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Abstract: Ultra-high Q whispering-gallery mode resonators pumped by a continuous-wave
laser are known to enhance stimulated Brillouin scattering when optimal resonance and phase-
matching conditions are met. In crystalline resonators, this process depends critically on the
crystal orientation and family, which impose the elastic constants defining the velocity of the
acoustic waves. In this article, we investigate the effect of crystalline orientation and family on
this velocity which is proportional to the Brillouin frequency down-shift. In particular, the study
is based on the development of a model and numerical simulations of acoustic wave velocities
that propagate along the periphery of four fluoride crystals, namely calcium, magnesium, lithium
and barium fluoride. We find that depending on the crystal and its orientation, the frequency
excursion around the Brillouin offset can vary from few tens of kHz to more than a GHz.
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1. Introduction

The topic of light-matter interactions in ultra-high Q whispering gallery mode (WGM) resonators
has gained significant attention in recent years (see for example [1] for a comprehensive review).
WGM resonators have the capability to trap photons within their inner periphery for time durations
that can exceed 1 µs, thereby leading to ultra-high quality (Q) factor values, typically in the
108–1011 range at 1550 nm. These resonators have small sizes (millimetric or sub-millimetric),
support small mode volumes, and have been demonstrated in several types of materials [2–9].
They are useful as narrow linear filters in microwave photonics [10–12], but more interestingly,
they also support various nonlinear effects at threshold powers inversely proportional to the
square power of the Q-factor [13–16]. All these features are some of the reasons why WGM
resonators have been for many years subject of intense research activities, and rapidly arose as an
ideal platform to investigate nonlinear and quantum optics phenomena.
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The light-matter interaction involving photons and acoustic phonons is Brillouin scattering,
which has been extensively been investigated in optical fibers [17–19]. Stimulated Brillouin
scattering (SBS) is a nonlinear phenomenon mediated by electrostriction. In fact, when the
pump wave becomes intense in the medium through which it propagates, it interferes with the
Stokes wave generated by spontaneous Brillouin scattering. The resulting beating creates by
electrostriction an elastic wave that scatters back the pump. In WGM resonators, stimulated
Brillouin scattering has allowed for various applications including high spectral purity microwave
generation, lasers, and recently gyroscopes [20–23].
SBS has been observed in several architectures of WGM resonators [24–29]. With precise

control of the resonator dimensions in order to match its Free Spectral Range (FSR) to the
Brillouin induced shift, Lee et al. have demonstrated SBS in a silica WGM resonator on silicon
chip with a record quality factor of 8.75 × 108 [20]. In 2013, Li et al. have demonstrated
microwave synthesis based on cascaded Brillouin scattering with record phase noise floor of
−160 dBc/Hz [21]. In their work, they used the photo-detection of the 1st and 3rd Stokes in order
to generate microwave signals at frequencies of 10.8 GHz and 21.7 GHz. Another interesting
result has been obtained by Loh et al., who demonstrated a Brillouin laser with a linewidth
of 240 Hz [30]. All the performances cited previously have been obtained with amorphous
WGM resonators. The first observation of SBS in a crystalline resonator has been reported by
Grudinin et al. with a 5 mm diameter calcium fluoride (CaF2)WGM resonator [16]. The reported
scattering process has been observed at a laser pump wavelength of 1064 nm, a threshold power
of 5 µW and a Stokes wave down-shifted 17.7 GHz away from the pump. Recently, Lin et al.
have evidenced high-order cascaded Brillouin Stokes generation ranging from 8.2 to 49 GHz,
using a millimetric barium fluoride (BaF2) crystalline WGM resonator pumped at 1550 nm with
few tens of milliwatts. SBS has also been reported in a lithium fluoride WGM resonator [14].
Millimetric crystalline resonators, particularly those manufactured with metal difluorides,

present very interesting features for microwave photonics. First of all, ultra-high Q factors beyond
109 are achievable [2, 3]. The Brillouin shift at 1550 nm and their FSR have the same order of
magnitude, which is in the X, K or Ka Band, and leads to the possibility to generate high-spectral
purity microwave signals. However, to date and to the best of our knowledge, beyond the quality
factor and the material the crystal is made of, there is not another selection criteria that allows
to state which fluoride crystal is more suitable for the exploitation of SBS in crystalline WGM
resonators, depending on the targeted application. The purpose of the present theoretical study
is to answer to this question by studying the behavior of the acoustic waves responsible of
Brillouin scattering in crystalline resonators. More precisely, we investigate the importance of
the orientation and family of the crystal on the Brillouin amplification bandwith by developping
a model that tracks the velocity of acoustic waves which lead to the Brillouin offset frequency
within the inner periphery of any given crystal.

The article is organized as follows. In the next section, we will first present the model used
to calculate the acoustic wave velocity leading to the Brillouin frequency down-shift. We then
use this model to determine numerically the Brillouin offset variation for four fluoride crystals,
namely CaF2, BaF2, MgF2 and LiF. The last section concludes the article.

2. Acoustic wave velocity and Brillouin shift in crystalline WGM resonators

2.1. Acoustic wave velocity in a given orientation

The velocity of acoustic waves that propagate along a crystalline WGM resonator may vary in a
nontrivial way that requires attention. In fact, the Brillouin amplification process depends on
the Brillouin offset frequency νB = 2nVa/λ, where n is the crystal refractive index, λ the laser
wavelength and Va the acoustic wave velocity. This amplification process has a bandwith ∆νB

that distributes the acoustic energy and contributes to the Stokes waves linewidth broadening,
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Fig. 1. Illustration of the normal vector n and angle ψ characterizing the propagation of the
acoustic wave in the plan of the crystalline WGM disk.

following:
∆νB

νB

=
νmax

B − νmin
B

νB

=
Vmax

a − Vmin
a

Va
. (1)

It appears clearly that minimizing the acoustic waves velocity variation leads to reduced Brillouin
amplification bandwidth, therefore, narrow Stokes waves linewidth. This minimization can be
achieved by a careful selection of the WGM resonator material. In fact, as illustrated in Fig. 1,
the acoustic wave velocity varies along the disk periphery according to the orientation of his
wave vector KB which is colinear to the pump wave vector KP. Otherwhise, the crystals used in
this work are monocrystalline and anisotropic. They are ordered set of atoms and their properties
can be described by tensors [31]. When applied to an anisotropic crystal, a strain characterized
by strain tensor Ti j and leads to deformations characterized by the deformation tensor Skl . These
tensors are linked by the well known Hooke’s law [31–34], expressed by:

Ti j = ci jklSkl, (2)

where ci jkl represents the crystal elastic constants. Other important parameters in the characteri-
zation of a crystal are his family and normal direction. Simple cuts characterized by a normal
along the z, y, and x axis are respectively denoted [001], [010], [100] and in that order called z-,
y- and x-cut. A more complex cut with the normal in the xyz plan exists under the name of [111]
orientation. The four mentioned crystalline orientations are illustrated in Fig. 2. The structure
and family of the crystal give its elastic constants which lead to the acoustic wave velocity using
wave propagation equation.

A plane wave propagating in any direction n(n1, n2, n3) of a given material induces a displace-
ment field u(u1, u2, u3), which has a spatial and temporal dependency that will depend on the
intracavity constraints. The equation of motion can be written as

ρ
∂u2

i

∂t2 =
∂Ti j
∂xj

, (3)

where Ti j is the strain tensor, and ρ the volumetric mass density of the crystal. By inserting
Hooke’s law of Eq. (2) in Eq. (3), one obtains the dynamical equation:

ρ
∂2ui
∂t2 = ci jkl

∂2ul
∂xj∂xk

(4)

for the displacement field u. The coefficients i, j, k, l vary from 1 to 3, and therefore, the solutions
of this equation are three plane waves that can be written as:

ui = Ui f
(
t − ni xi

V

)
, (5)
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Fig. 2. Illustration of the orientation of a crystal as a function of the direction of its normal
vector n. Figures (a), (b), and (c) correspond respectively to so-called z-cut, y-cut and x-cut,
while (d) correspond to the [111] orientation.

where f is a scalar function, and V is the acoustic wave velocity. If we insert this solution in
Eq. (4), we obtain the well known Christoffel equation [31–33]

ρV2Ui = ci jklnjnkUl , (6)

where nj and nk are the projections of the propagation direction n. From here, one can introduce
the second order tensor Γ also known as Christoffel tensor, following

Γil = ci jklnjnk . (7)

Considering its symmetry, (Γi j = Γji), the tensor Γi j has only six distinct terms amongst nine.
For a wave in a given polarization, the Christoffel equation becomes:

(Γil − ρV2δil)Ul = 0 (8)

and admits non-trivial solutions only if the so-called Christoffel determinant defined below is
null:

|Γil − ρV2δil | = 0 . (9)

The resolution of this equation shows the existance of three waves that propagate simultaneously
in the crystal [35]. One amongst them is longitudinal and is responsible of stimulated Brillouin
scattering, while the two others are transverse [31–33]. This equation can be simplified using
the symmetries of the system and the Voigt notation for which ci jkl ≡ Cαβ , with the index
reductions 11→ 1, 22→ 2, 33→ 3, 23 ≡ 32→ 4, 13 ≡ 31→ 5, and 12 ≡ 21→ 6. Hence, the
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developpement of Eq. (9), also known as secular equation, leads to the following expressions:

Γ11 = C11n2
1 + C66n2

2 + C55n2
3 + 2C16n1n2 + 2C15n1n3 + 2C56n2n3 (10)

Γ22 = C66n2
1 + C22n2

2 + C44n2
3 + 2C26n1n2 + 2C46n1n3 + 2C24n2n3 (11)

Γ33 = C55n2
1 + C44n2

2 + C33n2
3 + 2C45n1n2 + 2C35n1n3 + 2C34n2n3 (12)

Γ12 = C16n2
1 + C26n2

2 + C45n2
3 + (C12 + C66)n1n2 + (C14 + C56)n1n3 (13)

+(C46 + C25)n2n3

Γ13 = C15n2
1 + C46n2

2 + C55n2
3 + (C14 + C56)n1n2 + (C13 + C55)n1n3 (14)

+(C36 + C45)n2n3

Γ23 = C65n2
1 + C24n2

2 + C43n2
3 + (C46 + C25)n1n2 + (C36 + C45)n1n3 (15)

+(C23 + C44)n2n3 .

If for example we consider a cubic crystal, the matrix of elastic constants can be explicitly written
as:

[Cαβ] =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


, (16)

so that the Christoffel tensor terms for this crystal become

Γ11 = C11n2
1 + C44(n2

2 + n2
3) (17)

Γ12 = Γ21 = (C12 + C44)n1n2 (18)
Γ13 = Γ31 = (C12 + C44)n1n3 (19)
Γ22 = C44(n2

1 + n2
3) + C11n2

2 (20)
Γ23 = Γ32 = (C12 + C44)n2n3 (21)
Γ33 = C44(n2

1 + n2
2) + C11n2

3 . (22)

For a wave propagating in the [100] direction (along Ox1), Christoffel determinant is:������ C11 − ρV2 0 0
0 C44 − ρV2 0
0 0 C44 − ρV2

������ = 0 . (23)

From this expression, one can deduce the longitudinal acoustic wave velocity VL polarized along
[100] and the two transverse waves VT1,2 respectively polarized along [010] and any vector normal
to the [100] direction following:

VL =

√
C11
ρ
, VT1 =

√
C44
ρ
, VT2 =

√
C44
ρ
. (24)

For a propagation in [110] direction, Christoffel determinant is rather:������
1
2 (C11 + C44) − ρV2 1

2 (C11 + C44) 0
1
2 (C12 + C44) 1

2 (C11 + C44) − ρV2 0
0 0 C44 − ρV2

������ = 0 . (25)
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Fig. 3. Illustration of the longitudinal acoustic waves velocities VL and corresponding
Brillouin sifts ΩL for particular directions, in accordance with longitudinal acoustic wave
velocities expressions given by Eq. (26), and for a crystal oriented along [001] which
corresponds to a z-cut.

Using the same approach mentioned previously, one can calculate from this determinant the
expression of the longitudinal wave velocity VL polarized along [110] and the two transverse
waves velocities VT1,2 polarized respectively along [101] and [011]:

VL =

√
C11 + C12 + 2C44

2ρ
, VT1 =

√
C11 − C12

2ρ
, VT2 =

√
C44
ρ
. (26)

The two examples developed in Eqs. (24) and (26) unveil the mechanism behind the periodic
variation of the acoustic wave velocity. For instance, the acoustic wave along [100] direction will
have a longitudinal component expressed by VL =

√
C11/ρ with a peridocicity of π/2, colinear to

the optical wave vector. For a propagation along [110] direction, the longitudinal acoustic wave
velocity expressed by VL =

√
(C11 + C12 + 2C44)/2ρ will have a periodicity π/2 colinear to the

optical wave vector in those particular points as illustrated in Fig. 3. However, apart from these
particular directions, one expects the variations of wave velocity and frequency along the disk
periphery. Moreover, these variations are necessarily periodic, since they depend on the angle ψ
between the acoustic wave vector and the the crystal plan axis. It therefore becomes important to
develop a systematic method to calculate the acoustic wave velocity V(ψ) and frequency νB (ψ)
along the disk periphery. For this purpose, the starting point is the calculation of the crystal
elastic constants in the rotated plane, as explained in the next subsection.

2.2. Elastic coefficients in the rotated plane: elastic rotation matrices

The tensor or matrix approach is generally used to calculate with the elastic and strain coefficients.
The main goal of these approaches is to obtain a simple expression that links strain and elasticity
using Hooke’s law. An alternative method, introduced by Bond [36], uses instead a 6 × 6 matrix
approach that transforms strain and elastic coefficients in any desired system of coordinates [32].
The constraint field Ti j transforms to T ′i j=aikajlTkl by a change of system coordinates where
i, j, k, l ∈ {1, 2, 3} correspond to the axes x, y, z, and amn to the cosine directors of the new system
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of coordinates. The developement of the constraints field T ′xx leads to the following equation:

T ′xx = a2
xxTxx + axxaxyTxy + axxaxzTxz

+axyazxTyx + a2
xyTyy + axyaxzTyz

+axzaxxTzx + axzaxyTzy + a2
xzTzz , (27)

and similar expressions for the other coefficients Tuv . Since the strain field is symetric (Ti j = Tji),
Eq. (27) can actually be reduced to:

T ′xx = a2
xxTxx + a2

xyTyy + a2
xzTzz + 2axxaxyTxy + 2axxaxzTxz + 2axyaxzTyz , (28)

or equivalently, to

T ′1 = a2
xxT1 + a2

xyT2 + a2
xzT3 + 2axxaxyT6 + 2axxaxzT5 + 2axyaxzT4. (29)

using Voigt notation.
Using the same approach for the 9 components of [T′], we have T ′

H
= MHI TI with H, I =

1, 2, 3, 4, 5, 6. Analogously, we obtain the strain matrix by introducing S′i j = aikajlSkl , expressed
in reduced notation by S′

K
= NKJ SJ where the indices K and J vary form 1 to 6. The 6 × 6

rotation matrices [M] and [N] can now be explicitly expressed as

[M] =
[
[B1] 2[B2]
[B3] [B4]

]
and [N] =

[
[B1] [B2]

2[B3] [B4]

]
(30)

where the intermediate matrices

[B1] =


a2
xx a2

xy a2
xz

a2
yx a2

yy a2
yz

a2
zx a2

zy a2
zz

 (31)

[B2] =


axyaxz axzaxx axxaxy

ayyayz ayzayx ayxayy
azyazz azzazx azxazy

 (32)

[B3] =


ayxazx ayyazy ayzazz
azxaxx azyaxy azzaxz

axxayx axyayy axzayz

 (33)

[B4] =


ayyazz + ayzazy ayxazz + ayzazx ayyazx + ayxazy
axyazx + axzazy axzazx + axxazz axxazy + axyazx
axyayz + axzayy axzayx + axxayz axxayy + axyayx

 (34)

are only introduced here for the sake of notation conciseness. These coefficients reported
in Hooke’s law lead to [T′] = [M][T] = [M][C][S], and since [S] = [N]−1[S′], one obtains
[T′] = [M][C][N]−1[S′] = [C′][S′], so that

[C′] = [M][C][N]−1 . (35)

The cosine director matrix inverse is equal to its transposed: [a]−1 = [a]T. Hence, if the matrix [N]
is based on the cosine director matrix [a], the matrix [N]−1 corresponds to the matrix [a]−1, itself
equal to its transposed. Therefore, [N]−1 = [M]T and the expression of the elastic coefficients in
the rotated plane is then:

[C′] = [M][C][M]T . (36)

As explained in the next section, the determination of these rotation matrices permits to compute
the acoustic wave velocity and Brillouin shift in WGM resonators.
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Fig. 4. Longitudinal acoustic mode frequency variations along the periphery of CaF2 oriented
along [111] at a wavelength of 1064 nm. The calculation reveals a longitudinal acoustic
mode at a frequency of 17.7 GHz with a peak-to-peak frequency variation along the disk of
112 MHz. This is in agreement with the results reported by Grudinin et al. in [16].

3. Numerical simulations for fluorite WGM resonators

3.1. Step-by-step procedure

We propose a procedure of 10 steps to calculate acoustic waves velocities and Brillouin frequency
shifts at any point along the crystalline WGM resonator. This methodology is based on formalisms
introduced in the previous section, and they enable to investigate photon-phonon coupling
underlying stimulated Brillouin scattering.
The ten steps of the method are the following: (i) Select the crystalline material
(CaF2,BaF2,MgF2,LiF, ...) and identify its elastic constants. (ii) Select a crystalline orien-
tation for the disk under consideration ([100], [110], [111], etc); (iii) Express the coordinate
changes using the rotation matrix [M]; (iv) Express the elastic coefficients matrix in the rotated
plane using Eq. (36); (v) Choose a propagation direction for the acoustic wave in the disk plan and
express the propagation vector coordinates n in this same plan; (vi) Define the Christoffel matrix
for each value of the angle ψ (characterizing the propagation direction of the acoustic wave in the
disk plan and presented in Fig. 1) using the Christofel equation given by Eq. (8); (vii) Determine
the characteristics of the acoustic waves in any point of the disk periphery; (viii) Determine,
as a function of ψ, the propagation direction of the acoustic wave in the disk plan, as well as
the eigenvalues and eigenvectors of the matrix obtained previously – note that this calculation
is performed using the Christofel determinant given by Eq. (8); (ix) Identify the longitudinal
and transverse waves velocities; (x) Determine the Brillouin offset frequency generated by the
longitudinal waves of the selected disk with the selected pump wavelength.

The validity of this procedure is tested hereafter by considering Brillouin scattering in fluorite
crystals.

3.2. Results

A first task to test the validity of the procedure outlined above has been to compare its predictions
with some results that have been published in recent years in the area of Brillouin scattering
in crystalline WGM resonators. Indeed, one of the most important contribution along that line
was provided by Grudinin, Matsko and Maleki in [16], where they had simulated the Brillouin
offset frequency induced by the longitudinal acoustic mode propagating along the periphery of a
[111]-oriented CaF2 WGM resonator, pumped at a wavelength of 1064 nm. Our calculations of
the Brillouin offset have been compared theirs in the same crystal, orientation and laser pump
wavelength, and the result is displayed in Fig. 4. In full agreement with the results of Grudinin
et al., our calculations indicate that the Brillouin offset frequency is equal to 17.7 GHz, with a
peak-to-peak dispersion along the disk periphery of approximately 112 MHz.

We have then simulated and compared the longitudinal and transversal acoustic modes of four
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(c) CaF2 ∆νL = 70 MHz
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(g) MgF2 : ∆νL = 1 GHz
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Fig. 5. Numerical simulations for the Brillouin shifts at 1550 nm, for different crystals
oriented along [111]. Figures (a), (c), (e), and (g) (in blue) correspond respectively to
transverse longitudinal acoustic waves for a crystal of BaF2, CaF2, LiF, and MgF2. Figures
(b), (d), (f), (h) represent respectively the fast transverse acoustic waves (or FT, in green)
and slow transverse acoustic waves (or ST, in red) for the aforementioned crystals.

different fluoride crystals, namely BaF2, CaF2, LiF and MgF2, all oriented along [111]. The
results of these simulations at a wavelength of 1550 nm are presented in Fig. 5. One can monitor
the Brillouin frequency variation for the longitudinal wave, and identify the crystal that minimize
this variation.

The simulations results are summarized in Table 1. We observe that barium fluoride presents
the smallest frequency variation, calculated at 30 kHz for a Brillouin offset frequency equal to
8.22 GHz. Calcium fluoride and lithium fluoride present respectively a frequency variation of
43.2 MHz and 70 MHz for their Brillouin offsets at 12.15 GHz and 13.61 GHz. Magnesium
fluoride presents an important frequency variation of 1 GHz, with a complex profile structure for
its longitudinal mode. It therefore appears that barium fluoride oriented along [111] seems to
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Table 1. Summary of longitudinal Brillouin frequency shifts fL , fast transverses fFT and slow
transverses fST with their respective variations ∆νL , ∆νFT , ∆νST , for ψ ranging from 0 to 2π,
and for the following crystals in the [111] orientation: BaF2, CaF2, LiF, MgF2. The laser
pump wavelength is 1550 nm.

Crystal BaF2 LiF CaF2 MgF2
fL (GHz) 8.225 [13.61−13.65] [12.11 - 12.19] [12.4 - 13.8]
∆νL (MHz) 0.03 43.2 70 1000
fFT (GHz) [4.322 - 4.335] [8.515 - 9.3] [9.252 - 9.731] [7.881 - 9.4]
∆νFT (MHz) 13 784 479 1519

fST (GHz) [4.295 - 4.308] [6.7 - 7.484] [8.224 - 8.685] [5.3 - 7.26]
∆νST (MHz) 13 784 461 1960

be a very promising configuration for the investigation of SBS in crystalline whispering gallery
mode resonators, whenever the smallest linewidths are highly desirable.
It should be emphasized that at the experimental level, the acoustic wave velocity critically

depends on the crystal density and rotated elastic coefficient. Local perturbations have an influence
on acoustic wave velocity, energy dissipation and scattering energy, therefore impacting as well
the Brillouin offset frequency. It is therefore important to stress the need for optimizing the
fabrication techniques of these crystalline resonators. Characterization techniques such as X-Ray
orientation could for example allow to identify large crystalline defects. High Resolution X-Ray
Diffraction could help to identify local crystalline perturbations. Infrared, ultraviolet and chemical
analysis could evidence material impurities while classical X-ray diffraction could allow to
characterize the crystalline structure of the resonator.

4. Conclusion

Wehave developed a systematic procedure that permits to calculate the velocity of an acoustic wave
that propagates along the inner periphery of a crystalline whispering-gallery mode disk-resonator.
Such waves are responsible of Brillouin scattering, and we have highlighted the importance of
crystalline orientation and family on the stability of the Brillouin shift frequency. We have shown
that the frequency deviation can be as low as few tens of kHz, such as in [111]-oriented BaF2. We
however emphasize that beyond crystal orientation, stimulated Brillouin scattering depends on
several optical properties (attenuation, scattering, etc.), but also on the acoustic Q-factor and on
the phonon intracavity dynamics. We hope that this study will allow to explore in depth the proven
potential of crystalline WGM resonators as a platform for low-power, versatile photon-phonon
interactions, in view of microwave photonics applications such as microwave generation or
compact gyroscopes, just to name a few. Future investigations will be devoted as well to the
understanding of the effects of crystal and molecular symmetries on Raman interactions [37, 38],
as well as at the photon-phonon interactions at the single-quantum level in WGM resonators [39].
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