k = 1 or 2). Hence, the analytical condition of nonlinear stability can be

approximated by∣∣∣∣∣∣(µ− µ(kπ))

[
∂Γ(µ, α)

∂µ

]
(µ=µ(kπ))

∣∣∣∣∣∣ < Λ(µ(kπ), α)

|µ(π) − µ(2π)|
cosh

(
λπ

2ω

)
. (45)

Here, (µ(kπ), α) is the nearest boundary point relatively to the representative point

M(µ, α) of the coupled system, while |µ(π) − µ(2π)| is the length of the segment (be-

longing to the α = const horizontal line) lying within the nearest stability interval.

For the geometrical reasoning, the local belt width Λ(µ(kπ), α) can be replaced without

any inconvenience by its average value Λ.

We can now analyze through the Strutt diagram what is happening in the master-

slave system when the coupling strength K is continuously increased. We first recall

that since α is independent of K, the figurative point M of the coupled system in

the Strutt diagram is just moving from left to right along a straight horizontal line

α = const when K is varied. Starting from µ = −∞ (i.e., according to equation (33)),

this point will alternatively pass through the various areas of the Strutt diagram.

Hence, the stability pattern will consist in the general case of intermingled intervals

of instability, nonlinear stability and linear stability.

22



Figure 4: Variations of the maximal synchronization error ‖w(t)‖max in a semi-
logarithmic scale when K is increased. a) γ > 0 case; b) γ < 0 case.

1.5.3 Numerical simulations

The numerical simulations we have performed completely confirm the above analysis.

In figure 4, we have represented the maximal synchronization error ‖w(t)‖max as a

function of the coupling parameter K, with w = (x, ẋ). We have assumed that stable

and robust synchronization is ensured for a givenK provided that the related maximal

synchronization error is smaller than 10−5, so that the synchronization intervals are

indicated by horizontal segments of equation log10(‖w(t)‖max) = −5.

In figure 4a, the γ > 0 case is considered. When K = 0, a high synchronization

error is obviously noticed, since the two chaotic oscillators are independent. This

means that the representative point M is initially in the nonlinear buffer zone of the

Strutt diagram. For low K values, the master and the slave sub-systems remain un-

correlated, so that ‖w(t)‖max is still high. Geometrically, we are still in the vicinity of

the initial position, i.e., in the buffer area. A first π-periodic boundary is overstepped

for K = 1.21, and thereby stable synchronization consequently occurs until K = 3.66

(first 2π-periodic Hopf boundary). From that threshold, the point M(µ(K), α) re-

enters into the buffer area and synchronization is lost. When K is further increased,

M reaches the second 2π-periodic Hopf boundary at K = 4.83 and definitively re-

mains in the linearly stable zone, so that synchronization is preserved for any higher

value. Such behavior had also be numerically found for the synchronization of Duffing

oscillators without linear stiffness [57], and the theory we have developed is still valid

for that particular case. As in our case, the complete bifurcation sequence can be

schematically recovered in figure 3 by the traveling motion of the representative point

M on the upper half-plane straight horizontal line (α > 0).
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For the γ < 0 case (figure 4b), the stability pattern is quite different. We still have

a high ‖w(t)‖max value for K = 0, but synchronization is established as soon as K >

0.04. This can be explained by the fact that Λ is very thin, and hence M(µ(0+), α)

rapidly oversteps the first π-periodic boundary. However, synchronization is also

very soon lost at K = 0.08 (first 2π-periodic Hopf bifurcation) for instability, until

K = 2.39 (second 2π-periodic Hopf bifurcation). From there, synchronization is

also indefinitely observed. Therefore, nonlinear stability is scarcely witnessed here:

generally, the slave oscillator either synchronizes with the master or becomes unstable.

In this case, the sub-Lyapunov exponent can straightforwardly be identified to <(θ−
λ/2ω) since Λ ≈ 0. Nevertheless, the influence of Λ(µ, α) should not be completely

neglected: it seems that for γ < 0, the belt becomes almost exclusively fractal, i.e.,

as if it was “diluted” in the linearly unstable zone. The main consequence is that

depending on the initial conditions and on the value of K, nonlinear stability can

however be witnessed. The geometrical equivalence of this bifurcation sequence is

also represented in figure 3 on the lower half-plane (α < 0).

Finally, one should note that when K → +∞, instability is uniformly observed

in both γ > 0 and γ < 0 cases. This is easily understandable from a Strutt diagram

analysis: it would mean that the representative point of the system moves towards

the semi-infinite unstable blank area.

1.5.4 Delayed synchronization

The purpose of delayed feedback synchronization is to achieve the convergence of the

slave oscillator x̃(t) towards a past state x(t− τ) ≡ xτ (t) of the master through

ẍ+ λẋ+ x+ γx3 = F cos(ωt)

¨̃x+ λ ˙̃x+ x̃+ γx̃3 = F cos(ωt)−K(x̃− xτ ) . (46)

An interesting feature of this type of synchronization is that it mathematically trans-

forms an ODE into a DDE, that is, a low-dimensional system into an infinite-dimensional

one. When this delay τ is taken into account, the deviation variable ξ = x̃−xτ rather

at a linear approximation obeys the following parametric equation

ξ̈ + λξ̇ + (1 +K + 3γx2
τ )ξ = −2F sin

ωτ

2
sin

(
ωt− ωτ

2

)
, (47)

so that ξ is now submitted to an external excitation. When τ is a multiple of the

period T = 2π/ω (i.e., τ = nT , n being a strictly positive integer), this external ex-

citation vanishes and equation (47) is no longer different from equation (28), so that
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the subsequent stability analysis is exactly identical. Hence, when τ = nT , delayed

and non-delayed chaos synchronization have exactly the same stability pattern and

therefore occur under exactly the same conditions. On the other hand, when τ 6= nT ,

synchronization can not occur: because of the external excitation in (47), the slave

oscillator can be tuned to the master one only with a limited precision.

1.6 Extension of the method to chaos control

Chaos control consists in recovering a periodic dynamics from the initially chaotic

one. The idea of chaos control was for the first time introduced by Ott, Grebogi and

Yorke in 1990 [58], and since then, chaos control theory has arisen as a classical and

thoroughly investigated topic in nonlinear dynamics [39, 59].

Investigation in the field of chaos control is generally developed along two dintinct

classes of problems. The first class looks at chaos as a negative feature. For example,

the unpredictability attached to chaos may generally be considered as an undesirable

phenomenon in some applications where high precision or high predictability is re-

quired [60]. This point of view is prevalent in mechanical and electrical engineering

where it is not uncommon to witness undesired irregular behavior in strongly excited

nonlinear systems [61].

At the opposite, the second class looks at chaos as a positive feature. Effectively,

quite a large number of UPOs are usually embedded within the chaotic attractors,

so that the same system can flexibly be tuned with a chaos control scheme from a

given UPO to any other one. It is well established today that brain waves and cardiac

pulsations sometimes display a chaotic behavior, and it has yet been speculated that

chaos control is used on purpose to flexibly switch the heart and the brain to a wide

variety of different periodic biological rhythms [62, 63, 64].

Since the pioneering work of Ott, Grebogi and Yorke, a very high number of control

schemes have been and are still proposed in the literature. However, only feedback

control schemes have succeeded in gaining higher interest owing to their conceptual

simplicity and to their easier practical implementation. We will here lay emphasis on

external feedback control, which is one of the most important type of feedback chaos

control [41].
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1.6.1 General case

External feedback control techniques have been commonly used in automatic engi-

neering for quite a long time. Very soon, it has been proposed as an interesting

candidate to also ensure chaos control. At the difference of the time-delayed control

scheme, external feedback control does not aim to reach the UPOs of the attractor,

but rather to enable to tune the chaotic attractor to an arbitrary T -periodic target

orbit x̂(t) following

ẋ = F(x)−C(x− x̂) , (48)

where C is a feedback control vectorial function fulfilling C(0) ≡ 0. It is important

to note that in this scheme, perfect control tuning from x to x̂ cannot be achieved

because x̂(t) is not a solution of the nonlinear flow F, so that the feedback term can-

not perfectly vanish. However, the principal interest of this control scheme is twofold:

firstly, its extreme simplicity because the initial ODE is just converted into another

ODE (at the opposite of time-delayed feedback schemes where ODEs are transformed

into DDEs), and secondly, the target orbit can be chosen and defined arbitrarily, in-

clusively as a non-periodic orbit.

The deviation vector v = x − x̂ obeys the following vectorial equation in linear

approximation

v̇ =

[(
∂F

∂x

)
x=x̂

−
(
∂C

∂x

)
x=x̂

]
· v +

[
˙̂x− F(x̂, t)

]
= [J(x̂, t)] · v + R(t) , (49)

where [J(x̂, t)] is a periodic Jacobian, and R(t) a periodic residue function. The

control in this case will be stable if the Jacobian asymptotically drives the homoge-

neous component vH of v to 0. The consequent stability analysis will therefore be

identical to the one we have done for the stability of synchronization manifolds. On

the other hand, the residue R(t) (which is uniformly equal to 0 if the target orbit is

an UPO) plays the role of an external excitation in equation (49), and sustains the

non-homogeneous component vI of v. Here, optimization will be achieved when this

residue is the smallest possible, that is, when the control is led towards an uniperiodic

target orbit which is near an UPO [65].

1.6.2 The example of single-well Duffing oscillators

We can control a single-well Duffing oscillator with the following external feedback

chaos control scheme

ẍ+ λẋ+ x+ γx3 = F cos(ωt)−K(x− x̂) ·H(t− T0) , (50)
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where K is the feedback strength parameter, H is the Heaviside function which is

equal to 0 when x < 0 and to 1 when x ≥ 0, so that the control is assumed to be

active only when t ≥ T0.

In this case, the residue explicitly reads

R(t) = (¨̂x+ λ ˙̂x+ x̂+ γx̂3)− F cos(ωt) , (51)

and an optimized uniperiodic target orbit can be found through the Ritz-Galerkin

criterion ∫ 2π/ω

0
R(t) eiωt dt = 0 . (52)

From the Ritz-Galerkin procedure (52), the amplitude and phase of the target orbit

x̂ = C1 cos(ωt−ϕ1) can be determined through the resolution of the algebraic system[(
(1− ω2) +

3

4
γC2

1

)2

+ (λω)2

]
C2

1 = F 2

ϕ1 = tan−1

[
λω

(1− ω2) + 3
4
γC2

1

]
, (53)

so that the residue becomes

R(t) = −β cos(3ωt− 3ϕ1) with β =
1

4
γC3

1 . (54)

For the γ > 0 case, there is a single solution

(C1, ϕ1) = (3.323, 0.020) (55)

while for the γ < 0 case, we have three mathematical solutions

(C1, ϕ1) ∈
{
(0.343, 0.319), (0.864, 0.911), (1.031, −1.230)

}
. (56)

For this later case, one can notice that the first solution corresponds to the regular

inner limit cycle, the second corresponds to the chaotic attractor band, while the

third corresponds to an unstable solution. Therefore, we will only study the stability

of chaos control for the first two orbits.

The scalar deviation variable ε(t) = x(t)− x̂(t) obeys in the linear approximation

to

ε̈+ λε̇+
[(

1 +K +
3

2
γC2

1

)
+

3

2
γC2

1 cos(2ωt− 2ϕ1)
]
ε = −β cos(3ωt− 3ϕ1) . (57)
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The homogeneous counterpart of equation (57) exactly corresponds to the canonical

Mathieu equation (32). Therefore, as the couplingK is increased, the stability pattern

of our external feedback chaos control scheme can be analyzed in the Strutt diagram

in the same way as in the case of chaos synchronization with feedback coupling.

Qualitatively, numerical simulations agree with the above analysis. For the γ > 0

case, we first have an interval of instability, followed by intermingled intervals of non-

linear and linear stability, and at last a semi-infinite interval of linear stability. For

the γ < 0 case, as it was the case for synchronization, the control is either linearly

stable or unstable, and nonlinear stability is witnessed only in exceptional cases (for

example, when K = 0). The α values in this case lead to linear stability patterns of

the kind ]Kb1, Kb2[∪ ]Kb3,+∞[ with (Kb1 = −0.434; Kb2 = 0.017; Kb3 = 1.228) for

the control towards the first solution, and (Kb1 = −0.231; Kb2 = 0.008; Kb3 = 2.762)

for the control towards the first one.

If we introduce the parameter h as the precision of the control, the condition of

control simply reads |ε(t)| < h for t > T0 + Tcon, where T0 is the onset time of the

control, and Tcon is the duration of the control, that is, the time needed to fulfill the

control condition. In general, there is also a critical value Kcr below which control

cannot be achieved. From equation (57), this critical coupling value can be evaluated

with a good approximation as

Kcr = 9ω2 − 1− 3

2
γC2

1 +

√√√√(γC3
1

4h

)2

− 9λ2ω2 assuming h <
|γ|C3

1

12λω
. (58)

Figures 5a and 5b show the quasi-perfect coincidence between formula (58) and the

results of the numerical simulation of equation (50). It naturally appears that Kcr is

a decreasing function of the precision h.

The duration Tcon of the control can also be derived from (57), and it explicitly

reads

Tcon =
2

λ
ln


√
ε̇2(T0) + [ε̇(T0)+λε(T0)/2]2

1+K+3γC2
1/2−λ2/4

h− |γ|C3
1/4√

(1+K+3γC2
1/2−9ω2)2+9λ2ω2

 . (59)

It appears that Tcon is a decreasing function of K, and one can find that

Tcon,min = lim
t→+∞

Tcon =
2

λ
ln

[
|ε(T0)|
h

]
(60)
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Figure 5: Variations of Kcr as a function of log10(h) (full lines for analytic results,
squares and crosses for numerical results). a) γ > 0 case; b) γ < 0 case. The first
solution corresponds to the lower curve, and the second solution to the upper one.

is the minimum duration under which no control can be achieved. This result is of

great practical interest. A priori, one could have naively thought that the control

could have been achieved as fast as desired, just depending on K. Figure 6 does not

support that assumption. For example, figure 6a shows that a feedback coefficient

K = 10 is sufficient to ensure an optimal control (with approximately the minimum

Tcon). Hence, the above analysis enables us to avoid an unavailing waste of input

energy by preventing us from a useless increase of the control parameter K.

A quite interesting phenomenon can also be observed in figure 6: the curves

obtained through the numerical simulation of equation (50) are not smooth. We need

to refer again to Floquet theory to explain this phenomenon. It should be first noted

that Kcr always belongs to the last semi-infinite stability domain, and this implies

that all the values beyond Kcr are linearly stable. The θ exponent, whose real part

enables to determine the decay rate according to equation (40), can be explicitly

defined as

For − sinh2

(
λπ

4ω

)
< Γ(µ, α) ≤ 0, θ = ±2i± 2

π
sinh−1

√
−Γ(µ, α) ,

For 0 < Γ(µ, α) < 1, θ = ±2i

π
sin−1

√
Γ(µ, α) ,

For 1 ≤ Γ(µ, α) < cosh2

(
λπ

4ω

)
, θ = ±i± 2

π
cosh−1

√
Γ(µ, α) . (61)

It can therefore be deduced that the associated durations of control may respectively
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Figure 6: Variations of Tcon as a function of K (Thick lines for analytic results, and
thin lines for numerical results). a) γ > 0 case with T0 = 100 and h = 10−1; b) γ < 0
case, first solution with T0 = 100 and h = 10−2; c) γ < 0 case, second solution with
T0 = 100 and h = 10−2.
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derived as

For − sinh2

(
λπ

4ω

)
< Γ(µ, α) ≤ 0, T ′con = Tcon

1

1− 4ω
λπ

sinh−1
√
−Γ(µ, α)

,

For 0 < Γ(µ, α) < 1, T ′con = Tcon ,

For 1 ≤ Γ(µ, α) < cosh2

(
λπ

4ω

)
, T ′con = Tcon

1

1− 4ω
λπ

cosh−1
√

Γ(µ, α)
, (62)

where T ′con is the new duration of control, and Tcon is the former one defined by equa-

tion (59). Here, as K is increasing, Γ(µ, α) is varying and it induces a modulation of

Tcon, mainly when Γ(µ, α) is not between 0 and 1.

Deeper investigations can even permit to foresee the position of the peaks of these

curves, that is, the K values for which Tcon presents a local maximum. Effectively,

the Floquet theory demonstrates that in first approximation, parametric resonance

in the Mathieu equation arises when µ = n2, n being a positive integer. According

to equation (33), the corresponding values for K are

Kn = n2ω2 −
(

1 +
3γC2

1

2
− λ2

4

)
. (63)

It is quite remarkable that integer values come into play for the determination of

these maxima, even though we are achieving a continuous control. Nevertheless, it is

important to note that other peaks may arise because of the parametric and nonlinear

resonances we have neglected. Anyway, these Kn values naturally lead to a slower

control (larger value of Tcon), and the above analysis at least enables to avoid them.

1.7 Conclusion

In this chapter, we have made a general theoretical and numerical analysis of unidi-

rectional chaos synchronization. We have proposed a new analytical technique based

on Floquet theory, which enables to investigate the bifurcation between the states

of synchronization, desynchronization and instability through a Strutt diagram in-

terpretation. The theory has also been extended to the stability analysis of external

feedback chaos control.

The next chapter will generalize the present theory to the case of an arbitrary

number of coupled chaotic oscillators, and will enable us to have an interesting ana-

lytic insight into the problem of pattern formation in nonlinear lattices.
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CHAPTER II

CLUSTER SYNCHRONIZATION,

CORRELATED STATES AND

SPATIOTEMPORAL CHAOS IN LATTICES OF

NONLINEAR COUPLED OSCILLATORS

2.1 Introduction

The phenomenon of pattern formation in lattices of nonlinear coupled systems is the

focus of this chapter.

We will first consider a low-dimensional ring of four oscillators to show how the

Strutt Diagram formalism can enable to define within a geometrical framework the

concepts of complete synchronization, cluster synchronization, correlated state, or

spatiotemporal chaos. A local injection scheme will also be applied to study the

behavior of a coupled system when it is forced to replicate the dynamics of an external

master-oscillator.

The general N -oscillators model will subsequently be considered, and important

issues like the numbering of the cluster will be addressed. At last, an extension to

the thermodynamic limit (N → +∞) will be made, and a scaling law will be used

to investigate the dynamics of the lattice when the number of oscillators becomes

significantly high.

2.2 Particular case of low-dimensional systems

2.2.1 Nonlinear dynamics and bifurcation behavior

In this sub-section, we consider a shift-invariant set of four diffusely coupled SWDOs

and we aim to use the Strutt diagram technique to identify the various dynamical

states of the system, as well as the various bifurcations amongst them.

The evolution equations of the ring can be written as

ẍk + λẋk + xk + γx3
k = F cos(ωt) +K(xk+1 − 2xk + xk−1)

k = 1, 2, 3, 4 (64)
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where k represents the instantaneous displacement of the k-th oscillator, and K plays

the role of the diffusive coupling coefficient. The four state variables obey the shift-

invariance condition xq ≡ xq+4, with q ∈ N. Therefore, the stability of the resultant

dynamical states can be studied through the linearization of the equation (64) around

the states xk according to

ξ̈k + λξ̇k + (1 + 3γx2
k)ξk = K(ξk+1 − 2ξk + ξk−1) k = 1, 2, 3, 4 . (65)

Let us introduce the diagonal variables (or Fourier modes) ζs as

ζ0 = ξ1 + ξ2 + ξ3 + ξ4, ζ1 = ξ4 − ξ2 = x4 − x2,

ζ2 = ξ4 − ξ3 + ξ2 = x4 − x3 + x2 − x1, ζ3 = ξ3 + ξ1 = x3 − x1.
(66)

If we firstly replace the xk variables by x̄ (as for equations (28) and (31)) and secondly

transform the ζs into new ηs variables (as for ξ and η in equations (33)), the coupled

set (65) of variational equations can finally be rewritten under the form of independent

canonical Mathieu equations similar to equation (32), that is

d2ηs

dτ 2
+ [µs + 2α cos(2τ − 2ϕ)] ηs = 0, s = 0, 1, 2, 3 . (67)

with

µ0 =
1

ω2

[
1 +

3

2
γC2

1 −
λ2

4

]
,

µ1 = µ3 = µ0 +
2K

ω2
,

µ2 = µ0 +
4K

ω2
. (68)

One more time, we can analyze through the Strutt the bifurcation behavior of the

ring when the diffusive coupling parameter K is continuously increased from zero to

infinity. For that purpose, we will focus on the γ > 0 case. When K = 0, the system

is uncoupled and the Fourier modes , ζ1, ζ2 and ζ3 degenerate into ζ0. Therefore,

the whole system is represented by a single point M0 of coordinates (µ0, α) in the

Strutt diagram. It should be noticed that M0 automatically belongs to the nonlinear

stability area since the uncoupled system is chaotic. As K is increased, the modes

ζ1, ζ2 and ζ3 represented in the stability map by the related points Ms of coordinates

(µs, α) independently begin to move from left to right along the straight horizontal

line of equation α = const with a “velocity”

νs =
dµs

dK
, s = 0, 1, 2, 3 . (69)
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It results that ζ2 is the fastest mode with a velocity ν2 = 4/ω2, while the degenerated

modes ζ1 and ζ3 are the slowest with ν1 = ν3 = 2/ω2. These “mobile” modes are

called transverse modes because they decide the stability of perturbations transverse

to the complete synchronization manifold. On the other hand, ζ0 remains immobile

in the Strutt diagram since ν0 = 0: it is the longitudinal mode describing the stability

along the synchronization manifold.

When K is small, the three transverse modes points M1, M2 and M3 remain in

the vicinity of M0, i.e., in the nonlinear stability zone. Therefore, the corresponding

perturbations have a non-zero finite time-average value: we are in the regime of

spatiotemporal chaos.

When the fastest mode ζ2 first reaches the linearly stable area, the ring satisfies

the constraint

x4 − x3 + x2 − x1 ≡ 0 , (70)

while we still have

x1 6≡ x3, x2 6≡ x4 (71)

since ζ1 and ζ3 remain in the nonlinear stability buffer zone. The ring is therefore in a

standard correlated state (SCS). This intermediate state differs from spatiotem-

poral chaos because of the constraint (70), and also from complete synchronization

because of equation (71).

If on the other hand M2 re-enters the buffer zone while M1 and M3 have yet

together penetrated into the linearly stable area, we have

x4 − x3 + x2 − x1 6≡ 0 , (72)

and

x1 ≡ x3, x2 ≡ x4 . (73)

This is sometimes referred to as cluster synchronization. Here, two clusters have

emerged [eq. (73)] while there is no synchronization between them [eq. (72)].

Finally, when the three transverse modes points M1, M2 and M3 are together in

the linearly stable area, the ring is in the complete synchronization state

x4 ≡ x3 ≡ x2 ≡ x1 , (74)
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Figure 7: Variations of g2 and g13 as a function of K. a) Variations of g2; b)
Variations of g13.

corresponding to the simultaneous fulfillment of both equations (70) and (73). In

that case, all the oscillators display the same dynamics.

Numerical simulations confirm the bifurcation mechanism deduced from the Strutt

diagram analysis. Let us consider the following two functions of the state variables

g2 = 〈|x4 − x3 + x2 − x1|〉, g13 = 〈|x4 − x2|+ |x3 − x1|〉 , (75)

where the brackets 〈 〉 stand for the time-averaging. g2 represents ζ2 on the one hand

while g13 represents both ζ1 and ζ3 on the other. These functions will be equal to

zero if the corresponding transverse modes points are in the linearly stable area of

the Strutt diagram, and different to zero if they are in the buffer zone.

On figures 7a and 7b, the variations of g2 and g13 are represented as a function

of K. Effectively, for low K values, the ring is in the spatiotemporal chaos regime

since g2 6= 0 and g13 6= 0. When K reaches 0.70, g2 first vanishes because the fastest

mode point M2 enters the linear stability area: it is the Standard Correlated State.

This is also witnessed when K is between 2.30 and 2.35 (g2 = 0 and g13 6= 0). On

the other hand, when g2 6= 0 and g13 = 0 like in the case 1.05 < K < 1.20, we have

a cluster synchronization state. Finally, complete synchronization (g2 = g13 = 0)

occurs between 1.20 and 1.70, and also when K > 2.35 . It is important to note that

the transitions between these dynamical states are never sharp. Moreover, unstable

invariant sets embedded within the chaotic attractor can perturb the stability of the

Fourier modes, like for K ≈ 1.00 or K ≈ 1.75 .
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2.2.2 Generalized correlated states in lattices with local injection

The modelized system or its potential utilization sometimes requires to couple a

lattice to an external independent oscillator. This is commonly achieved through the

local injection technique consisting of a unidirectional coupling between the external

command oscillator and a fixed representative of the nonlinear coupled system [66].

This local injection scheme is indispensable for the description of undesirable parasite

couplings or external perturbations. On the other hand, local injection can also be

willingly introduced to force the nonlinear system to replicate the dynamics of the

external master oscillator. For example, it is known that initially chaotic oscillators

can lock into a (multi-)periodic state when they are mutually coupled [21]. The local

injection method can in that case enable to recover the chaotic dynamics when the

unidirectional command coupling is suitably designed. Still considering our four-

oscillators ring, the evolution equations of the locally injected lattice can be obtained

by modifying equation (64) following

ẍk + λẋk + xk + γx3
k = F cos(ωt) +K(xk+1 − 2xk + xk−1) +G(xinj − x1) · δk,1 ,

k = 1, 2, 3, 4 (76)

where xinj represents the dynamics of the external oscillator and plays the role of

a command signal, while δk,1 is the Kronecker symbol emphasizing that xinj is only

coupled to x1 with the coupling strength G. Throughout our study we take xinj as

the chaotic oscillation of a SWDO identical to the uncoupled items of the ring, and

we aim to analyze the influence of the local injection on the dynamics of the nonlinear

coupled system. More precisely, our objective is first to identify the various dynamical

states of the ring depending on K, and secondly to study the modifications induced

by the local injection coupling.

When G is taken into account, the first order perturbation equations can be

written as

ξ̈k + λξ̇k + (1 + 3γx2
k)ξk = K(ξk+1 − 2ξk + ξk−1)−Gξ1 · δk,1 , k = 1, 2, 3, 4 , (77)

with ξk = xk − xinj. From these equations, we can determine the velocities νk of the

corresponding figurative points in the Strutt Diagram according to

Υ4 +
(
G

K

)
Υ3 − 4Υ2 − 2

(
G

K

)
Υ = 0 with Υ = 2− ω2ν . (78)

Figure 8 shows the numerical solutions of equation (78) obtained with the Newton-

Raphson algorithm when the ratio G/K is increased. It can be noticed that when G =
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Figure 8: Variations of the velocities vn (in units of 1/ω2) for the Fourier modes
when the ratio G/K is increased. The curves are crescently ordered, v1 being the
lowest one and v4 the highest.

0, we have three non-degenerated modes, as we have demonstrated in the precedent

sub-section. But as soon as G 6= 0, the degeneracy of the second mode is destroyed

so that four non-degenerated modes now appear, and the slowest one discontinuously

passes from ν2,3 = 2/ω2 to ν1 = 0+. Moreover, it appears that ν4 indefinitely increases

to infinity, while the second mode keeps a constant velocity . Each of these non-

degenerated modes have been schematically represented in the Strutt diagram in

figure 9 by crosses of coordinates (µk, α), with µk = µ0 + νkK and

ν1 =
ε1
ω2
, ν2 =

2

ω2
,

ν3 =
2 + ε3
ω2

, ν4 =
4 + ε4
ω2

. (79)

The velocities νk have been explicitly written to define the detuning functions εk which

are obviously equal to 0 when G = 0. However, ν1 and ν3 asymptotically converge to

the limit values ε∞1 /ω
2 with ε∞1 = 0.585 and (ε∞3 +2)/ω2 with ε∞3 = 1.414, respectively

when G→ +∞.

The determination of the dynamical state of the ring now depends on the distri-

bution of the four non-degenerated Fourier modes between the various areas of the

Strutt diagram. Reasoning as we did for G ≡ 0 (no local injection), we find that

spatiotemporal chaos and complete synchronization occur in the injected ring under
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Figure 9: Strutt diagram for dynamical states in a four-oscillators ring. An arbitrary
distribution of non-degenerated spatial Fourier modes has been represented for G = 0
(points) and for G 6= 0 (crosses).

the same topological conditions. However, cluster synchronization and standard cor-

relation are no more possible when G 6= 0. Effectively, when the non-degenerated

Fourier modes are simultaneously spread between the linear and nonlinear stability

areas, the dynamical variables fulfill nontrivial constraints of the kind

4∑
k=1

Qk · (xk − xinj) = 0 . (80)

Here, the coefficients Qk are complicated functions of G and K. By opposition to the

standard correlated state where the Qk would have simply been equal to 0, 1 or −1,

this new state induced by the local injection is referred to as generalized correlated

state (GCS).

The transition boundaries between the spatiotemporal chaos, GCS, and complete

synchronization states are mainly influenced both by G and K. Let us for example

focus on the first bifurcation (from spatiotemporal chaos to GCS) and on the last

one (from GCS to complete synchronization) as K is increased with a fixed G. The

corresponding critical transition values for G = 0 have yet been determined numer-

ically a former section as Kf (0) = 0.70 and Kl(0) = 2.35. They can be used to

deduce analytically the transition values Kf (G) and Kl(G) for any non-zero G value.

Note that for G 6= 0 we should have spatiotemporal chaos for K < Kf (G), complete

synchronization for K > Kl(G) and GCS when Kf (G) < K < Kl(G).
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In fact, the first GCS emerges when the fastest mode point M4 enters into the

linear stability area of the Strutt diagram. From equation (79), we can deduce than∫ µcr,f

µ0

dµ4 =
∫ Kf (0)

0

4

ω2
dK =

∫ Kf (G)

0+

1

ω2

[
4 + ε4

(
G

K

)]
dK , (81)

that is ∫ Kf (G)

0+
ε4

(
G

K

)
dK = 4 [Kf (0)−Kf (G)] , (82)

where µcr,f is the first critical Hopf boundary value encountered as µ is increased.

Since the integrand function is positive, one can straightforwardly deduce thatKf (G) ≤
Kf (0). Hence, the ring emerges more rapidly from spatiotemporal chaos when G is

greater. However, Kf (G) can not be expressed explicitly because ε4 has not been

determined analytically.

On the other hand, if we consider the boundary transition from the last GCS to

the complete chaotic synchronization state, we obtain∫ µcr,l

µ0

dµ1 =
∫ Kl(0)

0

2

ω2
dK =

∫ Kl(G)

0+

1

ω2
ε1

(
G

K

)
dK , (83)

so that ∫ Kl(G)

0+
ε1

(
G

K

)
dK = 2Kl(0) , (84)

where µcr,l is the last critical Hopf boundary value encountered as µ is increased. It

consequently appears that Kl(G→ +∞) ≈ 2Kl(0)/ε
∞
1 .

The critical boundary curves Kf (G) and Kl(G) have been plotted in figure 10.

They divide the parametric plane into three areas: the lower zone corresponds to

spatiotemporal chaos, the intermediate one to the GCS and the uppermost to the

complete synchronization. However, the curve Kf (G) remains difficult to distinguish

in the figure, since it rapidly vanishes to 0. Therefore, the lower zone of spatiotempo-

ral chaos does almost not appear on the map. On the same figure, the results of the

numerical simulation for Kl(G) has also been represented. They show a qualitative

concordance with the analytic results of equation (84). One can note the disconti-

nuity at G = 0 for the curve, due to the drop to 0+ of the slowest velocity when

the local injection is set on. This implies that small G values (case corresponding

to undesirable external perturbations) irreversibly destroy the complete synchroniza-

tion state since the threshold value jumps from a finite value to infinity. However, it

appears that the boundary curves rapidly converge to their asymptotes, so that it is

not necessary to use high G values to obtain a satisfying synchronization.
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Figure 10: Transition boundaries from GCS to complete synchronization. The an-
alytical results are shown in full line, and the numerical results are represented by
squares linked by a continuous line.

2.3 Generalization to the N-oscillators system

When an arbitrary number of oscillators is considered (with the same type of nearest-

neighbor diffusive coupling), the dynamics of the lattice is described by a set of equa-

tions similar to equation (64), with k varying from 1 to N . Accordingly, the shift-

invariance condition and the perturbation equations remain the same, the number of

oscillators being however set to N instead of 4. To perform the stability analysis, the

linear perturbation equations (in ξk) have to be uncoupled through a Fourier trans-

form diagonalization to the ζs variables [16, 17], whose ηs counterpart in the Mathieu

equations also obey to equation (67) with the following eigenfrequency spectrum

µs =
1

ω2

[
1 +

3

2
γC2

1 −
λ2

4
+ 4K sin2

(
πs

N

)]
= µ0 +

4K

ω2
sin2

(
πs

N

)
,

s = 0, ..., N − 1 . (85)

Once again, µs is still independent of s, N and K at the contrary of α. From Floquet

theory, it therefore results that each mode s is linearly stable if Γ(µ, α) fulfills the

double-inequality (44), nonlinearly stable is it rather fulfills the inequality (45), and

naturally unstable if it does not satisfy any of these stability conditions.

The bifurcation mechanism of this N -oscillators lattice is qualitatively the same

as the one of the case N = 4, which has yet been studied. As K is increased, the

N − 1 transverse Fourier modes points Ms independently spread along the α = const
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straight horizontal line with a velocity

νs =
4

ω2
sin2

(
πs

N

)
, s = 0, ..., N − 1 . (86)

Hence, depending on N and K, the points Ms are distributed between the three

different areas of the Strutt diagram. Therefore, four distinct sets of mode distribu-

tions, which are unambiguously equivalent to the four different dynamical states of

the ring can be distinguished. In the first case, at least one transverse mode is in

the instability area, and consequently the whole coupled system is unstable, that is,

the state variables xk indefinitely grow to infinity. For the second case, all the trans-

verse modes are within the area of nonlinear stability: it corresponds to the regime

of spatiotemporal chaos. For the third case, certain transverse modes are in the area

of linear stability while all the others are in the zone of nonlinear stability: it is the

regime of cluster synchronization or of standard correlation (these eventualities are

exclusive). At last, the fourth case corresponds to a situation when all the transverse

modes are linearly stable, and in that case, the ring is in the complete synchronization

state. It appears that the principal advantage of reasoning through the Strutt dia-

gram is that increasing the number of oscillators does not require to sketch different

stability maps, but just to conveniently add supplementary transverse modes on the

same diagram, and to identify the related mode-distribution.

In figure 11, five non-degenerated Fourier modes have been represented on an

horizontal line. The left-most point represents the longitudinal mode (s = 0) while

the remaining four ones are transverse modes (s 6= 0). Consequently, the mode-

distribution of the figure corresponds to a cluster synchronization state. Note that

some of the inner-most points can represent two transverse Fourier modes each, i.e.,

be double-degenerated. It appears from the above analysis that cluster synchroniza-

tion and standard correlation states are the result of the distribution of the transverse

modes between the linear and nonlinear stability areas of the Strutt diagram. Con-

sequently, knowing that the number of non-degenerated transverse modes is N/2 if

N is even and (N − 1)/2 if N is odd, we can deduce that the number ℵ of possible

clusters and standard correlation states is

ℵ =

2
N
2 − 2 if N is even

2
N−1

2 − 2 if N is odd
, N ≥ 2 . (87)

The two configurations that have been subtracted in equation (87) correspond to

the spatiotemporal chaos and complete synchronization states. Nevertheless, it is
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Figure 11: Representation of a mode distribution in the Strutt diagram. The left-most
mode is the longitudinal one, and all the remaining ones are transverse. This mode
distribution corresponds to a cluster synchronization state or to a standard correlation
state.

important to notice that they mathematically correspond to a N -cluster and to a

one-cluster respectively.

For small values of N , the following results are obtained. When N = 2 or N = 3,

clustering is obviously impossible: we have either spatiotemporal chaos (ab and abc

states) or a completely synchronous motion (aa and aaa). For N = 4, two cluster-

states are foreseen by equation (87); anyway, symmetry considerations only allow the

abab state to exist, but not aabb, which is replaced by a SCS. The same symmetry

reasoning applies for N = 5 as well. The case N = 6 has been intensively studied by

Zhang and co-workers for Rössler oscillators [19]. Five different cluster patterns have

been observed (while ℵ = 6), since the shift-invariance symmetry does not allow the

sixth state aaabbb to exist (also replaced by a SCS). The mode distribution of figure

11 can correspond to a ring of 8 or 9 oscillators.

When N is further increased, the number of possible clusters and SCS grows ex-

ponentially according to equation (87). Anyway, it should be stressed that some of

these clusters and SCS are not or scarcely observed during numerical simulations or

in practice. Two main reasons can explain that. The first reason is that some clusters

are very weakly stable, so that they rapidly degenerate into compatible clusters of

higher symmetry (i.e. less complicated and more stable patterns). This explains why

for a given K, it is sometimes possible to obtain many different clusters depending on
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the initial conditions [19]. The second reason is that for a fixed number of oscillators

N , it may be impossible to witness a given-cluster state because the transverse modes

do never fit with the related mode-distribution in the Strutt diagram, whatever the

value of K is. Consequently, since equation (87) does not take into account these

restrictions, ℵ can just be considered as an order of magnitude. However, one can

expect that this quantitative estimation may be useful for the statistical approach of

the model in the thermodynamic limit.

2.4 Extension to the thermodynamic limit

(N → +∞)

Let us now focus on some of the corollaries of the above theoretical stability analysis

for the specific cases of a positive and of a negative nonlinear stiffness coefficient

respectively when N is indefinitely increased to infinity. As we have earlier noticed,

the number of clusters and SCS (which in a large sense are also clusters) is low when

rings of only few oscillators are concerned. For these cases, numerical simulation can

be performed to study each cluster state as well as the transitions amongst them, as

we have done for the case N = 4. However, this approach does not hold anymore

when N is significantly increased, since it becomes quite complicated to identify the

various clusters. Moreover, these clusters become less interesting as individuals when

N is high.

The appropriate approach in this case is to identify in the parametric plane N -K

the areas corresponding to each of the four dynamical states of the ring. A scaling

law is generally used for that purpose [67, 68], and we hereafter proceed in that way

to derive the stability pattern of the N -oscillator system from the stability pattern of

the two-oscillators model. The potential interest of such a scaling-law is high in the

thermodynamic limit: it means that the dynamical states and the phase transitions of

a one-dimensional lattice model can be deduced from the experimental or theoretical

data obtained through the study of the two-oscillators model interactions.

Let us first consider the γ > 0 case. For N = 2, numerical simulations show that

the coupled system is non-synchronized when K ≤ Kb1(2) = 0.34, and synchronized

for K ≥ Kb2(2) = 1.15 . One should notice that these numerical values differ from

those of the first chapter were the coupling was unidirectional (and not bidirectional

as it is the case here). For Kb1(2) < K < Kb2(2), intervals of synchronized and
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non-synchronized behavior are intermingled. This may easily be understood from the

Strutt diagram interpretation. For a two-oscillator system, there is a single transverse

mode moving along the α = const straight horizontal line. Its representative point M1

starts from a nonlinear stability area, and then alternatively passes through linear

and nonlinear stability zones. Finally, this point remains in the last semi-infinite

segment laying within the linear stability region, leading to synchronous motion.

For N > 2, the number of transverse modes becomes greater and the fastest of

them has a velocity

νfast =


4

ω2 if N is even
4

ω2 sin2
(

N−1
2N

π
)

if N is odd
, N ≥ 2 , (88)

while the slowest has a velocity

νslow =
4

ω2
sin2

(
π

N

)
N ≥ 2 . (89)

We can deduce from the stability analysis that whenK is (very) low, all the transverse

modes points Ms are spread within the initial nonlinear stability area, and therefore

the ring displays a spatiotemporal chaotic dynamics. As soon as the fastest transverse

mode point Mfast oversteps its first Hopf periodic boundary, the ring enters into the

clustering regime and when the slowest mode Mslow oversteps its last Hopf periodic

boundary, the coupled system becomes completely synchronized. The consequence

of this transition mechanism is that it is impossible for the ring to become unstable,

whatever the values of K and N are (it is assumed that K > 0). In fact, this may be

explained by a high Λ̄ value.

Mathematically, if we define

Kb1(N) =

Kb1(2) if N is even
Kb1(2)

sin2(N−1
2N

π)
if N is odd

, N ≥ 2 , (90)

and

Kb2(N) =
Kb2(2)

sin2
(

π
N

) ≈ Kb2(2)

π2
N2, when N � 2 . (91)

It appears that the system is in the spatiotemporal regime if K ≤ Kb1(N), in the

completely synchronous state if K ≥ Kb2(N), and in the clustering regime when

Kb1(N) < K < Kb2(N). Hence, according to the scaling laws (90) and (91), the

width [Kb2(N) − Kb1(N)] of the clustering interval broadens in a square power-like

fashion as N tends to infinity. The parametric plane N -K is therefore divided into
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Figure 12: Boundaries between the different dynamical states of the lattice. The
analytical and semi-analytical results are denoted by solid lines, while the numeri-
cal results are represented by squares and crosses. SpC stands for Spatiotemporal
Chaos, CoS for Complete Synchronization, ClS for Cluster Synchronization, and
Ins for Instability. Note that for the numerical comparison, drifts and deviations are
accentuated by the logarithmic scale. a) γ > 0 case; b) γ < 0 case.

three areas, as displayed in the semi-logarithmic diagram of figure 12a. Typically, we

have spatiotemporal chaos for low K, cluster synchronization for intermediate values,

and finally complete synchronization when K is high enough. One should anyway

note that degenerated full synchronization states can also be observed in the cluster

area, depending on the initial conditions and on the number of oscillators.

The numerical simulations confirm the above analysis. If for example we focus on

the transition from the cluster to the completely synchronous states, we can notice

the excellent coincidence between the numerical and the semi-analytical curves on

figure 12a. This good concordance is due to the fact that Kb2(2) has been deter-

mined numerically (that is why we refer to this comparison as a semi-analytical one).

A purely analytical comparison would require the analytic determination of Kb2(2).

This is difficult to achieve here because the amplitude of the corresponding UPO and

its related α are so high that approximated or perturbation methods do not apply.

Hence, for an analytic derivation of Kb2(2), it would be indispensable to compute the

Hill determinant ∆(0, µ, α) at a high order of truncation (≥ 18), or alternatively to

use the Mathieu special functions. However, the purely analytic comparison would

have presented a little discrepancy with the numerical results because the uniperiodic

approximation does not qualitatively fit with the pseudo double-well configuration of

the phase portrait of figure 1a. If we now focus on the transition from spatiotemporal

chaos to cluster synchronization, we can notice on figure 12a the rather good quali-

tative concordance between semi-analytical and numerical results. In fact, since the
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uniperiodic approximation in the analytic stability analysis does not dynamically take

into account the complex spatial patterns of spatiotemporal chaos and cluster syn-

chronization states, the bifurcation boundary Kb1(N) is not as accurate as Kb2(N),

even though Kb1(2) is also determined numerically. Nevertheless, its interest remains

at least qualitative, since it however predicts that the bifurcation values leading to the

emergence of ordering from spatiotemporal chaos are roughly independent of N . It

is also important to notice that the good concordance of our semi-analytical compar-

ison proves that as we have earlier postulated, the spectral properties of the coupled

oscillators do not drastically differ from those of the corresponding uncoupled items.

For the γ < 0 case, numerical simulations also confirm the theoretical analy-

sis. When N = 2, one can numerically observe a synchronous motion when K ≤
Kb1(2) ≈ 0.13, and when K ≥ Kb2(2) ≈ 0.37. The crucial parameters Kb1(2) and

Kb2(2) can here be determined analytically, thereby permitting a purely analytical

comparison beside a semi-analytical one. Effectively, the C1 values in the γ < 0 case

are low enough to enable an approximated analytical determination of both Kb1(2)

and Kb2(2). At the first order approximation, the two branches of the 2π-periodic

boundaries around µ = 1 can be derived as µ = 1 ± α, so that so that for the outer

chaotic trajectory (corresponding to C1 = 0.864 according to equation (56)), the

bifurcation boundary values for N = 2 are

Kb1(2) =
1

16
(λ2 − 3γC2

1) = 0.138

Kb2(2) =
1

16
(λ2 − 9γC2

1) = 0.416 , (92)

which are in excellent concordance with the numerical values 0.13 and 0.37 respec-

tively.

For the intermediate coupling strengths values (i.e., between Kb1(2) and Kb2(2),

intervals of instability and of complete synchronization are intermingled. Here, the

transitions can not be well determined because they depend on the initial conditions.

Effectively, the multistability is so predominant in the γ < 0 case that stable motion

is witnessed only when the initial conditions of all the oscillators are gathered within

a small region of the ring state space. From a Strutt diagram interpretation, we

can say that the average width Λ is so thin that the nonlinear stability buffer zone

is almost exclusively fractal-like. Therefore, one can straightforwardly deduce that

clustering is practically impossible when γ < 0 for the chosen parameters, as well as

spatiotemporal chaos independently of K and N . Consequently, the coupled system is
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generally either unstable or completely synchronous, excepted for very low K values,

for which spatiotemporal chaos can be observed. Anyway, the fastest and the slowest

transverse modes are expressed as for the γ > 0 case, so that the same scaling-law

reasoning applies. Hence, if we define Kb1(N) and Kb2(N) as in eqs. (90) and (91),

respectively, we can also divide the N -K plane into a upper zone of synchronous

motion, an intermediate zone of inextricably intermingled stable and unstable areas,

and a lower zone of complete synchronization and spatiotemporal chaos. Naturally,

the uncertainty on Kb1(2) and Kb2(2) induces an error when evaluating Kb1(N) and

Kb2(N), but the square-power broadening behavior is preserved however, and the

scaling-law remains at least of qualitative interest. On figure 12b, the uppermost

double-line stands for both the analytical and semi-analytical results, and they indi-

cate the bifurcation boundary to the completely synchronous state. These two solid

lines are very near one each other because of the excellent concordance between the

numerical and analytical values of Kb2(2) which has been earlier demonstrated. How-

ever, a deviation from the numerical simulation is noticed due to the bistability of

the system. Effectively, a quasi-perfect coincidence is observed until N = 6, but

beyond, the ring locks into the inner limit-cycle so that the Kb2(N) values should

be calculated now with C1 = 0.343, and probably around another resonance value

µ = n2, n being an integer greater than 1. The same comment can be made for the

bifurcation from spatiotemporal chaos to instability. The intermediate double-line

stands for the semi-analytical and analytical boundaries corresponding to the chaotic

trajectory, and the single lower solid-line stands for the bifurcation boundary related

to the inner limit-cycle. Once again, the numerical comparison rapidly switches from

the chaotic boundary to the periodic one. Therefore, since in the γ < 0 case the

spectral invariance condition is not fulfilled, several bifurcation boundary values do

coexist. Consequently, depending on the number of oscillators and on the initial con-

ditions, the ring’s state variables will bifurcate around various boundary lines related

to the different spectral groups.

2.5 Conclusion

We have addressed in this chapter the issue of pattern formation in a ring of coupled

chaotic oscillators. A general theory has been developed for the understanding of the

collective dynamics and bifurcation behavior of the system, and numerical simulations

have been performed to confirm the analytic predictions.
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The following chapter will enable us to use the results we have obtained to optimize

and stabilize the synchronized dynamics of coupled semiconductor lasers in their

chaotic regime.
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CHAPTER III

DYNAMICS AND SYNCHRONIZATION OF

CHAOTIC SEMICONDUCTOR LASERS

3.1 Introduction

In this chapter, we aim to analyze the dynamics and synchronization behavior of

coupled semiconductor lasers operating in a chaotic regime.

We will first introduce the fundamental concepts of semiconductor lasers, and the

semi-classical rate equations ruling their dynamics will be derived both in the complex

field and intensity representations.

Then, we will focus on the dynamics and synchronization of these lasers in the

chaotic regime. Two distinct methods will be used to induce chaos: The first one

will rely on the ultra-high frequency modulation of the pumping-current while the

second will rely on external optical feedback. In both cases, bifurcation scenarii

will be investigated, and suitable coupling schemes will be designed to ensure their

synchronization.

A particular emphasis will be laid upon the optimization and stability analysis

of the related synchronization manifolds, and finally, the issue of detrimental effects

induced by parameter mismatch will be addressed.

3.2 Semiconductor lasers

3.2.1 Laser operation in semiconductor junctions

Semiconductors are solids whose electrical and optical properties can be significantly

modified by changing their temperature or their impurity content.

The energy levels in semiconductors are gathered into energy-bands, namely the

valence and conduction bands, which are separated by a “forbidden” energy-gap of

width Eg called the bandgap energy. It is known from statistical physics that the

probability for an electron to occupy a given state of energy E in a semiconductor is
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given by the Fermi-Dirac distribution

f(E) =
1

exp[(E − Ef )/kT ] + 1
, (93)

where Ef is the Fermi level, which lies more or less in the middle of the bandgap

between the valence and conduction bands. An electron can quantum-mechanically

change its energy through an interaction with the lattice (electron-phonon interac-

tion) or through an interaction with light (electron-photon interaction).

Light-matter interactions in semiconductors have a fundamentally quantum na-

ture, and are intimately related to the three basic concepts of absorption, spontaneous

emission and stimulated emission. The term absorption is used when a photon creates

an electron-hole pair in the material, the term spontaneous emission is used when a

photon is emitted after the spontaneous recombination of an electron and a hole,

while the term stimulated emission is reserved for the case where an incoming photon

forces the recombination of an electron-hole pair, thereby emitting a new photon per-

fectly correlated (in phase, direction and polarization) with the incoming one. Since

they are both triggered by incoming photons, absorption and stimulated emission are

correlated to the surrounding electromagnetic field: they are coherent interactions.

On the other hand, spontaneous emission has a purely statistical nature and is not

correlated with its environment: it is an incoherent interaction.

Let us now refer to the number of atoms per unit volume in some given level

(band) as the population of that level (band), and let us consider ncoh as the density

of coherent photons resulting from absorption and stimulated emission between some

energy levels E1 and E2 belonging to the valence and conduction bands respectively.

It can be deduced from quantum mechanics that the variation rate of ncoh obeys

dncoh

dt
=
{%(ν)
τr

c3

8πν2
[f(E2)− f(E1)]

}
· ncoh = γ(ν) · ncoh . (94)

Here, τr is the electron-hole recombination lifetime, that is, the average time taken

by an electron of the valence conduction band before spontaneously recombine with

a hole of the valence band. On the other hand, the optical joint density of states is

%(ν) =
(2mr)

3/2

πh̄2 (hν − Eg)
1/2 (95)

where mr is the reduced mass defined as mr = mvmc/(mv + mc), with mv and mc

being the effective masses of holes and electrons in the valence and conduction bands

respectively. The global term γ(ν) in eq. (94) can be considered as the gain of the
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medium. Under the usual conditions of thermal equilibrium, this gain is negative

because stimulated emission is strongly dominated by absorption: effectively, as in-

dicated by the Fermi-Dirac distribution, there are more electrons in the valence band

than in the conduction band, so that absorption of incoming photons is much more

likely to happen than stimulated emission.

However, when the semiconductor is doped, the Fermi level moves downwards to

the valence band (in case of a p-type doping) or upwards to the conduction band (for a

n-type doping). Therefore, when a p-type and a n-type semiconductors are associated

as a p-n junction, the energy-bands are “distorted” in the depletion layer because of

the initial misalignment between the Fermi levels. If the junction is forward biased,

or equivalently when there is a current injection in the depletion layer, the thermal

equilibrium is destroyed and the Fermi level Ef splits into two “quasi-Fermi levels”:

the first one Efv is associated to the Fermi-Dirac distribution fv of the holes in the

valence band, while the second one Efc is associated with the Fermi-Dirac distribution

fc of the electrons in the conduction band. In this case, the gain in the p-n junction

should be expressed as [69]

γ(ν) =
%(ν)

τr

c3

8πν2
[fc(E2)− fv(E1)] , (96)

where as we have earlier stated, fv and fc are the Fermi-Dirac distributions character-

ized by the quasi-Fermi levels Efv and Efc. When the p- and n-types doping is high

enough such that Efv and Efc respectively lie well inside the valence and conduction

bands, both the electrons and holes can have a large concentration around Efv and

Efc in the depletion layer. As current injection is increased, the quasi-Fermi levels

Efv and Efc (which have the same value Ef when there is no injection) begin to

separate. When their mutual separation is high enough so that the double condition

Eg < hν < Efc − Efv is fulfilled, the gain γ(ν) in the medium becomes posi-

tive according to equation (96) as the stimulated emission becomes stronger than the

absorption. Since in that case dncoh/dt > 0, this coherent light is continuously

amplified: in other words, we have a “Light Amplification by Stimulated Emission

of Radiations”, that is, a (semiconductor) LASER.

Therefore, the role of the injection current, which in this context is referred to as

the pumping current, is to create a population inversion, that is, an out-of-equilibrium

state where there are more electrons in the conduction band than in the valence band:

when such an inversion is achieved, the semiconductor laser emits a coherent radia-

tion through stimulated electrons-hole recombination.
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Figure 13: E-k diagram of a semiconductor laser. This is a situation of sufficiently
high pumping, where the double condition Efc > Ec and Efv < Ev is fulfilled. In that
case, there is a high concentration of electrons in the conduction band, and a high
concentration of holes in the valence band: it is the population inversion. Lasing with
a frequency ν ' Eg/h therefore results from the stimulated recombination of these
electrons and these holes.

However, effective laser emission is possible only when the active medium is placed

within an optical resonator. An optical resonator is a system that confines and

stores light at certain fixed resonance frequencies. The simplest optical resonator is

the Fabry-Pérot resonator, which consists of two parallel plane mirrors facing each

other. In the hypothetical case of perfectly parallel and perfectly reflecting mirrors,

light would repeatedly and endlessly be reflected in between. However, losses are

unavoidable, and they are principally due to the attenuation of the light beam while

traveling between the two mirrors, and also to the fact that the reflectance of these

mirrors is never perfect. Therefore, if we consider αr as the total loss of energy (or

number of photons) per second, then

τp =
1

αr

(97)

would represent the photon lifetime in the resonator.

In semiconductor lasers, optical resonance is sometimes achieved in the most sim-

plest way. Effectively, since the semiconductor material has a high refractive index

(nsem ∼ 3.5) relatively to the air (nair ' 1), external mirrors are not required since
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the cleaved facets of the material can act as mirrors of reflectivity

Rfacet =
[
nsem − nair

nsem + nair

]2
∼ 0.3 . (98)

Laser emission (or lasing) is therefore the consequence of the following scenario.

Initially, a photon of frequency ν stimulates the emission of another identical one,

and both of them trigger further stimulated emission of identical photons, and so on.

As soon as they get out of the medium, they are reinjected back by the mirrors of

the resonators, and they can thereby continue to stimulate the emission of more clone

photons. Laser operation is therefore a kind of “avalanche” production of identical

photons which fundamentally relies on the amplification in a medium where a popu-

lation inversion has been achieved, and on the feedback from the mirrors of an optical

resonator.

However, two fundamental conditions should be fulfilled for lasing to be effective

[69, 70].

The gain condition requires that the gain of the active medium must be greater

than the losses of the resonator to initiate the process, that is γ(ν) > αr. This gain

condition can enable us to determine the threshold population inversion, that is, the

critical population inversion which overcomes the losses of the resonator and enables

the lasing.

Secondly, the phase condition requires that the phase shift in a single round-

trip must be a multiple of 2π, so that the phase of the photons in the active medium

remain independent of the reflections through the mirrors of the resonator. This

condition is approximately satisfied when the laser frequencies match the longitudinal

and transversal eigenmodes of the resonator.

Any lasing frequency should absolutely satisfy the gain and phase conditions. If

one of the mirrors of the resonator is partially transparent, a portion of the coher-

ent light can be extracted and be used for various applications. These applications

always rely on the fundamental properties of laser beams. The first of these prop-

erties is spatial and temporal coherence, and it is due to the fact that laser light

proceeds from stimulated emission. This stimulated emission origin and the severe

eigenmode selection of the optical resonator also explain the high directionality

and monochromaticity of laser beams. This latter property is quantified by the

linewidth of the laser light, that is, the narrow spectral range around the central

frequency whose amplitude is significantly different from 0.
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Figure 14: Structure of an heterojunction semiconductor laser. The left and right
vertical planes are the cleaved facets of the semiconductor crystal, and they serve
at the same time as reflectors for optical resonance and coupler to enable the laser
radiation to escape from the internal cavity.

Figure 14 shows a simplified representation of an heterojunction semiconductor

laser. One can note that it is a micrometric device (also sometimes referred to as

chip) which can easily be incorporated within an optoelectronic integrated circuit.

3.2.2 Rate equations

Exact rate equations for semiconductor lasers should normally procede from the fun-

damental principles of quantum and statistical mechanics. However, this task is so

inextricably complex that the laser rate equations are commonly derived in the liter-

ature on a semi-classical basis.

As we earlier pointed out, pumping is achieved in semiconductor lasers by current

injection. Therefore, the carrier density N continuously increases with the pumping

current intensity I. A first critical value N0, referred to as the carrier density at

transparency, is reached when the material gain in the depletion layer exactly reaches

the value 0. As the pumping current is furthermore increased, the density of carriers

reaches a second critical value Nth, which is the carrier density at threshold: above

this value, the gain overcomes the losses and enables the lasing. If we introduce

the parameter g as the differential gain of the laser, the following balance equation
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between the material gain and the optical resonator losses should hold

g (Nth −N0) =
1

τp
. (99)

If we consider E as the coherent complex electric field of amplitude |E| and phase

φ resulting from the stimulated emission, then the optical power density which is

proportional to the density of photons, can simply be expressed as P = |E|2. Log-

ically, it is expected that P should increase or decrease accordingly to the sign and

absolute value of the material gain γ = g (N − Nth) in the depletion layer. Within

the approximation of a slowly-varying amplitude and a single-mode operation, the

variation rate the optical power density should therefore read

dP

dt
= g (N −Nth)P =

[
g (N −N0)−

1

τp

]
P . (100)

On the other hand, the variation rate of the carrier should account for the electrons

coming from the pumping, for their spontaneous decay to lower levels according to the

carrier lifetime τs, and also for their stimulated decay which produces the coherent

photon emission, accordingly to

dN

dt
= I − N

τs
− g (N −N0)P . (101)

Hence, one can deduce from the above equation that the threshold injection current

density necessary for laser emission is determined by Ith = Nth/τs. Lasing is not

possible under this threshold value, while above Ith, the optical output power emitted

by the semiconductor initially increases linearly with I: that is why by analogy to a

well-known electronic component, semiconductor lasers are sometimes referred to as

laser-diodes.

However, some other parameters should phenomenologically be introduced in the

rate equations (100) and (101) to take into account for some characteristic phenom-

ena associated with the specific properties of semiconductor materials. The first one

is the gain saturation parameter s, which accounts for the fact that the differential

gain g should decrease as the optical power density P increases. This saturation

phenomenon is quite universal in all types of amplifiers, independently of their na-

ture. Therefore, better concordance with experience is achieved when g is replaced by

g (1+sP )−1. One should moreover take into account in the rate equations the incoher-

ent photons proceeding from spontaneous emission whose characteristics incidentally

coincide with those of the coherent photons. They induce in the laser intensity equa-

tion an additional term proportional to N/τs, so that the corresponding set of coupled
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rate equations finally reads

dP

dt
=

[
g (N −N0)

1 + sP
− 1

τp

]
P + β

N

τs
,

dN

dt
= I − N

τs
− g (N −N0)

1 + sP
P , (102)

where the proportionality coefficient β is the spontaneous emission coefficient.

In some situations, particularly when the dynamics of the phase φ is of particular

importance, it is more convenient to write the rate equations in terms of the laser

output electromagnetic field E and carrier density N . In that case, one should take

into account the fact that the phase of the electric field is generally affected by the

the carrier density during the propagation in the active medium. Hence, a coupling

between N and φ should be accounted for in the rate equations, precisely by assuming

a complex value for the material gain. The coupling constant α is commonly referred

to as the linewidth enhancement factor because it is responsible for the broadening of

the laser output linewidth.

Consequently, the modified coupled rate equations in terms of E and N can be

deduced from equation (102) as

dE
dt

=
1 + iα

2

[
g (N −N0)

1 + s |E|2
− 1

τp

]
E ,

dN

dt
= I − N

τs
− g (N −N0)

1 + s |E|2
|E|2 . (103)

One can note that the spontaneous emission term is absent in the field set of rate

equations (103). In fact, they are never accounted for in the deterministic field repre-

sentation because a convenient modeling would in that case require the introduction

of a stochastic field fluctuation of mean-value 0, and we would end up with a Stochas-

tic Differential Equation (SDE) instead of an ODE.

3.3 Dynamics and synchronization of semiconduc-

tor lasers with ultra-high frequency current

modulation

3.3.1 Chaotic dynamics

As we have earlier noticed, the nonlinear intensity rate equations describing semicon-

ductor lasers usually possess only two degrees of freedom, namely, the photon and
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carrier densities. Hence, additional degrees of freedom should artificially be intro-

duced for chaos to appear. A straightforward alternative is to generate chaos through

the amplitude modulation of the injection current. This procedure creates a third de-

gree of freedom in the autonomous representation and thereby enables the formation

of a chaotic attractor [71, 72, 73, 74]. Taking into account the current modulation,

the intensity rate equation can be written as

dP

dt
=

[
g (N −N0)

1 + sP
− 1

τp

]
P + β

N

τs
,

dN

dt
= [Ib + Im sin(2πfmt)]−

N

τs
− g (N −N0)

1 + sP
P , (104)

where fm is the modulation frequency while Ib and Im are the bias and modulation

currents respectively. For applications to optical communications, current modulation

is generally performed with frequencies higher than 1 GHz, that is, in the ultra-

high frequency range of the electromagnetic spectrum. A suitable normalization of

equations (104) leads to the following dimensionless form (using the balance equation

(99))

ṗ =

[
(1 + 2n)

1 + σp
− 1

]
p+ β(n+ Φ),

ṅ = ε

[
i0(1 +m sin(ωt))− n− (1 + 2n)

1 + σp
p

]
(105)

with the following rescalings

p =
(

1

2
gτs

)
P, n =

1

2
gNthτp

(
N

Nth

− 1
)
,

ε =
τp
τs
, σ =

s

gτs/2
, Φ =

1

2
gNthτp,

i0 =
1

2
gNthτp

Ib − Ith
Ith

, m =
Im

Ib − Ith
, ω = 2πfmτp. (106)

The dots over p and n in equations (105) denote the derivative relatively to the reduced

time (in units of τp). One should note that the dimensionless injection current i(t)

is now characterized by its time average amplitude i0 and its modulation index m.

The above system will therefore be referred to as an ultra-high frequency Current-

Modulated Semiconductor Laser (CMSL).

For certain parameter values, the CMSL exhibits a chaotic behavior. Figure 15a

displays the chaotic oscillations of the photon density p as a function of time. They

are constituted of spikes with randomly distributed amplitudes, alternatively followed
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Figure 15: Chaotic timetrace and attractor of a CMSL for i0 = 0.6 and m = 1.0. a)
Chaotic timetrace; b) Corresponding attractor.

Figure 16: Bifurcation diagrams for a CMSL. a) As a function of i0 for m = 1.0; b)
As a function of m for i0 = 0.6.

by irregular bursts of quite smaller amplitudes. This two-frequency structure is also

foreshadowed in the phase plane of figure 15b, where one can see that the chaotic at-

tractor intrinsically possesses the characteristic notch of double-periodic oscillations.

It also appears on the bifurcation diagrams of figures 16a and 16b that chaos occurs

when the CMSL is strongly excited, that is, for high i0 or m. More precisely, chaos

seems to be possible only when the modulation index approximately exceeds 0.95 . In

both cases, the route to chaos is the period-doubling cascade of pitchfork bifurcations.

3.3.2 Optimization and stability analysis of chaos synchronization

The synchronization of CMSLs can be carried out with different methods. In this

thesis, we will use a retroactive coupling scheme [25, 26], which can be explicitly
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expressed in vectorial notation under the canonical form of equation (19). The state

vector is x ≡ (p, n) in this case. Here, we aim to use a feedback coupling which

physically corresponds to a situation where a current proportional to the difference of

the slave and master output powers is electronically fed to the slave CMSL, as shown

in figure 17. Accordingly, the slave rate equations may be expressed as

˙̃p =

[
(1 + 2ñ)

1 + σp̃
− 1

]
p̃+ β(ñ+ Φ) ,

˙̃n = ε

[
i0(1 +m sin(ωt))−K(p̃− pτc)− ñ− (1 + 2ñ)

1 + σp̃
p̃

]
, (107)

where K is a scalar coupling parameter, and τc = Tc/τp is the dimensionless coupling

delay, that is, the Tc corresponds to the time needed by the master command signal

to reach the slave laser. Analogously to what has been demonstrated in the first

chapter for Duffing oscillators, synchronization can occur in this model only when

the coupling time τc is an integer multiple of 2π/ω. Hence, for the sake of simplicity,

we will further set τc ≡ 0.

We now focus on the conditions under which the coupling efficiently completes a

robust and high-quality synchronization. The master and slave CMSLs are described

by two sets of two first-order ODEs each. For mathematical commodity, we will

transform them into a single set of two second-order ODEs. Therefore, if we discard

σ and β because of their very small order of magnitude (∼ 10−5), the rate equations

can now be expressed as

p̈+ ε(1 + 2p)ṗ− 2εp [i0(1 +m sin(ωt))− p]− ṗ2

p
= 0 ,

¨̃p+ ε(1 + 2p̃) ˙̃p− 2εp̃ [i0(1 +m sin(ωt))−K(p̃− p)− p̃]−
˙̃p
2

p̃
= 0 . (108)

The synchronization error u = p̃−p will consequently obey in a linear approximation

the following differential equation

ü+

[
ε(1 + 2p)− 2ṗ

p

]
u̇+

[
2ε (ṗ+ (K + 2)p− i0(1 +m sin(ωt))) +

ṗ2

p2

]
u = 0 .

(109)

Since the chaotic attractor of the CMSL is an almost simply folded band in the

phase plane (p, n), we can as explained in the first chapter replace the chaotic variable

p in equation (109) by an uniperiodic Ritz-Galerkin approximation of the embedded
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Table 1: Parameters and values used for the numerical simulation of CMSLs.

Parameter Value

Differential gain coefficient (g) 8.4× 10−13 m3s−1

Nonlinear gain suppression factor (s) 0.5× 10−26 m3

Spontaneous emission coefficient (β) 10−5

Carrier density at threshold (Nth) 2.018× 1024 m−3

Carrier lifetime (τs) 1.025 ns
Photon lifetime (τp) 2.041 ps
Frequency of the modulation current (fm) 2 GHz

UPO accordingly to

p(t) = A0 + A1 cos(ωt) +B1 sin(ωt) . (110)

In equation (109), ṗ and ṗ2 can be neglected in the parametric excitation terms, since

they are respectively proportional to ω (of order ε) and ω2 (of order ε2). Moreover,

the parametric damping is of order ε, while the stiffness term is proportional to ε1/2.

Hence, the parametric damping can be replaced by its time average value

λ = 〈ε(1 + 2p)〉 = ε(1 + 2A0) . (111)

According to the Ritz variational criterion, A0, A1 and B1 obey the following set of

nonlinear algebraic equations

−ω2A1 + λB1ω + 4εA0A1 − 2εi0A1 = 0

−ω2B1 − λA1ω + 4εA0B1 − 2εi0B1 − 2εmi0A0 = 0

2A2
0 + A2

1 +B2
1 − 2i0A0 −mi0B1 = 0 , (112)

while the variational equation (109) can be rewritten under the form of a canonical

Mathieu equation

d2η

dτ 2
+ [µ+ 2α cos(2τ − 2ϕ)] η = 0 (113)

with the following rescalings

τ =
ωt

2
, η(τ) = u exp

(
λτ

ω

)
, ϕ = arctan

[
B1

A1

− mi0
(K + 2)A1

]

µ =
4

ω2

[
2ε ((K + 2)A0 − i0)−

λ2

4

]
,

α =
4ε

ω2

[
((K + 2)A1)

2 + ((K + 2)B1 −mi0)
2
]1/2

. (114)
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Figure 17: Set-up for the synchronization of CMSLs. Owing to two semi-transparent
mirrors or beam-splitters (BS), a fraction of the laser radiation of each CMSL is
extracted, and transformed by two distinct photodiodes in electric currents. These
currents are used to build the feedback loop necessary for synchronization.

From the theory we have developed in chapter I, we can therefore conclude that ultra-

high frequency current modulated semiconductor lasers do synchronize in the chaotic

regime when the figurative point in the Strutt Diagram is in the linearly stable area,

that is, when

− sinh2

(
λπ

2ω

)
< Γ(µ, α) < cosh2

(
λπ

2ω

)
, (115)

the function Γ being defined in equation (43).

On the other hand, if the local width of the buffer belt is Λ(µ(kπ), α(kπ)), where

the couple (µ(kπ), α(kπ)) is the related point situated on a kπ-periodic boundary of

the Strutt diagram (k = 1 or 2), the synchronization fails when the figurative point

in the Strutt Diagram is nonlinearly stable, satisfying∣∣∣∣∣∣(µ− µ(kπ))

[
∂Γ(µ, α)

∂µ

]
(µ=µ(kπ))

+ (α− α(kπ))

[
∂Γ(µ, α)

∂α

]
(α=α(kπ))

∣∣∣∣∣∣
<

Λ(µ(kπ), α(kπ))√
(µ(π) − µ(2π))2 + (α(π) − α(2π))2

cosh

(
λπ

ω

)
, (116)

where (µ(kπ), α(kπ)) is the nearest boundary point relatively to the representative point

M(µ, α) of the coupled system, the denominator of the right-hand side is the length
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of the trajectory of M(µ, α) laying within the nearest stability interval.

As we did for single-well Duffing oscillators, we can understand the effect of the

scalar coupling parameter K by studying the motion of a representative point in the

Strutt diagram. From equation (114), it clearly appears that when K is increased,

the parameters µ and α are simultaneously varied. More specifically, the figurative

point in the (µ, α) plane sketches a curve of equation

α =
(

1

2
µ+ ε

4i0
ω2

)√√√√A2
1 +B2

1

A2
0

1 + ε2
m2i20 − 2mi0B1

8εA0
(µω2 + 8εi0)

A2
1+B2

1

64A2
0

(µω2 + 8εi0)2


1/2

. (117)

In the first approximation (ε→ 0), this curve can be assimilated to a straight line of

slope

a =
1

2

√√√√A2
1 +B2

1

A2
0

. (118)

This slope is proportional to the ratio between the amplitude of the varying com-

ponent of p(t) and the amplitude of its constant component. Therefore, a is an

increasing function of the modulation index m, since a stronger parametric excitation

of the CMSL leads to higher A1 and B1 values. As K is increased, the figurative

point in the Strutt diagram moves from left to right on the curve of equation (117),

and therefore alternatively passes through linearly unstable and linearly stable areas.

Consequently, the synchronization intervals for K can be represented under the form

]Kb1, Kb2[, ]Kb3, Kb4[,..., ]Kbn,+∞[, where the Kbk are the boundary values. It ap-

pears from figure 18 that when m is small, the slope of the curve (117) is weak, and

then the synchronization pattern is made of a single interval ]Kb1,+∞[. But as m

is increased, this curve intersects the zones of linear instability because of its greater

slope, so that the former single stability interval splits into an increasing number of

different synchronization sub-intervals.

In figure 18, we have graphically represented three straight lines with distinct

slopes, corresponding to different values of m. From the smallest to the largest slope,

these lines respectively lead to one, two and three synchronization intervals for K.

It is important to note that as we have earlier noticed, high values of m precisely

correspond to the synchronization of CMSLs in their chaotic regime, so that complex

stability patterns may be expected in that case. It results from the above reason-

ing that the period-one UPO approximation predicts the progressive occurrence of
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Figure 18: Strutt diagram for the coupled CMSLs. Three straight lines with increasing
slopes (i.e., with an increasing modulation index m) have been sketched. On the upper-
most one, which correspond to the case we are studying, the representative point of
the coupled system when K = 0 has been represented.

compact desynchronization intervals as the modulation index m is increased. More-

over, it synthetically provides the related geometrical explanation through the Strutt

diagram interpretation. Therefore, one can expect that these compact intervals on

non-synchronized behavior should emerge and widen on the K-axis as m is continu-

ously increased.

The numerical simulations completely confirm our analytic stability analysis. In

figure 19, we have represented the maximal synchronization error as a function of the

coupling strength, for increasing values of the modulation index. The maximal syn-

chronization error we have tolerated for high-quality synchronization is 10−5. There-

fore, synchronization intervals are indicated on figures 19 by horizontal segments of

equation log10(‖w‖max) = −5.

In figure 19a, for example, m is quite small (m = 0.1), so that we have a single

synchronization interval ]−1.00,+∞[. For K < −1.00, the slave variables indefinitely

grow to infinity, while for K > −1.00, quasi-perfect synchronization is achieved.

K = −1.00 is a boundary value for which a high (but not infinite) synchronization

error is observed.

In figure 19b, m has been increased (m = 0.4), as well as the slope of the figurative

curve on the Strutt diagram. This curve now intersects a nonlinear stability area,
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Figure 19: Variation of the synchronization error ‖w‖max in coupled CMSL when i0
is fixed to 0.6. a) m = 0.1; b) m = 0.4; c) m = 0.6; d) m = 1.0. Note the progressive
occurrence and widening of compact desynchronization intervals as m is increased.

thereby splitting the former semi-infinite interval of linear stability into two, which

are ] − 1.00,−0.73[ and ] − 0.67,+∞[. Nevertheless, the inner nonlinear stability

interval represents a loss of synchronization, and not a growth to infinity.

When m is further increased (m = 0.6), the first stability interval splits into two

in his turn in figure 19c, so that the stability pattern for K is now ] − 1.00,−0.95[,

]−0.90,−0.75[ and ]−0.59,+∞[. According to the bifurcation diagram of figure 16b,

these three m values correspond to periodic oscillations. Hence, the synchronization

which occurs here (even for K = 0) is due to phase-locking.

We increase again m to 1.0 in figure 19d so that we are now synchronizing the

CMSLs in their chaotic regime. The stability pattern is now made up of four sub-

sets which are ] − 1.00,−0.95[, ] − 0.42,−0.19[, ]0.13, 0.21[ and ]0.57,+∞[. One

can note that the desynchronization intervals are larger in the chaotic state than

in the periodic regime, and that obviously no synchronization occurs when K = 0.

Moreover, synchronization is always ensured for the K values which are slightly above

the π-periodic threshold value K = −1.00. This can easily be explained by the

stability diagram of figure 18, and also from equations (108), since K = −1.00 is the

critical value that induces the inversion of the retroactive coupling term.

The mechanism characterized by the progressive occurrence of desynchronization
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intervals through the splitting into two of a synchronization interval has invariably

been observed for various sets of CMSL parameters during numerical simulations.

Anyway, it has been observed that the first instability interval ] − ∞, Kb1[ always

leads to a sustained growth to infinity for the slave variables, and should therefore be

absolutely avoided. On the other hand, the inner instability intervals do not induce

such a catastrophic behavior, but just fail to achieve stable and robust synchroniza-

tion. This can be explained by the fact that these intervals are only weakly unstable,

so that the nonlinear terms of the rate equations succeed to confine the figurative

phase point within the chaotic attractor when it is repelled from the linearly unstable

synchronization manifold.

3.3.3 Influence of parameter mismatch

Even though parameter mismatch is unavoidable in practice, its undesirable conse-

quences can be limited when certain optimization requirements are met [13]. If we

consider the various CMSLs parameters ψi and their corresponding parameter mis-

matches δψi, the deviation vector obeys in the linear approximation to the following

integral equation

w(t) = [Θ(t)Θ−1(t0)] ·w(t0) +
∫ t

t0

[
[Θ(t)Θ−1(ξ)] ·

∑
i

∂F(x, t, ψ)

∂ψi

δψi

]
dξ , (119)

where Θ(t) is the principal matrix function, that is, the solution of

Θ̇ = J(x, t) ·Θ . (120)

The first term of equation (119) decays to 0 as t→ +∞ within the stability area. The

second term does never vanish and hence corresponds to the synchronization error

due to the parameter mismatch. If λav is the average largest sub-Lyapunov exponent

(normally negative), it can be demonstrated from equation (119) that for initially

stable synchronization, ‖w‖max increases with the mismatches |δψi|, but is inversely

proportional to |λav| , i.e., the synchronization error is minimized when (−λav) is the

largest possible [13].

On figure 20, we have plotted the synchronization error as a function of the

coupling strength K for different percentages of parameter mismatch in the chaotic

regime. It is seen that in stable intervals, ‖w‖max effectively increases with the pa-

rameter mismatch. We also remark that the first stability interval (just at the right of

the boundary value K = −1.0) is the least stable, since in that area, synchronization

is lost for a parameter mismatch of only 1%. Anyway, above 1%, severe degradation
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Figure 20: Synchronization error as a function of parameter mismatch for coupled
CMSLs in the chaotic regime. The global mismatches have respectively been taken to
be equal to 0.01%, 0.1% and 1% .

of synchronization has been observed. We are therefore led to the conclusion that the

synchronization of chaotic CMSLs is very sensitive to parameter mismatch, because

for other dynamical systems, a tolerance at up to 50% is sometimes witnessed. It is

also very important to stress that no detuning has been applied between the modula-

tion frequencies of the master and slave CMSLs. In fact, numerical simulations have

indicated that even a detuning of 10−5% destroys the synchronized state. Therefore,

a quasi-perfect stabilization of these ultra-high frequencies will be necessary for prac-

tical applications.

3.4 Dynamics and synchronization of semiconduc-

tor lasers with external optical feedback

3.4.1 Hyperchaotic dynamics and coherence collapse

Optical external feedback is another technique to increase the dimensionality of the

rate equations ruling the semiconductor dynamics [23, 24]. This method consists in

placing an external reflector to feed back into the active layer of the semiconductor

laser a fraction of its delayed electromagnetic output. If the distance between the

reflector and the output facet of the semiconductor laser is Lext, then the round-trip

time in the external cavity is T = 2Lext/c. A convenient model of this configuration
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should imperatively be made in the field representation, because the phase of the

coherent laser radiation is strongly affected by the delayed feedback. According to

Lang and Kobayashi, the rate equations corresponding to this configuration should

be written in first approximation as

dE
dt

=
1 + iα

2

[
g (N −N0)

1 + s |E|2
− 1

τp

]
E + χET e

−iΩT ,

dN

dt
= I − N

τs
− g (N −N0)

1 + s |E|2
|E|2 . (121)

In this equation, Ω = 2πc/λ is the angular frequency of the laser coherent radiation, so

that the product ΩT can be considered as the round-trip phase shift generated by the

light propagation within the external cavity. On the other hand, the parameter χ =

rext(1− r2
0)/τinr0 is the strength of the optical feedback, r0 and τin being respectively

the facet amplitude reflectivity of the laser and the round-trip time within its internal

cavity, while rext is the reflectivity coefficient associated with the external mirror. In

equations (121), only a single reflexion has been accounted for. If we had considered

multiple reflections with the external reflector, additional delays would have been

introduced. Anyway, these additional delays are not relevant here because we are

only concerned with weak to moderate feedbacks: under this condition, the Lang-

Kobayashi model describes satisfyingly the physical system under study.

In the literature, this system constituted of a semiconductor laser with external

optical feedback is commonly referred to as an External-Cavity Semiconductor

Laser (ECSL), precisely in reference to the external reflector which plays (along with

the cleaved facets of the semiconductor crystal) the role of an optical cavity.

Because of its smallness, we can neglect the gain saturation parameter s so that

after a suitable normalization, the Lang-Kobayashi model can be rewritten under the

synthetic form (also using equation (99))

Ė = nE + γEτ cos(ωτ + φ− φτ ),

φ̇ = αn− γ
Eτ

E
sin(ωτ + φ− φτ ),

ṅ = ε
[
i0 − n− (1 + 2n)E2

]
(122)

with the following rescalings

E =
(

1

2
gτs

)1/2

|E| , n =
1

2
gNthτp

(
N

Nth

− 1
)
,

ε =
τp
τs
, i0 =

1

2
gNthτp

I − Ith
Ith

, γ = τpχ = τp

(
1− r2

0

τinr0

)
rext,
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Figure 21: Timetraces showing the hyperchaotic dynamics of an ECSL in the coher-
ence collapse regime, with rext = 1.35% and Lext = 15 cm. The parameters used for
the numerical simulation are indicated in Table 2. a) Short scale timetrace; b) Large
scale timetrace.

Table 2: Parameters and values used for the numerical simulation of ECSLs.

Parameter Value

Differential gain coefficient (g) 8.4× 10−13 m3s−1

Linewidth enhancement factor (α) 3
Facet amplitude reflectivity (r0) 0.556
Carrier density at threshold (Nth) 2.018× 1024 m−3

Injection current density (I) 1.3Ith
Carrier lifetime (τs) 2.04 ns
Photon lifetime (τp) 1.927 ps
Round-trip time in the laser cavity (τin) 8 ps

τ =
T

τp
, ω = Ωτp =

2πc

λ
. (123)

As usual, the dots over E, φ and n in equations (122) denote the derivative relatively

to the reduced time (in units of τp).

The external optical feedback radically changes the mathematical nature of the

rate equations. From the low-dimensional set of ordinary differential equations (103),

we are now led to the set of delay differential equations (121), that is, owing to the

additional feedback term proceeding from the reflection at the external cavity, we

are now in front of an infinite-dimensional system. Consequently, the system can

display hyperchaos, that is, a very high-dimensional chaos with hundreds of positive

Lyapunov exponents. In the context of laser physics, the resulting electromagnetic
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output has a broader linewidth, so that the term coherence collapse is generally

used to designate this phenomenon [27, 28, 29, 30, 31].

Figures 21a and 21b display the hyperchaotic dynamics of an ECSL in the co-

herence collapse state, respectively at a short scale and at a large scale. It is well

known that the injection current i0 strongly affects the large-scale structure of the

laser’s oscillations. When i0 is very close to the threshold value i0,th = 0, the ECSL

enters into what is usually called the Low-Frequency Fluctuations (LFF) regime. In

our case, i0 is much higher, so that the hyperchaotic oscillations have a relatively

constant mean value
√
i0 ' 0.7 which corresponds to the trivial steady-state regime.

3.4.2 Optimization and stability analysis of chaos synchronization

Theoretically, two fundamentally different types of chaos synchronization can occur

for ECSL depending on the strengths of both the feedback and the coupling [33]. For

the first type, which is referred to as isochronous synchronization, the slave variables

synchronize (up to a constant for some of them) with those of the master at time

t − Tc, where Tc is the coupling delay. Here, the slave is always in isochronism

with its master command signal input: this kind of synchronization, which is not

perfect however, is a kind of frequency-locking phenomenon. The second type of

synchronization is referred to as anticipated synchronization because in that case, the

slave laser always anticipates its master command signal input, independently of the

value of Tc. Here, we will use a technique belonging to this later group, and which is

based on a continuous feedback chaos control scheme.

According to Murakami and Ohtsubo [75], the synchronization of identical EC-

SLs can be achieved with the unidirectional coupling scheme corresponding to figure

22. Using appropriate external mirrors, the master laser-diode injects into the active

region of the slave laser-diode a fraction of its electromagnetic output, which thereby

plays the role of a command signal. An optical isolator guarantees the unidirection-

ality of the coupling. The slave ECSL is subjected to a second optical feedback which

completes the retroactive control loop. However, two important physical constraints

are required for the synchronization to be possible. Firstly, the coupling rate has to

be equal to the feedback rate of the mirror M2nd, and secondly, the round-trip phase

shifts generated by the light propagation within the two external reflectors of the

slave ECSL have to be π-dephased. Explicitly, this latter condition can be expressed

as ΩT2nd = ΩT ± (2k+1)π, that is L2nd = Lext± (2k+1)λ/4, λ being the wavelength

of the solitary laser and k an integer of the order of few units.
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Figure 22: Set-up for the synchronization of ECSLs. The mirrors at the right (Mext)
are those inducing the external optical feedback, thus creating hyperchaos. An optical
isolator is introduced in the path of the command signal radiation to ensure the uni-
directionality of the coupling. The mirror M2nd and the semi-reflecting beam-splitter
(BS) at the left of the slave laser creates the feedback loop necessary for synchroniza-
tion.

The slave rate equations corresponding to this particular coupling scheme are

˙̃E = ñẼ + γẼτ cos(ωτ + φ̃− φ̃τ )

+K
[
Eτc cos(ωτc + φ̃− φτc)− Ẽτ cos(ωτ + φ̃− φ̃τ )

]
,

˙̃φ = αñ− γ
Ẽτ

Ẽ
sin(ωτ + φ̃− φ̃τ )

−K
[
Eτc

Ẽ
sin(ωτc + φ̃− φτc)−

Ẽτ

Ẽ
sin(ωτ + φ̃− φ̃τ )

]
,

˙̃n = ε
[
i0 − ñ− (1 + 2ñ)Ẽ2

]
, (124)

where the dimensionless coupling parameter K and the coupling time τc are respec-

tively defined as

K = τpκ = τp

(
1− r2

0

τinr0

)
kcp, τc =

Tc

τp
, (125)

kcp being the coupling efficiency.

In our stability analysis, we will consider τ ≡ τc for the sake of exemplification

on instantaneous synchronization, and therefore we will only deal with a single de-

generated delay-time parameter. However, we stress that this particular case is not
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restrictive, as it successfully gives a deep insight into what occurs for the general

double-delay model.

To investigate the stability of the synchronization manifold, we will use an orig-

inal analytical approach developed by Brown and Rulkov. The method they have

proposed enables to derive rigorous stability criteria, that is, sufficient constraints

which guarantee high-quality (burst-free) synchronization between identical systems

with drive-response coupling [48, 49]. Moreover the Brown-Rulkov technique leads to

explicit analytic stability conditions, and therefore offers a judicious guidance for the

choice of the suitable system parameters.

Let us consider the master and slave vector-fields as x = (E, φ, n) and x̃ =

(Ẽ, φ̃, ñ) respectively. Hence, the deviation vector w = x̃ − x obeys in the linear

approximation to the following variational equation

ẇ = [H(x,xτ )] ·w + (γ −K)[G(x,xτ )] ·wτ , (126)

where

H(x,xτ ) =


n −γEτ sinϕ E

γEτ

E2 sinϕ −γEτ

E
cosϕ α

−2ε(1 + 2n)E 0 −ε(1 + 2E2)

 (127)

and

G(x,xτ ) =


cosϕ Eτ sinϕ 0

− 1
E

sinϕ Eτ

E
cosϕ 0

0 0 0

 . (128)

We have introduced the new variable ϕ = ωτ + φ − φτ as the phase delay. We

now decompose the H matrix into its time-averaged and time-variable components,

according to

H(x,xτ ) = A + B(t) (129)

with

A = 〈H(x,xτ )〉

B(t) = H(x,xτ )− 〈H(x,xτ )〉 , (130)

where 〈 〉 denotes the time-averaging along the master trajectory. In the first approx-

imation, the matrix B can be considered as proportional to γ. This approximation
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becomes more accurate as i0 increases, since in that case, E oscillates around the

mean value
√
i0. Hence, H can finally be expressed as

H(x,xτ ) = A + γQ(t) . (131)

We emphasize that Q is still weakly depending on γ anyway. The matrix A can be

diagonalized to D through the transfer matrix P. Therefore the vector z, which is

the w counterpart in the D basis satisfies

z(t) = [U(t, t0)] · z(t0) +
∫ t

t0
γ
[
U(t, ξ) [P−1Q(ξ)P]

]
· z(ξ) dξ

+
∫ t

t0
(γ −K)

[
U(t, ξ) [P−1G(ξ)P]

]
· zτ (ξ) dξ , (132)

where U(t, t0) = exp[D(t− t0)] is the exponential operator. Linearly stable synchro-

nized behavior is expected if ‖z(t)‖ → 0 as t → +∞. This convergence to 0 may

occur if and only if each of the three blocks in equation (132) individually vanishes

at long term.

Let us now consider Λ1, Λ2 and Λ3, the eigenvalues of A ordered as <[Λ1] ≥
<[Λ2] ≥ <[Λ3], where <[Λ] is the real part of the complex eigenvalue Λ. The first

block of (132) converges to 0 if

−<[Λ1] > 0 . (133)

It is our first stability requirement. This condition is reminiscent of the negativity of

transverse sub-Lyapunov exponents, but in fact, equation (133) is more constraining,

because sub-Lyapunov exponents are obtained through the H and G matrices,while

Λ1 is derived through A, which is only the time-average component of H.

The second block uniformly tends to 0 if the exponential operator imposes to the

P−1QP term its decay behavior. One can use norms to convert equation (132) into

an inequality and therefore, uniform convergence is ensured if

−<[Λ1] > |γ|〈‖P−1QP‖〉 , (134)

that is

γ <
−<[Λ1]

〈‖P−1QP‖〉
. (135)

It appears that the feedback coefficient has an upper limit which depends on the

system’s parameters. We stress again that the right-hand-side of inequality (135)

depends on γ, so that this inequality is mathematically weakly implicit.
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At last, the third block of (132) converges to 0 if

−<[Λ1] > |γ −K|〈‖P−1GP‖〉 , (136)

or more explicitly,

γ −
(

−<[Λ1]

〈‖P−1GP‖〉

)
< K < γ +

(
−<[Λ1]

〈‖P−1GP‖〉

)
. (137)

This latter relation means that the stability basin lays within a band around the

central value K = γ.

To summarize, the Brown-Rulkov technique has provided three stability con-

straints which are equations (133), (135) and (137). Numerical simulation quali-

tatively confirms these analytic results.

For this numerical comparison, two radically opposite situations will be considered:

the stable and unstable bifurcation states. To understand the reason of this differen-

tiation, one should remind the bifurcation behavior of ECSLs [75]. Their nonlinear

dynamics is strongly determined by the interplay between the relaxation oscillations

frequency of the solitary semiconductor laser (fR =
√
g(I − Ith)/2π = ΩR/2π) and

the external-cavity-mode spacing frequency (fext = 1/T = c/2Lext). As the feedback

coefficient γ increases, the initially stable eigenmodes undergo a first Hopf bifurcation

(1st HB) to periodic oscillations. It is demonstrated [24, 29, 30] that when ΩRT is an

odd multiple of π, the competition between fR and fext is the weakest possible and

hence, the critical Hopf bifurcation value is very low: it is a stable bifurcation. On

the other hand, when ΩRT is an even multiple of π, this competition is the strongest

possible, and the critical Hopf bifurcation value is quite high: it is here an unsta-

ble bifurcation. When γ is further increased, the interval of periodic oscillations is

followed in the both cases by a two-frequency quasiperiodic regime after a second

Hopf bifurcation (2nd HB). This bifurcation sequence is universal for ECSLs, even

though the critical bifurcation values are different for each eigenmode. For all the

related numerical simulations, we have taken Lext = 15 cm for the stable bifurcation

and Lext = 12 cm for the unstable one, so that we have found the Hopf bifurcation

values couple of rext to be respectively (0.34; 0.89) for the stable bifurcation regime,

and (1.04; 1.54) for the unstable case (in units of %). These Hopf bifurcations are

indicated on figures 23, 24 and 25 by vertical solid lines. Also note that the maximum

synchronization error we have tolerated for the stability basins is 1%.

As it can be seen in figures 23a and 23b, the boundaries of the synchronization

basin qualitatively fit to our analytic study. Effectively, a maximal rext value is
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Figure 23: Synchronization basins for ECSLs. The dark zone corresponds to the
synchronization basin. a) Stable bifurcation case; b) Unstable bifurcation case.

observed, as well as the band shape around the maximal stability diagonal rext = kcp

(we remind that γ and K are respectively proportional to rext and kcp).

The stability is mostly affected along the diagonal: therefore, we introduce a new

variable

qd =

√
r2
ext + k2

cp

2
, (138)

which is the curvilinear coordinate along the diagonal segment rext = kcp. Hence, since

qd is meant to be simultaneously equal to rext and kcp, varying qd implies varying the

feedback rate γ and the coupling rate K at the same time.

In figures 24a and 24b, we have plotted <[Λ1] as a function of qd. It appears

that for the stable bifurcation, the Brown-Rulkov technique foresees synchronization

for very weak qd . As qd increases, <[Λ1] becomes positive and intermittently drops

below 0 for qd > 1.79. Nevertheless, synchronization can not be regained in that case

because the second stability requirement is no more respected: qd (here corresponding

to γ) is then too large and (−<[Λ1]) too low to satisfy the inequality (135). For the

unstable bifurcation, synchronization for very weak feedback is also guaranteed.

Globally, the Brown-Rulkov technique leads to interesting results, but unfortu-

nately, it is striking that the consequent stability criteria are overly strong. For

example, they fail to foresee stability within the chaotic range, which is however the

most interesting. Nevertheless, we can circumvent this deficiency by diagonalizing

H with its related sub-Lyapunov exponents λ1 ≥ λ2 ≥ λ3, (which are obtained re-

gardless of the delay), rather than A with the eigenvalues <[Λ] in the Brown-Rulkov

method. The resulting stability criteria thereby loose their mathematical rigor but,
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Figure 24: Variation of <[Λ1] along the diagonal rext = kcp. a) Stable bifurcation
case; b) Unstable bifurcation case.

and this is the most important, they still provide necessary conditions for synchro-

nization to occur. Proceeding in that way, the three stability criteria (133), (135) and

(137) degenerate into two which are

−λ1 > 0 , (139)

and

γ −
(

−λ1

〈‖L−1GL‖〉

)
< K < γ +

(
−λ1

〈‖L−1GL‖〉

)
, (140)

where L is the transfer matrix from H to its diagonal counterpart. Equation (139)

replaces both equations (133) and (135), and then intrinsically contains the upper

limitation of γ. Moreover, it exactly corresponds to the well-known standard stability

condition. On the other hand, equation (140) stands for equation (137) with the same

geometrical meaning.

Figures 25a and 25b display the variations of λ1 as a function of qd , and it clearly

appears that the new set of stability criteria (139) and (140) more accurately fit

with the numerical boundaries of the synchronization basin. Equation (139) decides

the stability of the synchronization along the diagonal, while equation (140) does

the same for the transverse direction. Effectively, it appears that as qd is increased

(along the diagonal), the synchronization is stable when λ1 is negative, while in the

perpendicular direction, the width of the basin varies accordingly to |λ1|, i.e., the

basin is larger as |λ1| is greater. Therefore, one can conclude (even though it is not

new) that the synchronization is optimized when λ1 is the most negative possible.
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Figure 25: Variation of λ1 along the diagonal rext = kcp. a) Stable bifurcation case;
b) Unstable bifurcation case.

3.4.3 Influence of parameter mismatch

If as in the case of CMSLs we consider the various CMSLs parameters ψi and their

corresponding parameter mismatches δψi, the deviation vector can be expressed at a

linear approximation under the integral form

w(t) = [Θ(t)Θ−1(t0)] ·w(t0) +
∫ t

t0

[
[Θ(t)Θ−1(ξ)] ·

∑
i

∂F(x,xτ , ψ)

∂ψi

δψi

]
dξ , (141)

where the principal matrix function Θ(t) obeys to

Θ̇ = H(x,xτ ) ·Θ + (γ −K)G(x,xτ ) ·Θτ . (142)

As earlier noticed, the first term in equation (141) is a transient component which

asymptotically converges to 0 within the stability basin, and the second term fully

defines the synchronization error due to parameter mismatch. Further analysis would

lead to the conclusion that the synchronization error is roughly proportional to the

mismatches and inversely proportional to the sub-Lyapunov exponents. Figures 26a

and 26b confirm this argumentation, as it can be seen that the synchronization error

inversely follows the variations of λ1, and increases accordingly with the parameter

mismatch. For example, in the stable bifurcation case, the variations of ‖w‖max have

approximately the same qualitative variations (note the jumps around the Hopf bi-

furcations), so that we can conclude that owing to the high |λ1|, the slave ECSL still

follow the master even through bifurcations. On the other hand, the same remarks

can be made for the unstable bifurcation case in the first stability interval. Neverthe-

less in that case, when the mismatch increases, the second synchronization interval

which is in fact weakly stable does progressively vanish.
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Figure 26: Influence of parameter mismatch in ECSLs. The global mismatch between
master and slave lasers has been successively set to 1%, 5% and 10%. a) Stable
bifurcation case; b) Unstable bifurcation case.

3.5 Conclusion

We have performed the stability analysis for the synchronization of chaotic semicon-

ductor lasers, either subjected to ultra-high frequency current modulation or optical

external feedback.

For CMSLs, we have used our conventional approach which has resumed the sta-

bility study to a Floquet problem. Hence, we have been able to explain the occurrence

of instability intervals when the parameters and/or the coupling strength are varied.

For the case of ECSLs, the Brown-Rulkov technique has provided stability constraints

which have enabled us to foresee the shape of the synchronization basin.

In both cases, the influence of parameter mismatch on the quality of the synchro-

nization has been investigated, and the underlying influence of (Hopf) bifurcations

has been investigated. The next chapter will be entirely devoted to the exploitation

of these results in view of cryptography and switching applications.
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CHAPTER IV

APPLICATION TO CRYPTOGRAPHY AND

TO SWITCHING IN OPTICAL-FIBER

TELECOMMUNICATION NETWORKS

4.1 Introduction

The principal focus of this last chapter is the application of laser chaos to cryptography

and switching in optical-fiber networks.

We first present a brief overview of semiconductor lasers physics, laying particular

emphasis on the important role they play in optical communications systems. Then,

unidirectional chaos synchronization of semiconductor lasers will be used to perform

the encryption of digital signals in these optical-fiber networks. Finally, we will show

that cluster synchronization of such lasers can in principle be used to switch different

chaos-secured work-stations in a multi-user configuration.

4.2 Semiconductor lasers in optical telecommuni-

cation systems

In modern telecommunication systems, information is carried by electromagnetic

waves whose frequencies can vary from few megahertz to hundreds of terahertz.

The term optical communications is reserved for telecommunication systems where

the electromagnetic wave (or carrier) has a frequency belonging to the visible or

near-infrared range of the electromagnetic spectrum (∼ 100 THz, or equivalently,

λ ∼ 1µm). It is said that optical communications systems belong to the lightwave

technology, by opposition to the microwave technology which corresponds to radio-

communications (carrier frequencies of ∼ 1 GHz). The principal advantage of light-

wave technology systems is that they can easily transmit information at 10 Gbits/s

(and even at up to 40 Gbits/s), while their microwave counterpart are generally 100

times slower [69, 76].

In general, independently of its initial format (voice, image, data), any information
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to be transmitted should first be digitalized, that is, converted into a string of binary

digits, or bits. After digitalization, the binary signal is encoded within the optical

carrier though a process which is referred to as shift-keying. An optical communication

system is said to be coherent in the case of field shift-keying (amplitude, phase,

frequence), and it is said to be incoherent in the case of intensity shift-keying.

Transmission in lightwave technology relies on guided propagation of light in low-

loss optical fibers. Therefore, the information-bearing optical carrier is launched

within an optical fiber whose length can vary from few kilometers to trans-oceanic

distances. To minimize the detrimental effects of power attenuation and chromatic

dispersion, the transmitters in optical fibers networks should emit a high-power and

quasi-monochromatic light. Owing to the inherent properties attached to their co-

herent output radiation, semiconductor lasers fulfill these requirements in the visible

and near-infrared ranges, so that they have logically been adopted as conventional

transmitters in optical communication systems.

It is notorious that the on-going information age, with millions of computers

interconnected by telecommunication systems, has been essentially powered by the

association of microelectronics and lightwave technology.

4.3 Application of complete synchronization to cryp-

tography in optical-fiber networks

4.3.1 Chaos cryptography

The most important application of chaos synchronization is cryptography [77, 78].

A decisive breakthrough in the topic of chaos cryptography was achieved by

Cuomo and Oppenheim in 1993 [79], when they demonstrated experimentally (with

a couple of chaotic Lorenz electronic circuits) that the unpredictability of chaotic os-

cillations can be used to encrypt information-bearing signals, while their determinism

–materialized by synchronization– can be used to decrypt them [80, 81, 82].

To illustrate the mathematical backbone of chaos cryptography theory, let us

suppose that we aim to encrypt an information carried by the signal m(t).

There are two groups of chaos-encryption techniques. On the one hand, we have

the group of internal modulation schemes, which can be represented under the

following generic form

ẋ = F [x,m(t)]
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˙̃x = F̃ [x̃,x] with F̃[x̃, x̃] ≡ F[x̃, 0] . (143)

Here, the message m(t) is assumed to be small relatively to the norm ‖x(t)‖ of the

master vector state. However, even though x is still chaotic, it is imperceptibly in-

fluenced by the small message m(t) through a chaotic mixing ruled by the flow F:

this is why these encryption schemes are referred to as internal. Therefore, since the

master system x carries and encrypts the information within its unpredictable and

apparently random waveform, it is referred to as the emitter in the chaos cryptog-

raphy terminology. Decryption is achieved by synchronizing an identical system x̃,

referred to as the receiver, to the emitter, so that the deviation vector w = x̃ − x

obeys

ẇ = −m(t)

[
∂F̃

∂m

]
m=0

+

[
∂F̃

∂x̃

]
w=0

·w︸ ︷︷ ︸
decays to 0

. (144)

If x and x̃ do synchronize when m(t) ≡ 0, the sub-Lyapunov exponents are negative,

the second term of equation (144) decays to 0. Therefore, the deviation vector is

now proportional to the message and enables its extraction. In other words, all the

information contained in the signal m(t) can now be obtained through w, that is,

just by making a substraction between the receiver and emitter state vectors. Under

certain conditions which tightly depend on the flow F, an appropriate processing can

enable a proper extraction of the message m(t) through equation (144).

On the other hand, we have external modulation schemes, which can be written

under the form

ẋ = F[x]

˙̃x = F̃ [x̃, f(x,m(t))] with F̃ [x̃, f(x̃, 0)] ≡ F̃ [x̃, x̃] ≡ F[x̃] . (145)

In this case, the emitter x is not influenced by the message, but the chaotic command

(or coupling) signal is mixed with the message m(t) through the vectorial function f

before injection in the slave system x̃. In this case, the decryption process relies on

ẇ = m(t)

[
∂F̃

∂f

]
m=0

·
[
∂f

∂m

]
m=0

+

[
∂F̃

∂x̃

]
w=0

·w︸ ︷︷ ︸
decays to 0

. (146)

As in the internal modulation case, the second term should vanish owing to synchro-

nization and the first term would allow the recovering of the encrypted message.
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Security in chaos cryptography relies on three important points:

• The message is contained in a small signal which is mixed within a chaotic

waveform of greater size. Security is ensured by the fact that the chaotic waveforms

are unpredictable and apparently random.

• Decryption is theoretically possible only if the receiver is identical, or almost

identical to the emitter. If it is not the case, synchronization does not occur and

the second term of equations (144) and (146) do not decay to zero: it is said that

decryption is performed by “chaos pass filtering”, or in other words, by the

process by which the receiver only recognizes the chaotic masking component of the

incoming information-bearing signal and extracts it to reveal the originally transmit-

ted message.

• The coupling between the emitter and the receiver is ensured by the information-

bearing chaotic signal. Generally, this signal consists of a single component xk of the

emitter state vector x, which is therefore called carrier by analogy to the telecom-

munication engineering technology. Consequently, an eventual eavesdropper (or spy)

trying an unauthorized signal interception would difficultly succeed to decrypt it,

since he would only have a single variable xk amongst the n (or infinity in case of

DDEs) other ones.

It is however impossible to built identical systems experimentally, so that param-

eter mismatches are unavoidable between the emitter and the receiver. Hence, the

quality of synchronization is always degraded as highlighted in the preceeding chapter.

Effectively, when there is parameter mismatch, the second terms of the right hand-

side in equations (119) or (141) should be added in the right hand-side of equations

(144) and (146), thereby impeding a proper recovery of the encrypted message m(t).

Nevertheless, this degradation plays an interesting double role: on the one hand, since

an authorized receiver will anyway always suffer a small parameter mismatch, it is of

extreme importance that this small imperfection does not impede an efficient decryp-

tion at the receiver. On the other hand, it is expected that the parameter mismatch

suffered by the unauthorized receiver of an eventual eavesdropper should impede him

to achieve a successful decryption.

4.3.2 Optical chaos cryptography

As earlier highlighted, chaos cryptography has emerged as the most efficient and the

most promising emerging technology attached to chaos synchronization. In particu-

lar, since the emitters and receivers in modern optical telecommunications networks
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are semiconductor lasers, the study of their synchronization in view of cryptographic

applications has turned out to be a leading topic in the nonlinear dynamics litera-

ture. We aim here to achieve the encryption and decryption of digital messages with

semiconductor lasers in an hyperchaotic regime.

Optical chaos communication schemes can schematically be represented as in fig-

ure 27. Initially, information proceeding from multimedia sources (telephone, inter-

net, etc...) are processed and multiplexed in order to generate a unique binary string.

This binary information is encrypted through mixing with an (hyper-)chaotic laser

radiation. After propagation in the optical fiber channel, synchronization is achieved

with a receiver laser enslaved to the emitter one, and the encrypted information is

thereby extracted. Finally, further processing and demultiplexing operations enable

to restore the the initial information which has therefore been securely transfered.

To illustrate the mechanism of optical chaos communications, we will consider a non-

return-to-zero (NRZ) digital message m(t) which can only take the values 0 or 1, and

secured transmission of this message with hyperchaotic external-cavity semiconductor

lasers will be performed by two different encryption techniques.

The first technique is an internal modulation scheme referred to in the literature

as Chaos Shift-Keying (CSK). It consists in modulating a parameter of the master

laser accordingly to the digital message to encrypt. Generally, the injection current I

is an easily-tuneable parameter which is perfectly suitable for such a purpose. There-

fore, CSK encryption within that frame can be performed by replacing the injection

current I by the modulated one I · (1− ρm(t)) in the emitter laser (master equation

123). Here, ρ is a dimensionless coefficient referred to as the modulation index of the

encryption, in the sense that it defines the amplitude I ·ρm(t) of the encrypted signal

relatively to the amplitude I of the carrier.

The security of the encrypted message can only be guaranteed when ρ is very

small (less that 0.05, or 5%). Effectively, when ρ is small, the injection current does

not vary significantly (because p ' p · (1 − ρ) ), so that the carrier E is not visibly

modified by the encrypted message. Here, decryption at the level of the receiver will

rely on our study of parameter mismatch: when a 0 is encrypted at the emitter,

the master and the receiver are perfectly matched and the synchronization error is

0, whereas when a 1 is encrypted at the emitter, the master and the receiver are

mismatched (injection current I · (1−ρ) at the emitter and I at the receiver), so that

the synchronization error is different from 0. Consequently, the 0/1 sequence of the

initial message are recovered by a synchronization/desynchronization sequence at the
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Figure 27: Schematic representation of an optical chaos communication system.
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receiver.

The left column of figure 28 displays the numerical simulation corresponding to

CSK encryption. The first figure displays the message m(t) to encrypt, the sec-

ond shows the emitter E containing the message, the third displays the receiver Ẽ,

and the last figure shows the decrypted message Ẽ − E. It can be seen that ow-

ing to the very small modulation index of encryption (1%), the message can not be

identified in the carrier E. At the decryption level, one can note that the synchro-

nization/desynchronization sequence perfectly fits with the encrypted message and

thereby enables its recovery.

The second encryption technique we consider is Chaos Modulation (CMO), and

it is an external modulation scheme. In this case, the parameters of both master and

slave lasers are still matched, but an external field modulator (a Mach-Zehnder, for

example) does modify the amplitude of the emitter before it is sent and coupled to

the receiver. Hence, CMO encryption is achieved by replacing E by E · (1− ρm(t)) in

the slave laser equation, where ρ is still the modulation index of the encryption.

As in CSK, ρ has to be small to ensure security. When a 0 is encrypted, the slave

does synchronize with the incoming field E and does not generate any synchronization

error. On the other hand, when a 1 is encrypted, the slave can not synchronize with

E · (1−ρ) because it does not fit with its proper dynamics: a desynchronization burst

is therefore observed.

In the right column of figure 28, it is demonstrated that CMO also enables secure

transmission in optical fiber networks. The figures are displayed as for CSK, and the

last one presents the correspondence between the encrypted and decrypted messages.

4.3.3 Reliability and efficiency of optical chaos cryptography

The reliability and efficiency of optical cryptography depends on a certain number of

key-parameters. The first and most important one is parameter mismatch as earlier

emphasized, in the sense that the decryption at the receiver critically depends on the

accuracy of tracking between the master and slave semiconductor lasers [83]. Since

real lasers do not strictly obey simple rate equations as the Lang-Kobayashi model,

matching is a very difficult task in practice. However, the fact that two lasers grown

in different wafers can hardly synchronize is a good point for chaos cryptography.

Another important issue is the noise produced in the lasers or in the communi-

cation channel. Such noises deteriorate the accuracy of the synchronization, and can
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Figure 28: The different steps of optical chaos encryption.
The left column displays the CSK encryption scheme, and the right column the CMO.
In both cases, the encryption modulation index has been taken as ρ = 1% . The
parameters correspond to those of chapter II for a stable bifurcation, with the specific
feedback and coupling rates of rext = kcp = 1.3% .
The first row displays the binary message to be encrypted.
The second row shows the emitter timetraces.
The third shows the receiver timetraces.
The last row shows the decrypted message, along with the encrypted one in dashed
line to facilitate the comparison. It can clearly be seen that the bits 1 are decrypted
as chaotic bursts, while the bits 0 are identified by the absence of such bursts.

85



even destabilize the synchronization manifold.

Also crucial is the issue of dispersion during propagation in the optical-fiber

communication link. The output radiation of a solitary laser has a linewidth of only

few Mega-Hertz, so that it practically does not suffer dispersion while propagating in

the fiber. However, a chaotic laser has a broader linewidth (few Giga-Hertz), and is

therefore more sensitive to dispersion. The consequence of this linewidth broadening

in (hyper-)chaotic semiconductor lasers is that fiber communication links should be

significantly shorter than conventional ones [35].

Chaos cryptography may be efficient only if the bit-rate of the message to secure

is 2 or 3 times smaller than the bandwidth of chaos. Examples of satisfying exper-

imental encryption/decryption are numerous [36, 84, 85, 88, 89], but since modern

optical communications sometimes require quite high bit-rates (> 1 Gb/s), several re-

search groups have tried to fulfill that constraining requirement. Some of them have

yet reported successful experimental encryption and decryption with chaotic semi-

conductor lasers at up to 2.5 Gb/s [90], and presently, experimentalists are trying to

overstep the important commercial threshold of 10 Gb/s, so that current a wide-open

issue is to find suitable hyperchaotic laser generators for that purpose.

Finally, a crucial issue: the modulation index of the encryption. Security can

be ensured only when this parameter is very small. Failure to fulfill this requirement

would represent a drawback and an open door for eavesdroppers attacks. Along that

line, several theoretical works have yet demonstrated that in some cases, chaos cryp-

tography may be vulnerable to unauthorized deciphering [91, 92, 93, 94, 95, 96, 97, 98].

But more than the modulation index of the encryption, security strongly relies on the

high complexity and unpredictability of the chaotic carriers. As explained in the first

chapter, the complexity and the unpredictability of a chaotic variable can be evaluated

in terms of Kaplan-Yorke dimension and Kolmogorov-Sinäı entropy respectively, and

encryption should be preferably performed with parameters for which these indicators

are the highest possible.

4.3.4 Electronic and microwave chaos cryptography

Beside the possibility of optical chaos cryptography, current investigations are led

worldwide to apply chaos cryptography techniques to situations where the message

to encrypt is physically represented by a low-frequency electric variable or an radio-

frequency microwave. Effectively, encryption of electronic signals may find a direct

and interesting application for security in cupper-wire telecommunication networks,

where for example voice is carried in the base-band 0-4 kHz. For that purpose, one
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may directly use low dimensional chaotic oscillators with Duffing or Van der Pol

nonlinearities [99]. In that context, the results we have obtained in Chapters I and

II may directly be used for cryptography. Furthermore, a decisive breakthough has

been achieved along the line of the application-oriented miniaturization of chaotic

circuits in 1993, when a 2.4 µm CMOS prototype of the chaotic Chua’s circuit was

successfully built and tested. The corresponding chip only occupied a surface of 0.35

mm2, with a power consumption of 1.6 mW under ±2.5 V [100].

Investigations are also being developed for microwave applications [101], and the

eventuality of using band-pass chaos to secure mobile telecommunications has yet

reached the stage of experimentation.

4.4 Application of cluster synchronization to switch-

ing in chaos-secured networks

Several key-issues remain opened as far as the practical set-up of chaos-securing

schemes is concerned. The main problem in chaos-secured networks is that some

informations may need to be encoded (because they require privacy) while others

do not (for example, signalization data, alert and emergency signals, etc...). In the

same spirit, the network can be shared amongst users which may need to work in

separated but secured working-groups, i.e., the network configuration should allow

to each user a restricted mutual visibility with only a few others. In both cases, the

well-known securing scheme where all the emitters and receivers are uniformly syn-

chronous is no more convenient as it fails to satisfy the specific needs inherent to a

realistic communication network.

To take into account these various configurations, several distinct transmission

channels have to be considered and therefore, switching problems arise. Obviously,

the conventional automatic switching techniques are perfectly suited for algorithmic-

key encryption, but unless a (potentially decipherable) buffer software system is set

up on purpose, they do not fit with the chaos-securing scheme. We aim here to

design a network of coupled chaotic semiconductor lasers, where the switching will be

ensured through cluster synchronization. Assimilating the various cluster patterns to

the different switching states of the communication system, we define how the network

can be switched from one state to another depending on the type of coupling, the

number of oscillators and the boundary conditions. To illustrate our approach, we

will consider a network of coupled current-modulated semiconductor lasers, because
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the stability of the clusters resulting from their coupling, as well as the bifurcations

between them can topologically be analyzed through the Strutt Diagram.

4.4.1 Cluster synchronization in coupled chaotic semiconductor lasers

Different methods can be set up to couple the CMSLs. However, we require the

coupling to be shift-invariant in the study, so that it does not induce any complicat-

ing vertical hierarchy in the switching architecture. The most common examples of

shift-invariant coupling are the global (all-to-all) and the nearest-neighbor (diffusive)

couplings. For the sake of generality, we will here simultaneously consider the both.

This will thereby provide two control parameters (namely the two related coupling

strengths) and consequently enable to profit from the specific and distinct properties

of these two types of coupling. Moreover, in case of necessity, one can simply set one

coefficient to zero. Physically, we assume that the couplings are carried out through

the injection currents, i.e. we assume that currents proportional to suitable linear

combinations of the output electromagnetic powers are electronically fed back in the

laser diodes. The practical advantage of this coupling scheme is that it can perfectly

fit with the micro-chip structure of the CMSLs. Considering a finite set of N chaotic

laser diodes, the dynamics of each item is therefore subjected to

ṗk =

[
(1 + 2nk)

1 + σpk

− 1

]
pk + β(nk + Φ),

ṅk = ε

{
i0(1 +m sin(ωt)) +G

N∑
j=1

(pj − pk)

N
+K(pk+1 − 2pk + pk−1)

−nk −
(1 + 2nk)

1 + σpk

pk

}
, (147)

where G and K are the global and diffusive scalar coupling parameters respectively,

while k = 1, ..., N . Naturally, the state variables pk and nk obey to the shift-invariance

condition (pk+N , nk+N) ≡ (pk, nk). As in the preceeding chapter, we can rewrite the

coupled set of evolution equations under the following convenient form

p̈k + ε(1 + 2pk)ṗk −
ṗk

2

pk

+2ε

i0(1 +m sin(ωt)) +G
N∑

j=1

(pj − pk)

N
+K(pk+1 − 2pk + pk−1)− pk

 pk = 0 .

(148)

Then, the linearization of equation (148) around the states pk yields

ξ̈k +

[
ε(1 + 2pk)−

2ṗk

pk

]
ξ̇k
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+

{
2ε (ṗk + 2pk − i0(1 +m sin(ωt))) +

ṗ2
k

p2
k

+G
N∑

j=1

(pj − pk)

N
+K(pk+1 − 2pk + pk−1)

}
ξk

= 2εpk

G N∑
j=1

(ξj − ξk)

N
+K(ξk+1 − 2ξk + ξk−1)

 , (149)

where ξk is the first order perturbation of pk. In the first approximation, we can

replace the distinct pk, pk+1 and pk−1 variables by a unique variable p which represents

the dynamics of an uncoupled CMSL. It should be emphasized that this mathematical

short-cut is supported by the shift-invariance symmetry, which does not allow any

discrimination or particularization between the coupled oscillators. Moreover, since

for the chosen parameters we are in the chaotic regime, numerical simulations do

not show evidence of localized (soliton-like) nonlinear coherent excitations in the

system. Therefore, we can uncouple equations (149) through a Fourier transform

diagonalization [16, 17], so that they can be rewritten as

ζ̈s +

[
ε(1 + 2p)− 2ṗ

p

]
ζ̇s

+

[
2ε
(
ṗ+

(
2 + (1− δs,0)G+ 4K sin2

(
πs

N

))
p− i0(1 +m sin(ωt))

)
+
ṗ2

p2

]
ζs = 0

(150)

where the ζs are the Fourier modes, and s = 0, ..., N − 1.

At this point, the main qualitative distinction between the global and diffusive

coupling appears: for the first one, all the transverse modes s 6= 0 are degenerated

(since they are equally independent of s), while the second allows a discrete eigenfre-

quency spectrum. As usual, the longitudinal mode ζ0 is independent of the coupling

parameters G and K, and therefore stands for an uncoupled CMSL. The stability of

the Fourier modes is also related to the Mathieu equation with the coefficients

µs =
4

ω2

[
2ε
[(

2 + (1− δs,0)G+ 4K sin2
(
πs

N

))
A0 − i0

]
− λ2

4

]

αs =
4ε

ω2

{[(
2 + (1− δs,0)G+ 4K sin2

(
πs

N

))
A1

]2

+
[(

2 + (1− δs,0)G+ 4K sin2
(
πs

N

))
B1 −mi0

]2 } 1
2

. (151)

As for the lattice of SWDOs, the traveling motion of the independent Fourier

modes induces the Hopf bifurcations between the various possible dynamical states
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of the semiconductor lasers which are instability, spatiotemporal chaos, cluster syn-

chronization and complete synchronization. The number ℵ of cluster states is also

determined as in equation (87), and each of these clusters can be characterized by a

discrete spatial-order function Z defined as

Z =

∑N−1
k=1

∑N
j>k δ [limt→+∞ |pk − pj|]∑N−1

k=1 k
=

2

N(N − 1)

N−1∑
k=1

N∑
j>k

δ
[

lim
t→+∞

|pk − pj|
]
, (152)

where δ is the Dirac function (i.e., δ(x) = 1 if x = 0 and δ(x) = 0 otherwise).

Therefore, we should have Z = 0 in the regime of spatiotemporal chaos (complete

spatial disorder), Z = 1 in case of full synchronization (complete spatial order), and

0 < Z < 1 for all the cluster synchronization states (partial spatial order). Note

that the spatial order function is a ratio, and can always be expressed as an integer

multiple of 2/N(N − 1).

When G and K tend to +∞, the system is unstable and Z is indefinite. From

equation (150), one can deduce that the stability (either linear or nonlinear) is in the

first approximation ensured around the first π-periodic boundary provided thatG+ 4K > −1 if N is even

G+ 4K sin2
(

N−1
2N

π
)
> −1 if N is odd

, N ≥ 2 . (153)

The above equation is obviously fulfilled when G and K are supposed to be positive.

However, that boundary equation may be useful in the case of negative couplings

(which still fit with our optoelectronic coupling scheme).

Starting from that threshold, the Z function is definite. The regime of spatiotem-

poral chaos is first observed (Z = 0), and then Z begins to vary between 0 and 1,

thereby indicating the cluster synchronization which can be witnessed until the small-

est Fourier mode (s = 1) oversteps its last Hopf bifurcation. This means that cluster

synchronization can occur only if the subsequent inequality is fulfilled

G+ 4K sin2
(
π

N

)
< Ψ , (154)

where Ψ is a constant numerical value which depends on the chosen system param-

eters. Above that last threshold value, complete synchronization (with Z = 1) is

observed. Numerical simulations performed with a varying number of chaotic laser

diodes have proven the boundary conditions (153) and (154) to be valid, and they have

also enabled to derive that Ψ ≈ 2.3. Therefore, we can conclude that the absolute

values of G and K have to be upper-limited if one wants the cluster synchronization

states to emerge.
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Figure 29: Strutt diagram for a lattice of four coupled CMSLs. On the upper-most
one, which correspond to the case we are studying, the mode distribution of the abab
cluster synchronization state for N = 4 has been represented.

4.4.2 Numerical simulations and application to switching

For the numerical simulations, we focused again on the case N = 4. Beside the states

of spatiotemporal chaos (abcd) and complete synchronization (aaaa), the single cluster

pattern that should be observed is abab (with Z = 2/6). We have yet explained that

the second cluster state aabb that is predicted from equation (87) can not be observed

because it does not fit with the shift-invariance symmetry. It is however replaced by

a correlated state which can be identified with a “periodic rotating wave” in the

phase space when the coupling locks the nonlinear oscillators to a common unstable

periodic orbit. On figure 29, we have schematically represented the Fourier modes of

the N = 4 case. The left-most point corresponds to the longitudinal mode s = 0,

while the two remaining ones are the transverse modes. Note that however, the middle

transverse-mode-point is double-degenerated, since it corresponds to both s = 1 and

s = 3, while the right-most mode is non-degenerated and corresponds to s = 2. The

mode-distribution of the figure corresponds to a cluster synchronization state abab.

As we have earlier noted, the cluster patterns can be assimilated to switching states in

a chaos-secured network. For example, if we take the abab cluster state, two secured

and exclusive groups of working-stations can be considered, which are labeled a (first

and third chaotic CMSL) and b (second and fourth ones).

On figure 30, the spatial-order function Z has been numerically represented as a
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Figure 30: Variation of Z as a function of G. a) K = 0; b) K = 0.5.

Figure 31: Variation of Z as a function of K. a) G = 0; b) G = 1.0.

function of the coupling strengths G and K. On figure 30a, G is varied with K = 0.

It appears that Z is either equal to 0 or 1, i.e. the cluster state does never emerge

at all. This can be easily explained from our analytical study. When K = 0, all the

transverse-modes degenerate into a single one which may therefore be either in the

nonlinear buffer zone or in the linear stability area of the Strutt diagram. Normally,

complete synchronization should be witnessed for G > Ψ, but the unstable invariant

sets embedded within the Strutt diagram can degrade the stability of the complete

synchronization manifold. When K is set to 0.5 (figure 30b), the degeneracy of

the single representative transverse mode is destroyed. Consequently, the resulting

distinct modes can be distributed between the nonlinearly and linearly stable areas

of the Strutt diagram, permitting the emergence of the clustering phenomenon. One

can also note that the complete synchronization state occurs sooner when K 6= 0, in

accordance with equation (154).

The variations of K have been represented in figures 31a (G = 0) and 31b (G =
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1.0). In the two figures, cluster synchronization is possible since the full degeneracy of

the transverse modes is impossible as soon as K 6= 0. For G = 0, we obtain the initial

range of spatiotemporal chaos, followed by a short interval of cluster synchronization.

When K is further increased, Z alternates between 0 and 1 as on figures 30a and

30b. Beyond K = Ψ/2, complete synchronization is observed as predicted by (154).

On figure 31b, this pattern is qualitatively shifted from right to left because we have

directly set G to 1.0, and hence complete synchronization is obtained at K = 0. Note

that the perturbations induced by the unstable invariant sets are also present here,

at approximately a half-value of those in figure 30b.

Globally, the numerical simulations we have performed confirms our analytic ap-

proach. However, they have shed some light on a marginal but important phenomenon

which originates from the various approximations we have assumed for mathematical

commodity. Effectively, one can notice on figure 31a the signature of two clusters:

the conventional and expected abab (Z = 2/6) and what a phase portrait analysis

has revealed to be the abcb cluster synchronization state (with Z = 1/6). In fact, this

cluster state originates from the interplay between the higher-harmonic and nonlinear

parametric terms that have been discarded in the Mathieu equation on the one hand,

and from the simplifications we have assumed before the Fourier transform diago-

nalization on the other. If we had considered these terms, we would have obtained

a complicated stability map resulting from the inextricable combination of different

Strutt diagrams with different scales. Therefore, one can expect that for higher N

values, a greater number of clusters than ℵ would probably be observed. However,

these cluster states generally emerge only within a restricted set of very small com-

pact intervals.

4.5 Conclusion

We have addressed the issue of chaos cryptography and chaos switching in optical-

fiber networks in this chapter. Chaos masking and chaos modulation have been used

to demonstrate secure optical chaos communication with synchronized ECSLs. We

have also shown that the phenomenon of cluster synchronization in coupled CMSLs

can be used to ensure the switching in chaos-secured networks, and the Strutt dia-

gram formalism has enabled us to gain an analytic understanding of such a switching

procedure.
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GENERAL CONCLUSION

IN this thesis, we have led a theoretical study of synchronization and pattern for-

mation in lattices of chaotic oscillators, and we have investigated the related ap-

plications in the field of optical communications with semiconductor lasers.

We have first undertaken an optimization and stability analysis of continuous

feedback synchronization. For that purpose, Floquet theory has been used to explain

the occurrence of (linear and nonlinear) stability intervals, as well as the possible

bifurcations to instability. Our results have been geometrically interpreted within

the Strutt diagram formalism, and numerical simulations have been performed to

confirm the analytical approach. The influence of an eventual delay has also been

analyzed, and it has been found that the coupling delay should match a very precise

resonance constraint in order to allow synchronization. We have also investigated

the conditions under which an optimal continuous feedback chaos control could be

led. We have shown that in the case of external feedback chaos control, there is

a critical value of the feedback coefficient under which the control is not possible

for a given precision, and that there is another critical value of the same feedback

coefficient above which the control can not be led faster. These critical value have

been evaluated analytically, with an excellent concordance relatively to the numerical

simulations.

Our analysis has therefore been extended to the study of pattern formation in

one-dimensional lattices of coupled chaotic oscillators. We have investigated the the

different dynamical states of such systems, and Floquet theory successfully explained

how such systems can display spatial coherence while remaining incoherent in the

temporal domain. With the Strutt diagram formalism, it has been possible to under-

stand the intrinsic nature of spatiotemporal chaos, cluster synchronization, standard

correlated states and complete synchronization. A scaling-law has enabled us to de-

duce the stability pattern of the system in the thermodynamic limit. We have also

considered the case of a ring with a local injection, and we have evidenced some hy-

brid dynamical states to which the name of generalized correlated states has been

given.
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We have then focused on the issue of chaos synchronization in coupled semicon-

ductor lasers. Two different systems have been considered. In the first one, chaos is

induced by ultra-high frequency frequency current modulation. We have shown that

when such lasers are opto-electronically coupled, the stability of the synchroniza-

tion manifold could be investigated with our Floquet approach. The occurrence of

desynchronization windows as the coupling coefficient is increased has thereby found

a convincing explanation. In the second system, hyperchaos is generated by external

optical feedback, and the coupling is achieved in a all-optical way. We have general-

ized the Brown-Rulkov theory to delay differential systems, and we have successfully

delimited the corresponding high-quality synchronization basin for the coupling and

feedback parameters.

At last, applications of the above results to cryptography and switching in optical-

fiber networks have been investigated. We have first focused on the issue of optical

chaos cryptography, showing how chaos masking and chaos modulation could satisfy-

ingly ensure the encryption of digital messages in optical communications. Then, we

have studied the phenomena of pattern formation in shift-invariant coupled lattices

of chaotic semiconductor lasers. We have for that purpose defined a discrete spatial-

order function in order to investigate the effect of the various coupling terms in the

collective dynamics of the system. We have also proposed to use the phenomenon of

cluster synchronization to ensure switching in chaos-secured optical communication

systems.

This thesis has also opened interesting perspectives for future investigation.

It would first be interesting to extend our optimization and stability analysis study

of chaos synchronization to other classes of chaotic oscillators, and to other classes

of synchronization schemes. For example, the original Pecora and Carroll method

[10, 11] and the Boccaletti et al. adaptative synchronization schemes [102] can math-

ematically be assimilated to some modified versions of the feedback method we have

considered, the modification being, respectively, an infinite or a periodically updated

coupling coefficient respectively. Hence, if we accordingly modify the analysis we have

developed in our work, interesting conclusions may be drawn for these neighboring

cases. One can also investigate how feeding back more variables (through a feedback

gain matrix) can ameliorate the synchronization conditions. For continuous feedback

chaos control, the strategy we have developed could be generalized to multidimen-

sional systems and to other types of target orbits. Other subjective optimization

criteria can also be considered. For instance, in wire telecommunication systems, the
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feedback term can correspond to an undesirable crosstalk phenomenon: in this case,

the goal to reach would be to keep the coupling as low as possible.

In the field of pattern formation, the study can satisfyingly be extended to other

models of coupled oscillators, provided that they have a relatively strong fondamen-

tal Fourier component, as it is the case for Rössler-like oscillators. It would also be

of great interest to develop the statistical approach of our model in the thermody-

namic limit, and to extend our theoretical study to the related continuous medium

model. More accurate physical and biological models sometimes require to consider

nonlocal couplings [20] or long-range interactions [103]. For these latter cases, in-

teresting new phenomena have yet been observed during numerical simulations, and

are waiting for appropriate analytical explanations. Along that line, a general frame-

work for the study of the synchronization dynamics for nonlinear coupled oscillators

with arbitrary topologies has been defined by Pecora and Carroll in terms of Master

Stability Functions [104]. This approach has further been generalized with the Ger-

shgörin disk theory [105], and a promising research gateway would be to extend our

work accordingly. Our analytic theory can also be used in the context of Josephson

transmission lines. It has yet been demonstrated that Josephson junctions with a

periodically modulated bias current can display a chaotic dynamics [106, 107]. When

diffusely coupled, they constitute a discrete Josephson transmission line where the

local phase difference is subjected to an equation mathematically similar to the one

we have studied in this thesis [108, 109].

The synchronization of semiconductor lasers in their chaotic regime is still a topic

for which a lot is still to be done. For current modulated lasers, our work has evidenced

a high sensitivity to spectral mismatch. Since spectral distortion is unavoidable in

practice, it is of great importance to find some compensation techniques able to

counter-balance the detrimental effects induced by this problem. The synchronization

of external-cavity semiconductor lasers offers much more to explore. For example,

a logic continuation of our work could be the stability study in the general (non-

degenerated) double-delay configuration. Numerical and experimental studies have

also shown that the so-called “synchronous solution” for synchronization manifold is

much more stable and less sensitive to parameter mismatch than the “anticipated”

solution, and it would be particularly interesting to understand analytically the reason

of such a difference.

At last, in the field of optical chaos cryptography, the era corresponding to theoret-

ical and experimental demonstrations of feasibility has almost ended. The point now
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is to try to fulfill the different requirements and protocols of current optical commu-

nications systems, and to strengthen the reliability of these hardware cryptographic

systems. Important theoretical efforts also have to be invested in the quantifica-

tion of the security provided by these cryptosystems. Along that line, interesting

results have yet been obtained for an all-numerical chaos cryptography experiment

in a local-area network [110]. From our perspective, switching in chaos-secured net-

work is also a problem which should gather much more attention. Even though we

have demonstrated the possibility of cluster synchronization only for mutual coupling

configurations, our point of view is that such behavior in unidirectionally coupled

systems could be an interesting solution.

Beyond the scope of the topics investigated in our work, we expect that this

thesis has contributed to present a faithful image of chaos: a fascinating and inter-

disciplinary theory, where fundamental issues and application opportunities are still

to be explored.

97



APPENDIX

THE HILL DETERMINANT

Let us consider the canonical Mathieu equation

d2η

dτ 2
+ [µ+ 2α cos(2τ − 2ϕ)] η = 0 .

Its solution can be written under the form [54, 55, 56]

η(τ) =
+∞∑

n=−∞
φn e

(θ+2in)τ .

where θ is a complex number, and the φn are the Fourier coefficients of a π-periodic

function φ(τ). Inserting the explicit expansion of η(τ) into the Mathieu equation, one

may obtain

+∞∑
n=−∞

{ [
µ+ (θ + 2in)2

]
+ α

[
e(2τ+2iϕ) + e(2τ−2iϕ)

] }
φn = 0 ,

or equivalently,

+∞∑
n=−∞

{ [
µ+ (θ + 2in)2

]
φn + α

[
e2iϕφn−1 + e−2iϕφn+1

] }
= 0 .

For this equality to be fulfilled, we impose to each term of the sum to be equal to

zero, so that we split a single equation into an infinite set of equations. Concretely,

if we consider φn as a component of an infinite-dimensional vector (with n ∈ Z), we

are led to

+∞∑
n=−∞

{ [
µ+ (θ + 2in)2

]
δm,n + α

[
e2iϕδm,n−1 + e−2iϕδm,n+1

] }
φn = 0

for m = −∞, · · · ,+∞ ,

that is,

+∞∑
n=−∞

Hm,n φn = 0 for m = −∞, · · · ,+∞

where Hm,n is an element of an infinite-dimensional square-matrix, and δm,n is the

usual Kronecker symbol.
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We are therefore in front of an infinite and homogeneous set of linear algebraic

equations, which may have solutions if and only if the associated determinant does

vanish, that is, when

‖Hm,n‖ = 0 .

The above determinant is referred to as the Hill determinant in the literature. It is

known from linear algebra that multiplicating a row of a matrix whose determinant

is equal to zero yields a matrix whose determinant is also zero. Therefore, to ensure

the convergence of the Hill determinant, it is convenient to divide each row of order

m by [µ− (2m)2], so that the Hill determinant can be explicitly rewritten as

∆(θ, µ, α) =

∥∥∥∥∥(µ+ (θ + 2in)2) δm,n + α (e2iϕδm,n−1 + e−2iϕδm,n+1)

µ− (2m)2

∥∥∥∥∥ = 0 ,

and further decomposed as [56, 111]

∆(θ, µ, α) = ∆(0, µ, α)−
sin2

(
1
2
iπθ

)
sin2

(
1
2
π
√
µ
) .

The principal advantage of the latter decomposition is that it enables the qualitative

delimitation of the areas of linear stability and linear instability.

99



PUBLICATIONS OF THE THESIS

I. PUBLICATIONS IN INTERNATIONAL REFEREED JOURNALS

• Stability and chaos control in electrostatic transducers,

Y. Chembo Kouomou and P. Woafo, Physica Scripta 62, 255 (2000).

• Stability and optimization of chaos synchronization through feedback

coupling with delay,

Y. Chembo Kouomou and P. Woafo, Physics Letters A 298, 18 (2002).

• Stability and optimal parameters for continuous feedback

chaos control,

Y. Chembo Kouomou and P. Woafo, Physical Review E 66, 036205 (2002).

• Generalized correlated states in a ring of coupled nonlinear oscillators

with a local injection,

Y. Chembo Kouomou and P. Woafo, Physical Review E 66, 066201 (2002).

• Optimization and stability analysis for the synchronization

of semiconductor lasers with external optical feedback,

Y. Chembo Kouomou and P. Woafo, Physical Review E 67, 026214 (2003).

• Stability analysis for the synchronization of semiconductor lasers with

ultra-high frequency current modulation,

Y. Chembo Kouomou and P. Woafo, Physics Letters A 308, 381 (2003).

• Transitions from spatiotemporal chaos to cluster and complete

synchronization states in a shift-invariant set of coupled

nonlinear oscillators,

Y. Chembo Kouomou and P. Woafo, Physical Review E 67, 046205 (2003).

• Cluster synchronization in coupled chaotic semiconductor lasers and

application to switching in chaos-secured communication networks,

Y. Chembo Kouomou and P. Woafo, Optics Communications 223, 283 (2003).

• Triple resonant states and chaos control in an electrostatic transducer

with two outputs,

Y. Chembo Kouomou and P. Woafo, Journal of Sound and Vibration 270,

75 (2004).

100



II. CHAPTER OF BOOK

Optimization of chaos synchronization and pattern formation

in a lattice of nonlinear oscillators and semiconductor lasers

Y. Chembo Kouomou and P. Woafo,

Recent Research Developments in Physics 3, 577 (2002).

Edited by Transworld Research Network, Kerala, INDIA.

III. PARTICIPATION TO INTERNATIONAL CONFERENCES

• Fourth “ Edward Bouchet - Abdus Salam Institute” (EBASI)

International Conference on Physics and High Technology,

6-10 August 2001, Cotonou, BENIN.

Y. Chembo Kouomou and P. Woafo,

Synchronization of chaotic systems and application

to secure communications (Oral Presentation, YCK).

• School and Conference on Spatiotemporal Chaos of the “Abdus Salam

International Centre for Theoretical Physics” (ICTP),

8-19 July 2002, Trieste, ITALY.

Y. Chembo Kouomou and P. Woafo,

Analytical study of the transitions from spatiotemporal chaos to cluster

and complete synchronization states in a shift-invariant set of nonlinear

coupled oscillators (Oral Presentation, YCK).

101



REFERENCES

[1] “ An Intelligence which at a given instant could know all the forces of the Nature
and the mutual position between its components, if moreover was vast enough to
submit all these data to analysis, would gather in the same formula the motion
of the greatest bodies of the universe and the motion of the smallest atom: for
such an Intelligence, nothing would be uncertain, and the future, as well as the
past, would be present at His eyes.” , P. S. Laplace, Essai Philosophique sur les
Probabilités (1814).

[2] “If we knew exactly the laws of nature and the situation of the universe at the
initial moment, we could predict exactly the situation of that same universe at
a succeeding moment. But even if it were the case that the natural laws had no
longer any secret for us, we could still only know the initial situation approx-
imately. If that enabled us to predict the succeeding situation with the same
approximation, that is all we require, and we should say that the phenomenon
had been predicted, that it is governed by laws. But it is not always so; it may
happen that small differences in the initial conditions produce very great ones
in the final phenomena. A small error in the former will produce an enormous
error in the latter. Prediction becomes impossible, and we have the fortuitous
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