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Optimization and stability boundaries for the synchronization of semiconductor lasers
with external optical feedback
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We perform a stability and optimization analysis for the synchronization of unidirectionally coupled
external-cavity semiconductor lasers. Using rigorous stability criteria, we qualitatively derive the boundaries of
the high-quality synchronization basin. The underlying influence of Hopf bifurcations on the stability of the
synchronization manifold is also investigated.
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[. INTRODUCTION tion processes. The stability of synchronization can be under-

stood in two distinct ways. From the first point of view,
Synchronization of chaotic systems has been the focus ditability implies indefinite boundedness for the drive and re-
intense research activities in recent yeirs3]. This para- Sponse variables. Within that scheme, synchronization is un-
doxical phenomenon was soon considered as an interestirfgable only when the coupling provokes a sustained growth
candidate to ensure secure telecommunica{idrs). Effec-  to infinity for the state master and/or slave variables. This
tively, one can encode an information-bearing signal into théind of instability is quite grave, because it can cause irre-

output of a chaotic transmitter, while a synchronous receiveY€rsible damage to the coupled drive-response system. It has

identifies the masking chaotic component, which is then exP€en demonstrated that its underlying mechanism is gener-

tracted to reveal the original transmitted message. Sinc@l!Y the parametric resonance induced by the overly domi-

nowadays telecommunication networks require Iarge_nant frequencies of the Fourier spectrum corresponding to

I - . T the master oscillatdr18,19. From the second point of view,
capacity information transmission and ultrafast processlnggtab”i,[y implies rotijstne%s and in that sensep the synchroni-
semiconductor lasers have become indispensable and wi ' '

. . . . . ~Zation is unstable when it is subjected to intermittent desyn-
spread devices, precisely as optoelectronic em'tter'rece'v.%rhronization events, i.e., when the figurative phase point

systems. That is why the chaotic synchronization of semijg ;¢ jikely repelled from the synchronization manifold.

conductor Iasers(laser diodes has currently gathered so This bubbling phenomenon is explained by the fact that
much attentior{4,7-9. _ . some unstable invariant sets for which the largest transverse
Chaos can be generated in laser diodes through eXtemé‘t'Jb-Lyapunov exponent is positive can be embedded within
optical feedback EOF). Indeed, for weak EOF, improved an attractor even when the largest transverse sub-Lyapunov
frequency stability, linewidth narrowing, and noise redUCtionexponent for the attractor as a whole is negafR@—22. It
have been noticed. But as the feedback increases, the infinit¢ important to notice that for the application of external-
dimensionality created by the feedback delay can induce aavity semiconductor las¢ECSL) synchronization to secure
drastic spectral broadening, which is sometimes referred ttelecommunications, these bursts would have catastrophic
as coherence collap$&0—15. The coherence collapse state consequences, because during the desynchronization inter-
is associated with hyperchaotic attractors whose complexityals, the encoded information cannot be recovered and is
is expected to provide high-level security for the encodedherefore irreversibly lost. Throughout all the paper, we will
messages, even at the subnanosecond time scale. As far lence always refer to this second stability definition, because
potential applications to telecommunications are concernedt is more constraining as it includes the first one.
quite interesting realizations have been set up. For example, The key issue of this paper is to derive for unidirection-
Goedgebuer and co-workers have built a robust cryptosystesily coupled ECSL's an analytic approximation for the
based on the synchronization of tunable laser diodes withhoundaries of the synchronization basin, both in the regular
wavelength hyperchad46], and while using an open-loop and chaotic regimes. We therefore aim to establish rigorous
chaotic synchronization scheme, Fisletral. have success- stability constraints able to guarantee high-quality synchro-
fully encoded and decoded signals at a frequency up to hization.
GHz[17]. The paper is organized as follows. In Sec. Il, we present
Despite these important experimental and theoretical rethe rate equations corresponding to our coupling scheme,
sults, many crucial questions still require particular attentionand the stability analysis of the synchronized laser diodes is
mainly about the stability and optimization of synchroniza-performed in Sec. Ill. The last section is devoted to the con-
clusion. The iterative integration of all ordinary differential
equations is performed with the fourth-order Runge-Kutta
*Corresponding author. Electronic address: algorithm, while all the nonlinear algebraic equations will be
pwoafo@uycdc.uninet.cm solved through the Newton-Raphson algorithm.
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TABLE |. Parameter values used for the numerical simulationsyound-trip delayr=T/7,, whereT=2L¢./C and Ly is the
(based on AlGaAs _, semiconductor lasefS]). length of the external cavity8]. The optical feedback is
taken into account through the coefficiept which is pro-

Symbol Parameter Value . o
portional to the external reflectivity percentagg;. p
g Gain coefficient 8.4x10 Bmis? stands for the injection current density, whose influence upon
a Linewidth enhancement factor 3 the ECSL dynamics is extremely decisive for the large-scale
o Facet amplitude reflectivity 0.556 structure of the laser’s oscillations. Effectively, whpnis
Ny, Carrier density at threshold 2.0%804 m 3 very cllose to the threshold valpg,= 0, the ECSL enters into
3 Injection current density 1B, what is usually called the low-frequency fluctuatidr~F)
T Carrier lifetime 2.04 ns regime[12,19. In our casep is much greater, so that the
T Photon lifetime 1.927 ps chgotlg oscillations have a rglatlvely con'st'ant mean value
7, Round-trip time in the laser cavity 8 ps which is Vp=0.7, corresponding to the trivial steady-state
regime.
§ Wavelength 8000 nm Theoretically, two fundamentally different types of cha-
otic synchronization can occur for ECSL's depending on the
II. MODEL OF UNIDIRECTIONALLY COUPLED strengths of both the feedback and the coupli@g For the
EXTERNAL-CAVITY SEMICONDUCTOR LASERS first type, which is referred to as conventional synchroniza-

) ) , . tion, the slave variables synchronizep to a constant for
The nonlinear dynamics of ECSLs can be modelizedggme of themwith those of the master at tinie- T, where
through the Lang-Kobayashi rate equatig28]. This model 1 _is the coupling delay, i.e., the time required for the com-
is quite accurate in the single-longitudinal-mode regimey ng signal emitted by the master to reach the slave. Here
when the optical feedback is weak to moderate. The signifi;e \yii| rather use a technique belonging to the second group
cant variables are the carrier dendiyand the complex elec- 5nq \hich is based on the continuous chaos control scheme
tric field defined by its amplitud& and its slowly varying  proposed by Pyragd@4].
phase¢. In dimensionless units, the Lang-Kobayashi equa- According to Murakami and Ohtsubo, the synchronization
tions read of identical ECSL’s can be achieved with an unidirectional
. coupling scheme provided that some physical constraints are
E=nE+yE.codwrt d—¢,), fulfilled (see details in Ref8]). Using appropriate external
mirrors, the master laser diode injects into the active region
b=an— y( E_r) Sin(wr+ d— ) of the slave laser diode a fraction of its electromagnetic out-
E ~ put, which thereby plays the role of a command signal. An
optical isolator guarantees the unidirectionality of the cou-
h=e[p—n—(1+2n)E?], (1a  pling. The slave ECSL is subjected to a second optical feed-
_ . ) back, which completes a retroactive control loop. The slave
with the following rescalings: system equations corresponding to that particular coupling
1 ] are
e=1,/7s, p=§gNth7p(J——1), . o _
th E=NE+ yETCOS{wT—i—(ﬁ—¢T)+K[ETCCOS(wTC+¢—¢TC)

1—I’(2) 1_r(2) -E COS{wT-i-:ﬁ—:ﬁ )]
Y=Tp m I exts K=Tp o ka7 T 7)1
E E
2mc s [Er) S~ B ~
r=Tlry, 7e=Telmy, 0=, (1b) ¢=an y(E)sm(errd) ¢.)—K ( E)Sln(chJFd’
and E o
1 o —q’),.c)— E sifwr+d—¢,) |,
E=(§gfs) E,
A=e[p—Ti—(1+21)E?], %)
1 N
n= ng‘th(N_th_ 1) - (10 where the tilde indicates the slave variables #&ndccounts

for the optical coupling. Note that the coefficieiitis pro-
Table | presents the meaning and numerical values of thportional to the coupling efficiency percentdgg. A second
laser diode characteristics. In E@.a), the overdot denotes delay also appears in our equations, which is the coupling
the derivative relatively to the reduced tintér, and the delayr.=T./7,. Thus Eqs(2) are double-delay differential
subscripts denote delayed variables: i.e., we assume tfat if equations(DDDE’s), as 7 and 7. simultaneously influence
is a variable(E, ¢, or n) and 6 the delayV,=V(t—#6). The the ECSL dynamic$25]. If we had considered multiple re-
first delay to appear in our equations is the dimensionlesfiections with the external reflectors, additional delays would
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have been introduced, leading to increasingly complicated Let us consider the master and slave vector fields as
equations. Anyway, these additional delays are not relevant x=(E, b.n)

here since the optical feedback is weak. DDDE's in synchro- A
nization theory seem to be very promising. Effectively, as- %=(E, 3.7). 3)
suming that the synchronization manifold\i§t — =) = V/(t ) . . )
— 7), they enable us to achieve anticipated, instantaneous, &Ur evolution equationgla) and(2) may now be written in
delayed synchronization depending on the fact thatan be vectorial notation as

smaller, equal, or greater than Throughout all the paper, x=F(x,X,),
we will focus for the sake of exemplification on instanta- o s
neous synchronization, and therefore we will only deal with X=F(XX;) +C(XX;,X,), 4

a single degenerated delay= 7). This particular case may \yhereF represents the uncoupled ECSL abdhe unidirec-

seem to be restrictive, but it can nevertheless give a deejonal coupling. If we define the coordinate transverse to the
insight into what occurs for the general double-delay modelsynchronization manifold,

w=X—X, (5)
Ill. STABILITY BOUNDARIES OF THE as the deviation vector between the drive and response sub-
SYNCHRONIZATION BASIN systems, it obeys
As we have earlier noticed, quasiperfect synchronization  [I[F(XX,)+C(X X, X,) ]
is required for most of its potential applications. Conse- W= IX o
W=

guently, the determination of necessary and sufficient condi-

tions for high-quality synchronization currently constitutes

an important field of investigatiorl48—20,22. For synchro-

nized ECSL's, the stability is often performed through the

linear stability analysis of the external-cavity modesat a linear approximation. Explicitly developing the Jacobian

(ECM’s) [7,8]. Unfortunately, this approach rapidly loses its matrices yields

validity for typically nonlinear state@multiperiodic, quasip-

eriodic, and chaotjc Moreover, it does not provide a general

stability constraint or limits for the synchronization basin. \here
It was first believed that stable synchronization could be

ensured by the negativity of the so-called transverse sugd(x.x;)

Lyapunov exponentgl]. However, this condition has further

been proved to be necessary, but not sufficient, because these

exponents describe the chaotic attractor as a whole, whereas _ Esin _ Ecos o

stability also depends on localized invariant sets embedded Ygzsle YE ¢

within this attractor. It has also been suggested that uni- —28(1+2n)E 0 —&(142E?)

formly negative instantaneous eigenvalues could be an inter-

esting alternative. Unfortunately, this “ubiquitous local sta- (8)

bility” criteria is exclusively relevant for the long-term nd

behavior and fails to make a statement about the stability 0?

the transient motion, as the continuously changing eigenval- CoSe E.sine O

ues and eigenvectors can induce parametric resonance 1 E

[18,19. Later, sufficient stability conditions either derived G(x,x,)=| —=sine —cose O]. 9)

from Lyapunov functions or from anamorphosis-based meth- E E

ods were proposed. Anyway, these latter techniques do not 0 0 0

generally apply when the coupling is inextricably nonlinear )
(and delayeylas in our case. We have introduceg= w7+ ¢— ¢, as the phase delay. We

On the other hand, Brown and Rulkov have proposed afoW decompose the ma'grix into its time average and vari-
original approach which enables one to derive rigorous sta@Ple components according to
b?lity critgria, i.e., sufficient constrgints which guarantee H(x,x.)=A+B(t), (10)
high-quality (burst-fre@ synchronization between identical
systems with drive-response couplifig6]. Moreover, their  with
method can precisely be used to design the efficient cou-
plings. Effectively, the Brown-RulkoyBR) technique leads A=(H(x,x,)),
to explicit analytic stability conditions and therefore offers a _ _
judicious guidance for the choice of the suitable system pa- BO=HOX) =(HO0X,))- @)
rameters. We aim to use this method to derive the stabilitfHere (-) denotes the time average along the driving trajec-
boundaries of the synchronization basin. tory. In first approximation, the matriB can be considered

AF(XX) +CRX, X,) ]
X,

+ W, (6)

w_=0

W=[H(X,X,) Jw+(y=K)[G(X,X,) W, Y

n —yE,sing E
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as proportional toy. This approximation becomes more ac- To summarize, the BR technique has provided three sta-

curate ag increases, since in that caBeoscillates around bility constraints, which are Eqg14), (16), and (18). We

the \/Jp mean valug15]. HenceH can finally be expressed as Wwill further see that the numerical simulation qualitatively
confirms these analytic statements.

H(X,Xx,) =A+yQ(1). (12) For this numerical comparison, two radically opposite
situations will be considered: the stable and unstable bifur-
cation states. To understand the reason for this differentia-
tion, one should recall the bifurcation behavior of ECSL’s
[8]. Their nonlinear dynamics is strongly determined by the
interplay between the relaxation oscillation frequency of the
¢ solitary semiconductor laséffg=+/g(J—Jy)/27m=Qg/27]
z(t)=[U(t,t0)]z(t0)+f yU(t,5)[P~1Q(s)P]z(s)ds and the external-cavity-mode spacing frequenty,€ 1/T

to =c/2L¢y). As the feedback coefficient increases, the ini-
t tially stable eigenmodes undergo a first Hopf bifurcation
+f (y—K)U(t,s)[P 1G(s)P]z,(s)ds, (13 (first HB) to periodic oscillations. It is demonstrated
to [13,14,27 that whenQgT is an odd multiple ofmr, the com-
petition betweenfr and f.,; is the weakest possible and,
hence, the critical Hopf bifurcation value is very low: itis
a stable bifurcation. On the other hand, wi&gT is an even
multiple of r, this competition is the strongest possible, and
the critical Hopf bifurcation value is quite high: it is here
an unstable bifurcation. Whepis further increased, the in-
i terval of periodic oscillations is followed in both cases by a
ordered as F{Q‘%PRG[M]?RG[M]' where RgA] is t_he real two-frequency quasiperiodic regime after a second Hopf bi-
part of A. The first block of Eq(13) converges td if furcation(second HB. This bifurcation sequence is universal
—Rg A;]>0. (14) fo_r ECSL’s, even though the critical bifurcation value.s are
different for each eigenmodé.1]. For all related numerical
It is our first stability requirement. This condition is reminis- Simulations, we have taken,= 15 cm for the stable bifur-
cent of the negativity of transverse sub-Lyapunov exponentgzation and. =12 cm for the unstable one, so that we have
but in fact, Eq.(14) is more constraining, because sub-found the Hopf bifurcation values couple of,; to be, re-
Lyapunov exponents are obtained through thand G ma- spectively,(0.34, 0.89 for the stable bifurcation regime and
trices, while A; is derived throughA, which is only the (1.04, 1.54 for the unstable casgn units of %9. These Hopf

We emphasize tha&) still weakly depends ory anyway. The
A matrix can be diagonalized @ through the transfer ma-
trix P. Therefore the vectaz, which is thew counterpart in
the D basis, satisfies

where U(t,tg) =exdD(t—tg)] is the exponential operator.
Linearly stable synchronized behavior is expectefiz{t)||
—0 ast— +o. This convergence to 0 can occur if and only
if each of the three blocks in E¢13) individually vanishes
at long term.

Let us considerA;, A5, and A5, the eigenvalues oA,

time-average component &f. bifurcations are indicated in Figs. 1 and 2 by vertical solid
The second block uniformly tends @if the exponential  lines.
operator imposes onto tHe QP term its decay behavior. ~ To check for the validity of our analytic approach, one
One can use norms to convert E3.3) into an inequality ~should represent the numerical synchronization basin in the
and, therefore, uniform convergence is ensured if rexcKep figurative plane. This has already been don¢8h
and the synchronization basins that have been obtained
—Re A 1> v[([IPT'QP]), (15  qualitatively fit with our predictions, both in the stable and
_ unstable bifurcation cases. Effectively, a maximg} value
that is, is observed, as well as the band shape around the maximal

“RdA,] stability diagonalr ¢x=K.p,. We remind the reader thatand
1 X )

< - (16 K are, respectively, proportional to,,; and k., [see Eq.
Y {PIQPT) TS| X

It appears that the feedback coefficient has an upper ”miére-g)]ree s\tl:'/aé) |iI|r'][¥rO|(sjurggs;l;;]:vtf/e\;::igbzliéong the diagonal: ~ th-

which depends on the system’s parameters. We stress again
that the right-hand side of inequalityt6) depends ony, so \/m
Q= ext cp
2 1

that this inequality is mathematically implicit. (19
At last, the third block of Eq(13) converges to zero if
—R4 A;]>]y—K[(|P~1GP|) (17) which is the curvilinear coordinate along the diagonal seg-
! mentrq.=Kkcp. Hence, sincegy is always simultaneously
or, more explicitly, equal tor, andk.,, varying qq implies varying the feed-

back ratey and the coupling rati at the same time. In Figs.
—Rg Aq] 1(a) and 2a), we have plotted Hé&\,] as a function ofyy. It
(IP~1GP[)) (18) appears that for the stable bifurcation, the BR technique fore-
sees synchronization for very wealg. As qqg increases,
This latter relation means that the stability basin lies within aRg A,] becomes positive and intermittently drops below 0
band around the central vallie= vy. for q4>1.79. Nevertheless, synchronization cannot be re-

_( ~RgA4]
Y {PTGP)

)<K<'y+
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FIG. 1. Stable bifurcation caséa) Variations of RgA;] and(b)

variations ofk, along the diagonaley=kep. FIG. 2. Unstable bifurcation caséa) Variations of R€A,] and

(b) variations of\ ; along the diagonale=Kep.

o
(LG

J<x<r+{ )
<K<y+ ) (21)

is no longer respected:qq (here corresponding tg) is then -
| {JLteL)

too large and { R A;]) too low to satisfy the inequality

(16). For the unstable bifurcation, synchronization for very i , o
weak feedback is also guaranteed. Globally, the BR techvherelL is the. transfer matrix fronH to its diagonal coun-
nique leads to interesting results as it can, however, enable (&/Part. Equation20) replaces both Eqs14) and(16), and

to understand the geometrical form of the synchronizatiorf?®" intrinsically contains the upper limitation of More-
basin in ther ke, figurative plane. Unfortunately, it is over, it exactly corresponds to the well-known standard sta-

striking that the consequent stability criteria are overlyPility condition. On the other hand, E21) stands for Eq.

strong. For example, they fail to foresee stability within the (18 With the same geometrical meaning.
chaotic range, which is, however, the most interesting. Figures 1b) and 2b) display the variations ok, as a

Nevertheless, we can circumvent this deficiency by diagofunction of gq, and it clearly appears that the new set of
nalizing H with its related sub-Lyapunov exponentg= X\, stability criteria(20) and (21) more accurately fits with the
>)\,, rather thanA with the RéA] eigenvalues in the BR numerical boundaries of the synchronization basin. Equation
method. The resulting stability criteria thereby lose their(20) decides the stability of the synchronization along the
mathematical rigor, but—and this is the most important—diagonal, while Eq.21) does the same for the transverse

they still provide necessary conditions for the stable synchrodirection. Effectively, it appears that gg is increasedalong
nization to occur. Proceeding in that way, the three stabilitN€ diagonal the synchronization is stable whaq is nega-

criteria (14), (16), and(18) degenerate into two, which are tive, while in the perpendicular direction, the width of the
basin varies accordingly th\4]; i.e., the basin is larger as

[\4| is greater. Therefore, one can conclugeen though it

is not new that the synchronization is optimized when is

the most negative possible. Nevertheless, we recall that Egs.
and (20) and(21) are not rigorous.

gained in that case because the second stability requirement
’y_ (

—\;>0 (20)
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Although it does not appear explicitly, Hopf bifurcations and they show that the synchronization error inversely fol-
can dangerously threaten the stability of synchronizatiodows the variations of\ 4|, i.e., drastically increases near the
[6,8,25. Effectively, when we carefully examine Figs(hl  HB's. Therefore, one can expect that control and anticontrol
and 2b), we note that\ 4| drastically drops to 0 around the of these Hopf bifurcations will soon play a key role for the
bifurcation values. For the stable bifurcation, these drops doptimization of synchronization in both the periodic and cha-
not reach the positive upper half-plane. But for the unstabletic stated?28].
case, the first and second HB'’s succeed in destabilizing the
syn_chronlzatlo_n along the diagonal. Since within the chaotic V. CONCLUSION
regime the bifurcation sequence subsists under a fractal
form, chaotic synchronization can be lost because of a slight In this paper, we have performed the stability and optimi-
variation of a relevant bifurcation parameter. Fortunatelyzation analysis for the synchronization of unidirectionally
these undesirable HB’s can analytically be localized in thecoupled external-cavity semiconductor lasers, both in their
periodic regime for ECSL’s, thus indicating in the first ap- (multi)periodic and hyperchaotic regimes. The Brown-
proximation the parameter ranges to avoid in priority Rulkov technique has provided stability constraints which
[13,14,217. have enabled us to foresee the shape of the synchronization

This may be particularly important for the synchroniza- basin. The underlying influence of Hopf bifurcations has
tion of ECSL's in the presence of parameter mismath been highlighted. We have noticed that they can even desta-
noise. Effectively, it is known that the maximal synchroni- bilize the synchronization manifold in the most unfavorable
zation errof|w| max is roughly proportional to the global mis- cases.
match(or to the intensity of the noiggbut inversely propor- A logic continuation of this work could be the stability
tional to the average largest sub-Lyapunov exponent analysis of the most general delay configuration, i.e., the
around the hyperchaotic attractor. Even though this reasomondegenerated double-delay system. Even though several
ing is not mathematically rigorous, it can serve as an internumerical studies have been performed #er 7. [7-9)], al-
esting guideline for the choice of the coupling parametersmost nothing has been done to investigate analytically how
Since the suitable parameters should preferably induce ththe interplay between the two delayand 7. influences the
lowest sub-Lyapunov exponents, the HB’s should degradshape of the synchronization basin. At last, further studies
the tolerance to parameter mismatcioise. The numerical can also be devoted to extend this analytic approach to other
simulations we have performed confirm this argumentationtypes of ECSL couplings.
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