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Polarization-encoded entanglement remains the simplest platform for the generation, manipulation, and
visualization of entangled-photon states. While quantum dots have the potential to emit on-demand polarization
entanglement, spontaneous-parametric-down-conversion (SPDC) sources remain the leading method for the
generation of polarization-entangled states. SPDC sources suffer from the potential to produce multiple photon
pairs in a single pass of an experiment. These multiple pairs have been shown to have negative impacts on
quantum experiments involving entanglement. In this work, we now provide a rigorous theoretical model for the
loss of entanglement due to additional photon pairs. This is seen as a reduction in a possible measurement of the
Clauser-Horne-Shimony-Holt (CHSH) parameter. We perform these calculations for two different methods for
the generation of polarization entanglement involving SPDC. The results agree with other observations presented
in the literature. We also find that, even for small mean photon numbers, the CHSH parameter is reduced linearly,
demonstrating that multiple photon pairs have a critical impact on the entanglement in the system.
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I. INTRODUCTION

The field of quantum communications offers various im-
provements over classical network communications, such
as the potential for novel telecommunication protocols [1]
and the generation of shared security keys [2]. Many of
the protocols of quantum communications require the gen-
eration and distribution of entangled states throughout a
quantum network. Entanglement can be encoded in a variety
of photon-based carriers, such as energy-time [3–5], orbital
angular momentum [6], and, more recently time-frequency
bins [7–9]. While polarization-based entanglement distribu-
tion has technical issues issues when supporting long-distance
quantum communication, it remains the simplest implementa-
tion method with respect to local entanglement generation and
operations.

Polarization entanglement has been long studied and char-
acterized [10–26]. A majority of these studies have relied on
polarization entanglement generated using the spontaneous-
parametric-down-conversion (SPDC) process [10–21]. Ide-
ally, only a single photon pair should be produced to construct
an entangled state that is robust against entanglement degrada-
tion. However, it is well known that SPDC has the potential to
generate multiple photon pairs. While polarization entangle-
ment generated from quantum dot sources have the potential
to produce on-demand single-photon polarization-entangled
states [26], using SPDC sources is still a simpler method for
the generation of entangled states. Therefore, we will develop
a rigorous theoretical model that shows the reduction in en-

*Corresponding author: ykchembo@umd.edu

tanglement quality due to the generation of multiple pairs by
an SPDC source.

We characterize the quality of entanglement using mea-
sured values of the Clauser-Horne-Shimony-Holt (CHSH)
parameter S [27]. The CHSH inequality dictates that if |S| > 2
then no local classical theory could have predicted the coinci-
dences [27]. The maximum value of S permitted by quantum
mechanics is |S| = 2

√
2 [28].

Several previous studies have analyzed the effects of multi-
ple photon pairs [19,29–32] on the value of S. It is well known
that the multiple photon pairs often generated by SPDC con-
tribute accidental coincidences to two-photon interference
experiments [30,31]. Since the CHSH experiment relies on
two-photon coincidence measurements, it is similarly im-
pacted. However, these studies have capped the maximum
number of photon pairs [29] or made use of classical prob-
ability distributions [19,30–32] to describe the number of
photon pairs generated. The classical distribution approach
works for most experiments, but it would be difficult to use
this approach to compute the result after additional quantum
evolutions. We will develop an all-quantum theory from first
principles.

There are two main methods to generate a maximally en-
tangled Bell state using SPDC in fiber-based systems. These
methods are outlined in Fig. 1. In Fig. 1(a), a 50:50 beam split-
ter is used to convert a correlated photon pair generated by an
SPDC source into an entangled Bell state [15,16]. In Fig. 1(b),
the placement of an SPDC source inside of a Sagnac-like
interferometer produces an entangled state [17–21]. Recently,
this method has been used more frequently because it has been
shown to be more efficient [17]. In this paper, we study the
effects that the multiple pairs emitted by the SPDC source
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FIG. 1. Two different methods for generating a |�−〉 Bell state using type-II spontaneous parametric down conversion (SPDC). (a) The
beam-splitter method. A pumped periodically poled potassium-titanyl-phosphate (PPKTP) crystal generates orthogonally polarized photon
pairs. These pairs are split using a polarizing beam splitter (PBS) and then subsequently inserted into a 50:50 beam splitter (BS). This generates
the |�−〉 Bell state along with two additional terms that do not contribute to the coincidence counts. As such, this is not the most efficient
method for the generation of an entangled state. (b) The Sagnac method. The pump is set to be diagonally polarized. The pump photons are
reflected by a dichroic mirror and subsequently split at a horizontal-vertical PBS. The clockwise and counterclockwise propagating pulses in
the Sagnac interferometer will generate the two terms of the Bell state. Since both of these setups rely on SPDC, there exists a probability of
multiple-pair generation. This could affect the quality of the resulting entanglement. The exact state emitted is labeled as |�out〉 in both setups.
The polarization controllers (PC) shown in both methods maintain the polarization state of the photons, but we will neglect them in the main
text. (c) Method for performing a Clauser-Horne-Shimony-Holt (CHSH) inequality measurement. The polarization-encoded entangled state
|�−〉, which is simultaneously propagating along two separate spatial paths, is input into two polarization controllers. These devices rotate the
polarization vector by the angle θA in one path and the angle θB in the other path. Following these rotations, the photons in both paths enter
ideal polarization beam splitters (PBS) that send horizontally polarized photons toward the “+” detectors and vertically polarized photons
toward the “−” detectors. Coincidences measured between various combinations of these four detectors are recorded and used to compute the
CHSH parameter, S, as discussed in the main text.

have in both of these systems, in terms of the CHSH parameter
S as measured in Fig. 1(c).

Ideally, both of these approaches would produce the two-
photon maximally entangled Bell state |�−〉 defined as

|�−〉 ≡ 1√
2

(â†
Hb̂†

V − â†
Vb̂†

H)|0〉, (1)

where â† is the creation operator for spatial path A, b̂† is the
creation operator for spatial path B, and |0〉 is the vacuum
state. The subscript “H” represents a horizontally polarized
photon in Eq. (1), and the subscript “V” represents a vertically
polarized photon. However, this state would only occur when
a single pair of orthogonally polarized photons was emitted by
the pumped periodically poled potassium-titanyl-phosphate
(PPKTP) crystals of Fig. 1. Because these crystals emit pho-
ton pairs through the type-II SPDC process, the output state
generated by the SPDC sources is more complicated than the
simple Bell state shown in Eq. (1). The main contribution of
this paper will be performing the calculation of the CHSH pa-
rameter for both configurations and evaluating the degradation
of entanglement that results from the generation of incidental
multiple pairs by the source. This will be done using a fully
quantum theoretical approach based on the Husimi-Kano Q
function.

This work is outlined as follows. In Sec. II, we develop the
theoretical model for the degradation of the CHSH parameter

measured due to multiple pairs for the entangled states gener-
ated by the setup of Fig. 1(a) [beam-splitter method], while in
Sec. III we focus on the Fig. 1(b) [Sagnac method]. Remarks
and conclusions are given in the last section of the article.

II. BEAM-SPLITTER METHOD

A. Formal definition of the CHSH parameter

We will start with the simpler beam-splitter method of
Fig. 1(a). As mentioned above, the pumped PPKTP crystal
produces pairs of orthogonally polarized photons through the
SPDC process. The full quantum Hamiltonian that describes
this interaction is given by [33]

Ĥ = iκ (ĉ†âHâV − ĉâ†
Hâ†

V), (2)

where κ is a coupling constant and ĉ† is the creation operator
for photons in the pump beam. We now make the usual clas-
sical pump approximation [33]. For a strong coherent pump
with coherent state parameter γ0, we set ĉ → 〈ĉ〉 = γ0 and
ĉ† → 〈ĉ†〉 = γ ∗

0 in Eq. (2), giving

Ĥ = iκ (γ ∗
0 âHâV − γ0â†

Hâ†
V). (3)

This Hamiltonian corresponds to the unitary evolution opera-
tor with interaction time τ given as

Û ≡ e−iĤτ = es(âHâV−â†
Hâ†

V ), (4)

022411-2



QUANTUM ANALYSIS OF POLARIZATION ENTANGLEMENT … PHYSICAL REVIEW A 104, 022411 (2021)

where we have let γ0 be real and defined the two-mode
squeezing parameter as s = γ0κτ . It can be shown [34,35] that
the unitary evolution operator of Eq. (4) can be factored as

Û = e− tanh(s)â†
Hâ†

V

cosh(s)

[
1

cosh(s)

]â†
HâH+â†

VâV

etanh(s)âHâV . (5)

Neglecting the pump beam, the state following the PPKTP
crystal is now given by the application of the unitary evolution
operator acting on the vacuum state |0〉. Thus, we have that

|ψ〉 = Û|0〉

= e− tanh(s)â†
Hâ†

V

cosh(s)

[
1

cosh(s)

]â†
HâH+â†

VâV

etanh(s)âHâV |0〉

= e− tanh(s)â†
Hâ†

V

cosh(s)
|0〉

= 1

cosh(s)

∞∑
j=0

1

j!
[− tanh(s)] j â† j

H â† j
V |0〉, (6)

which is known as the two-mode squeezed vacuum state [33].
Inspection of Eq. (6) reveals that the pumped PPKTP crystal
has the potential to generate any number of photon pairs.

After the ideal polarizing beam splitter (PBS), the state in
Eq. (6) becomes

|ψ〉 → e− tanh(s)â†
Hb̂†

V

cosh(s)
|0〉, (7)

where we have made the transformation â†
V → b̂†

V, which is a
result of the vertically polarized photons being directed into
path B while the horizontally polarized photons remain in
path A. Paths A and B are recombined at the 50:50 beam
splitter of Fig. 1(a). The beam splitter applies the following
transformation to the operators,

â†
X → 1√

2
(â†

X + ib̂†
X), b̂†

X → 1√
2

(b̂†
X + iâ†

X), (8)

where X denotes an arbitrary polarization state. Applying the
transformation of Eq. (8) to the state of Eq. (7) gives the state
after the 50:50 beam splitter, |�out〉, as

|�out〉 = e− tanh(s)(â†
Hb̂†

V−â†
Vb̂†

H+iâ†
Hâ†

V+ib̂†
Hb̂†

V )/2

cosh(s)
|0〉. (9)

Inspection of Eq. (7) reveals that it shares no resemblance
to the ideal state of Eq. (1). To obtain the ideal state, we only
want a single photon pair to be emitted by the pumped PPKTP
crystal. This can be achieved by letting s ≈ 0, so that we may
truncate the j > 1 terms of Eq. (6). This gives the approximate
state as

|ψ〉 ≈ 1

cosh(s)
(1 − tanh(s)â†

Hâ†
V)|0〉. (10)

Applying the transformation due to the ideal PBS and 50:50
beam splitter now gives the output state as

|�out〉 ≈ 1

cosh(s)

[
1 − tanh(s)

2
(â†

Hb̂†
V − â†

Vb̂†
H

+ iâ†
Hâ†

V + ib̂†
Hb̂†

V)

]
|0〉. (11)

Equation (11) is not exactly equal to the ideal Bell state of
Eq. (1). However, the vacuum state term and the terms where
two photons enter the same spatial path will not contribute
coincidence counts in the measurement of the CHSH param-
eter depicted in Fig. 1(c). Neglecting these terms in Eq. (11)
and renormalizing gives Eq. (1). It is important to note that
the additional pairs in the full state of Eq. (9) will yield addi-
tional terms that will also contribute coincidence counts, and
therefore cannot be neglected unless photon number resolving
detectors are used to eliminate these multipair correlation
events in postprocessing. These additional coincidence counts
will negatively impact CHSH inequality experiments by re-
ducing the value of the parameter S.

We now consider a measurement of the CHSH parameter
for entangled states generated using the beam-splitter method.
The output state |�out〉 of Eq. (9) now becomes the input state
|�in〉 to the CHSH measurement system of Fig. 1(c). The
polarization rotations in paths A and B transform the creation
operators to

â†
H → cos θAâ†

H + sin θAâ†
V,

â†
V → cos θAâ†

V − sin θAâ†
H,

b̂†
H → cos θBb̂†

H + sin θBb̂†
V,

b̂†
V → cos θBb̂†

V − sin θBb̂†
H. (12)

Applying the transformations of Eq. (12) to the state in Eq. (9)
gives the state after the polarization rotations |ψ〉 as

|ψ〉 = 1

cosh(s)
e− tanh(s) cos(θA−θB )(â†

Hb̂†
V−â†

Vb̂†
H )/2

× e− tanh(s) sin(θA−θB )(â†
Hb̂†

H+â†
Vb̂†

V )/2

× ei tanh(s) sin(2θA )(â†2
H −â†2

V )/4

× ei tanh(s) sin(2θB )(b̂†2
H −b̂†2

V )/4

× e−i tanh(s)[cos(2θA )â†
Hâ†

V+cos(2θB )b̂†
Hb̂†

V]/2|0〉. (13)

Before we define the CHSH parameter, we first define the
correlation coefficient E (θA, θB) as [27]

E (θA, θB) = R++ + R−− − R+− − R−+
R++ + R−− + R+− + R−+

, (14)

where the R±∓ is the measurable coincidence rate between the
± detector in path A and the ∓ detector in path B. For num-
ber insensitive detectors, the coincidence rates are computed,
theoretically, as

R++ ∝ 〈â†
HâHb̂†

Hb̂H〉, R−− ∝ 〈â†
VâVb̂†

Vb̂V〉,
(15)

R+− ∝ 〈â†
HâHb̂†

Vb̂V〉, R−+ ∝ 〈â†
VâVb̂†

Hb̂H〉,
where we have used the convention that the ideal PBS of
Fig. 1(c) directs horizontally polarized photons to the “+” de-
tectors and vertically polarized photons to the “−” detectors.
With the correlation of Eq. (14), we may now compute the
CHSH parameter as [27]

S ≡ E

(
0,

π

8

)
− E

(
0,

3π

8

)
+ E

(
π

4
,
π

8

)
+ E

(
π

4
,

3π

8

)
.

(16)
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Inspection of Eq. (13) reveals that it will be difficult to
use the state after the rotation of the polarization vectors to
compute the rates of Eq. (15), since this would require the
computation of intractable series summations. To simplify
this calculation, we now switch to using the Husimi-Kano Q
function [36–38], as developed in the next subsection.

B. Calculating coincidence rates using
the Husimi-Kano function

To calculate the expectation values in Eq. (15), we use the
fact that the expectation value of an arbitrary combination
of creation and annihilation operators, Â, can be obtained
by integrating the classical representation of the antinormally
ordered operators with the Q function [38]

〈 Â 〉 =
∫

d2αA(a)(α) Q(α), (17)

where A(a) is the classical (complex-valued) representation of
the antinormally ordered operator Â with â → α and â† →
α∗. The Q function is a quasiprobability distribution that is
typically defined as [38]

Q(α) ≡ 1

π
〈α|ρ̂|α〉, (18)

where ρ̂ is the density operator for the state and |α〉 is a
sample coherent state with state parameter α. This coherent
state parameter acts as the complex independent variable of
the distribution.

The Q function as defined in Eq. (18) is only capable of
describing a single photonic mode. However, there are four
photonic modes represented in the state of Eq. (13). Therefore,
we generalize the Q function of Eq. (18) as

Q(αH, αV, βH, βV)

≡ 1

π4
〈βV|〈βH|〈αV|〈αH|ρ̂|αH〉|αV〉|βH〉|βV〉, (19)

where the coherent state parameters αH, αV, βH, and βV are the
independent variables used to describe the modes represented
by the creation operators â†

H, â†
V, b̂†

H, and b̂†
V, respectively.

Note that Eq. (19) is now a four-mode Q function.
The Q function is typically used when one has macroscopic

states that contain many photons, but the Q function can be
used to express single-photon states as well. Ideally, the SPDC
source of Fig. 1(a) would only emit a single pair of photons;
however, we wish to also consider the case when multiple
photon pairs are emitted. This is why we choose to use the Q
function representation. The Q function allows us to write the
general state emitted from the SPDC source in closed form.
This representation also has the advantage of being indifferent
to whether the state is close to being a single photon or is
macroscopic.

Using the pure state of Eq. (13) in Eq. (19) gives the Q
function for the state after the polarization rotation of Fig. 1(c)
as

Q(αH, αV, βH, βV)

= 1

π4 cosh2(s)
e−(|αH|2+|αV|2+|βH|2+|βV|2 )

× e− tanh(s) cos(θA−θB )(αHβV+α∗
Hβ∗

V−αVβH−α∗
Vβ∗

H )/2

× e− tanh(s) sin(θA−θB )(αHβH+α∗
Hβ∗

H+αVβV+α∗
Vβ∗

V )/2

× ei tanh(s) sin(2θA )(α2
H−α∗2

H −α2
V+α∗2

V )/4

× ei tanh(s) sin(2θB )(β2
H−β∗2

H −β2
V+β∗2

V )/4

× e−i tanh(s) cos(2θA )(αHαV−α∗
Hα∗

V )/2

× e−i tanh(s) cos(2θB )(βHβV−β∗
Hβ∗

V )/2. (20)

It is important to note that the four-mode Q function
relies on four complex variables, thus requiring eight real
independent variables. To use the Q function of Eq. (20)
to compute the rates of Eq. (15), we will need to compute
eight-dimensional integrals. In order to compute expectation
values using the Q function, we must first express observ-
ables in antinormal order [38]. Antinormal order requires all
annihilation operators to be on the left of each term and all
creation operators to be on the right. If we focus on the rate
R++, the required observable expressed in antinormal order is
given simply as

â†
HâHb̂†

Hb̂H = (âHâ†
H − 1)(b̂Hb̂†

H − 1)

= âHâ†
Hb̂Hb̂†

H − âHâ†
H − b̂Hb̂†

H + 1, (21)

where we have used the commutation relation for the creation
and annihilation operators. We next replace âH → αH, â†

H →
α∗

H, b̂H → βH, and b̂†
H → β∗

H, before inserting the resulting
expression in an integral over the Q function [38]. Perform-
ing this procedure for Eq. (21) and the other observables of
Eq. (15) gives the rates using the Q function as

R++ =
∫

d2αH d2αV d2βH d2βV Q(αH, αV, βH, βV)

× (|αH|2|βH|2 − |αH|2 − |βH|2 + 1),

R−− =
∫

d2αH d2αV d2βH d2βV Q(αH, αV, βH, βV)

× (|αV|2|βV|2 − |αV|2 − |βV|2 + 1),

R+− =
∫

d2αH d2αV d2βH d2βV Q(αH, αV, βH, βV)

× (|αH|2|βV|2 − |αH|2 − |βV|2 + 1),

R−+ =
∫

d2αH d2αV d2βH d2βV Q(αH, αV, βH, βV)

× (|αV|2|βH|2 − |αV|2 − |βH|2 + 1), (22)

where d2αH is the differential over the real and imaginary
parts of αH and similarly for the other three variables. Using
the Q function of Eq. (20) in Eq. (22) and performing the
integrals is a multistep process which is detailed in the next
subsection.

C. Computation of the coincidence rates integrals

Computing the coincidence rates of Eq. (15) involves eval-
uating the eight-dimensional integrals of Eq. (22) over the
real and imaginary parts of the four complex variables in the
Q function defined by Eq. (19). Ordinarily, these integrals
would be very difficult to compute directly. However, we may
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use the fact that the Q functions for the output states of the
beam-splitter method and the Sagnac method are represented
by multidimensional Gaussian normal distributions. This fact
significantly reduces the analytic complexity of the integrals.

A general multidimensional normal distribution may be
represented as

P(x) = 1√
(2π )N Det(Σ)

e−(x−μ)·[Σ−1(x−μ)]/2, (23)

where N is the number of dimensions, x is a vector of the
sampling variables of the distribution, μ is a vector of the
means of the sampling variables, and Σ is the covariance
matrix. The elements of the covariance matrix can be defined
using the central second moments of the distribution P(x),
giving

Σ jk ≡
∫

dN x(x j − μ j )(xk − μk )P(x), (24)

where dN x is the product of the differentials over each of the
N independent variables, and the integration is over all space.

Note that the coincidence rate definitions of Eq. (22) are
equivalent to taking higher moments of the Q function. If
we let the sampling vector x be an eight-dimensional vector
defined using the complex variables of the Q function of
Eq. (19) as

x1 + ix2 ≡ αH, x3 + ix4 ≡ αV,
(25)

x5 + ix6 ≡ βH, x7 + ix8 ≡ βV,

then the rate R++ of Eq. (22) can be written as

R++ =
∫

d8x
(
x2

1x2
5 + x2

1x2
6 + x2

2x2
5 + x2

2x2
6

− x2
1 − x2

2 − x2
5 − x2

6 + 1
)
P(x), (26)

where we have let N = 8, and the distribution P(x) of Eq. (23)
is replaced with a Gaussian normal Q function. The higher
moments of a normal distribution can be computed using the
second moments. It can be shown that, for general N ,∫

dNx x2
j x

2
k P(x) = Σ j jΣkk + 2 Σ2

jk, (27)

where we have used the fact that Σ jk = Σk j . Using
Eqs. (24), (27), and the fact that P(x) is normalized gives the
integral of Eq. (26) as

R++ = Σ11Σ55 + Σ11Σ66 + Σ22Σ55 + Σ22Σ66

+ 2Σ2
15 + 2Σ2

16 + 2Σ2
25 + 2Σ2

26

− Σ11 − Σ22 − Σ55 − Σ66 + 1. (28)

We use this procedure for the other three coincidence rates,
obtaining

R−− = Σ33Σ77 + Σ33Σ88 + Σ44Σ77 + Σ44Σ88

+ 2Σ2
37 + 2Σ2

38 + 2Σ2
47 + 2Σ2

48

− Σ33 − Σ44 − Σ77 − Σ88 + 1,

R+− = Σ11Σ77 + Σ11Σ88 + Σ22Σ77 + Σ22Σ88

+ 2Σ2
17 + 2Σ2

18 + 2Σ2
27 + 2Σ2

28

− Σ11 − Σ22 − Σ77 − Σ88 + 1,

R−+ = Σ33Σ55 + Σ33Σ66 + Σ44Σ55 + Σ44Σ66

+ 2Σ2
35 + 2Σ2

36 + 2Σ2
45 + 2Σ2

46

− Σ33 − Σ44 − Σ55 − Σ66 + 1. (29)

Now, the Q function of Eq. (20) is a multidimensional
Gaussian normal distribution with N = 8 and a mean of zero.
Thus, the vector μ = 0 and inspection of Eq. (23) reveals
that, if μ = 0, we may simply read off the values of Σ−1

from Eq. (20). We may then invert Σ−1 to compute the co-
variance matrix Σ. Once the covariance matrix is obtained,
we can compute the integrals using the expressions for the
coincidence rates, such as the one in Eq. (28).

Following this procedure, we use the output Q function for
the beam-splitter method, which is given by Eq. (20), to find
that the elements of the matrix Σ−1 are

Σ−1
11 = Σ−1

22 = Σ−1
33 = Σ−1

44

= Σ−1
55 = Σ−1

66 = Σ−1
77 = Σ−1

88 = 2,

Σ−1
12 = −Σ−1

34 = sin(2θA) tanh(s),

Σ−1
14 = Σ−1

23 = − cos(2θA) tanh(s),

Σ−1
15 = −Σ−1

26 = Σ−1
37 = −Σ−1

48

= sin(θA − θB) tanh(s),

Σ−1
17 = −Σ−1

28 = −Σ−1
35 = Σ−1

46

= cos(θA − θB) tanh(s),

Σ−1
56 = −Σ−1

78 = sin(2θB) tanh(s),

Σ−1
58 = Σ−1

67 = − cos(2θB) tanh(s), (30)

where we have used the fact that Σ−1 is a symmetric matrix;
that is, Σ−1

jk = Σ−1
k j , and all of the elements not displayed

in Eq. (30) are zero. We can invert Σ−1 using a symbolic
processor such as MATHEMATICA, which gives the elements
of the covariance matrix Σ as

Σ11 = Σ22 = Σ33 = Σ44 = Σ55

= Σ66 = Σ77 = Σ88 = 1
8 [3 + cosh(2s)],

−Σ12 = Σ34 = 1
8 sin(2θA) sinh(2s),

Σ14 = Σ23 = 1
8 cos(2θA) sinh(2s),

−Σ15 = Σ26 = −Σ37 = Σ48

= 1
8 sin(θA − θB) sinh(2s),

−Σ17 = Σ28 = Σ35 = −Σ46

= 1
8 cos(θA − θB) sinh(2s),

−Σ56 = Σ78 = 1
8 sin(2θB) sinh(2s),

Σ58 = Σ67 = 1
8 cos(2θB) sinh(2s),

−Σ16 = Σ25 = Σ38 = −Σ47

= 1
4 cos(θA + θB) sinh2(s),

−Σ18 = Σ27 = −Σ36 = Σ45

= 1
4 sin(θA + θB) sinh2(s), (31)
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FIG. 2. Plots of the CHSH parameter |S| for the state gener-
ated using the beam-splitter method of Fig. 1(a) given by Eq. (34)
(solid lines) and the state generated using the Sagnac method of
Fig. 1(b) given by Eq. (53) (dashed lines). The CHSH inequality is
violated when |S| > 2 and is at its maximum when |S| = 2

√
2. These

two values are indicated by the gray dotted lines. (a) Plots of |S| as a
function of the squeezing parameter s. (b) Plots of |S| as a function
of the mean photon number μ. All units are dimensionless. In all
cases, we see that the state generated by the Sagnac method is more
robust to the negative effects of multiple photon pairs than the state
generated by the beam-splitter method.

where Σ jk = Σk j and the elements not listed are zero. Next,
using the appropriate elements of Σ in Eqs. (28) and (29) gives
the coincidence rates as

R++ = R−− = 1
16 {4 sinh4(s)[1 + cos2(θA + θB)]

+ sinh2(2s) sin2(θA − θB)},
R+− = R−+ = 1

16 {4 sinh4(s)[1 + sin2(θA + θB)]

+ sinh2(2s) cos2(θA − θB)}. (32)

With the coincidence rates of Eq. (32) in hand, we may now
compute the correlation coefficient using Eq. (14) obtaining

E (θA, θB)

= −cos(2θA) cos(2θB) + cosh(2s) sin(2θA) sin(2θB)

2 cosh(2s) − 1
.

(33)

Finally, using Eq. (33) in Eq. (16) gives the magnitude of the
CHSH parameter as

|S| = 2
√

2
cosh2(s)

2 cosh(2s) − 1
. (34)

The mean number of photon pairs μ for SPDC is given as μ =
sinh2 s [33]. This allows us to represent the CHSH parameter
using the mean photon pair generation rate as

|S| = 2
√

2
1 + μ

1 + 4μ
. (35)

Equations (34) and (35) are remarkably simple expressions.
They represent the reduction of the CHSH parameter due to
the presence of additional photon pairs, and the corresponding
plots are represented in Fig. 2(a). It is only when the mean
photon number reaches zero that the CHSH parameter is at
its maximum. Thus, for SPDC generated entangled states,
there always exists some probability of an additional pair that
degrades the CHSH parameter.

III. SAGNAC METHOD

A. Output quantum state

Having computed S for the experimental setup shown in
Fig. 1(a), we now move to the more complicated Sagnac
method setup shown in Fig. 1(b). The experimental setup for
the Sagnac method requires more careful alignment than the
beam-splitter setup. The analysis for the Sagnac method starts
by examining the pump beam. The pump beam is aligned so
that it is diagonally polarized before insertion into the PBS.
For a strong coherent pump with coherent state parameter γ0,
the state of the pump beam can then be written as

|ψpump〉 = e−|γ0|2/2eγ0(ĉ†
H+ĉ†

V )/
√

2 |0〉, (36)

where ĉ†
H creates a horizontally polarized photon, ĉ†

V creates a
vertically polarized photon, and |0〉 is again the vacuum state.

Following the PBS, we let the creation operator ĉ† describe
pump photons that travel clockwise about the Sagnac-like
interferometer and we let d̂† describe pump photons that travel
counterclockwise. This gives the state of the pump after the
PBS as

|ψpump〉 = e−|γ0|2/2eγ0(ĉ†
H+d̂†

V )/
√

2 |0〉, (37)

where we have assumed that the PBS sends horizontally polar-
ized photons clockwise about the Sagnac interferometer and
vertically polarized photons counterclockwise.

Since we now have photons interacting with the PPKTP
crystal from two different directions, we revise the Hamilto-
nian of Eq. (2) to now be

Ĥ = iκ (ĉ†
HâHâV − ĉHâ†

Hâ†
V) + iκ (d̂†

Vb̂Hb̂V − d̂Vb̂†
Hb̂†

V),
(38)

where the â† creation operators describe signal and idler
photons traveling clockwise and the b̂† creation operators
describe signal and idler photons traveling counterclockwise.

Using the state of Eq. (37), we may now make the strong
pump approximation by letting

ĉH → 〈ĉH〉 = γ0√
2
, ĉ†

H → 〈ĉ†
H〉 = γ ∗

0√
2
,

(39)

d̂V → 〈d̂V〉 = γ0√
2
, d̂†

V → 〈d̂†
V〉 = γ ∗

0√
2
,

resulting in the approximate Hamiltonian

Ĥ = i
κ√
2

(γ ∗
0 âHâV − γ0â†

Hâ†
V) + i

κ√
2

(γ ∗
0 b̂Hb̂V − γ0b̂†

Hb̂†
V).

(40)

If we let γ0 be real and we redefine the squeezing parameter
as s ≡ γ0κτ/

√
2, where τ is the interaction time inside the

crystal, the unitary evolution operator for this method can now
be represented as

Û = es(âHâV−â†
Hâ†

V )es(b̂Hb̂V−b̂†
Hb̂†

V ). (41)
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We can factor Eq. (41), just as was done in Eq. (5), giving

Û = e− tanh(s)â†
Hâ†

V

cosh2(s)

[
1

cosh(s)

]â†
HâH+â†

VâV

etanh(s)âHâV

× e− tanh(s)b̂†
Hb̂†

V

[
1

cosh(s)

]b̂†
Hb̂H+b̂†

Vb̂V

etanh(s)b̂Hb̂V . (42)

Applying the operator of Eq. (42) to the vacuum state |0〉 and
neglecting the pump gives the state after interaction with the
PPKTP crystal as

|ψ〉 = 1

cosh2(s)
e− tanh(s)â†

Hâ†
V e− tanh(s)b̂†

Hb̂†
V |0〉. (43)

We use the convention that when the different sets of
photon pairs arrive at the PBS, the horizontal photons will
be transmitted and the vertical photons will be reflected. We
now let the transmitted path for the clockwise rotation be
labeled path A and the counterclockwise rotation be path B.
Therefore, the vertically polarized photons transform as

â†
V → b̂†

V , b̂†
V → −â†

V. (44)

Applying the transformation of Eq. (44) to the state given by
Eq. (43) results in the state after the PBS |�out〉 being given
by

|�out〉 = 1

cosh2(s)
e− tanh(s)â†

Hb̂†
V etanh(s)â†

Vb̂†
H |0〉

=
∞∑
j=0

∞∑
k=0

(−1) j[tanh(s)] j+k

j!k! cosh2(s)
â† j

H â†k
V b̂†k

H b̂† j
V |0〉. (45)

Much like the state in Eq. (9) that was generated by the
beam-splitter method of Fig. 1(a), the state in Eq. (45) does
not resemble the ideal Bell state of Eq. (1). Again, letting
s ≈ 0 so that we only need to take terms up to j = k = 1 in
Eq. (45) yields

1

cosh2(s)
[1 − tanh(s)(â†

Hb̂†
V − â†

Vb̂†
H)]|0〉. (46)

Note that, unlike Eq. (11), the state of Eq. (46) does not
contain terms where both photons enter the same path. This
makes the entangled state generated from the Sagnac method
of Fig. 1(b) more efficient than the beam-splitter method of
Fig. 1(a). As we will see, this will be reflected in the resulting
CHSH parameter for the situation when multiple pairs are
generated.

B. Calculation of the CHSH parameter using
the Husimi-Kano function

We now use the state of Eq. (45) to compute the CHSH pa-
rameter of Fig. 1(c). Applying the transformation of Eq. (12)
to the state of Eq. (45) gives the state |ψ〉 after the polarization
rotations of Fig. 1(c) as

|ψ〉 = 1

cosh2(s)
e− tanh(s) cos(θA−θB )(â†

Hb̂†
V−â†

Vb̂†
H )

× e− tanh(s) sin(θA−θB )(â†
Hb̂†

H+â†
Vb̂†

V )|0〉. (47)

Equation (47) appears simple; however, much like Eq. (13),
we cannot simply use Eq. (47) in Eq. (15) to compute the co-

incidence rates. Therefore, we once again use the Q function
to compute the coincidence rates of Eq. (15). The Q function
for the state of Eq. (47) is given by

Q(αH, αV, βH, βV)

= 1

π4 cosh4(s)
e−(|αH|2+|αV|2+|βH|2+|βV|2 )

× e− tanh(s) cos(θA−θB )(αHβV+α∗
Hβ∗

V−αVβH−α∗
Vβ∗

H )

× e− tanh(s) sin(θA−θB )(αHβH+α∗
Hβ∗

H+αVβV+α∗
Vβ∗

V ). (48)

We now use the Q function of Eq. (48) in the rate integrals
of Eq. (22). This distribution is also characterized by N = 8
and μ = 0, so that we can read off the values of Σ−1 from
Eq. (48), and subsequently invert Σ−1 to compute the covari-
ance matrix Σ. The elements of Σ−1 in this case are given as

Σ−1
11 = Σ−1

22 = Σ−1
33 = Σ−1

44

= Σ−1
55 = Σ−1

66 = Σ−1
77 = Σ−1

88 = 2,

Σ−1
15 = −Σ−1

26 = Σ−1
37 = −Σ−1

48

= 2 sin(θA − θB) tanh(s),

Σ−1
17 = −Σ−1

28 = −Σ−1
35 = Σ−1

46

= 2 cos(θA − θB) tanh(s), (49)

where, again, Σ−1
jk = Σ−1

k j and the elements not listed are zero.
Note that there are fewer nonzero elements in Eq. (49) than
in Eq. (30). This is obvious from the fact that there are fewer
terms in the exponent of Eq. (48) than in Eq. (20). Inverting
Σ−1 gives the nonzero elements of the symmetric covariance
matrix Σ as

Σ11 = Σ22 = Σ33 = Σ44 = Σ55

= Σ66 = Σ77 = Σ88 = 1
2 cosh2(s),

−Σ15 = Σ26 = −Σ37 = Σ48

= 1
4 sin(θA − θB) sinh(2s),

−Σ17 = Σ28 = Σ35 = −Σ46

= 1
4 cos(θA − θB) sinh(2s). (50)

Using the elements of the covariance matrix in the expressions
for the coincidence rates, such as Eq. (28), gives the coinci-
dence rates for the Sagnac method as

R++ = R−− = 1 + cosh4 s

− cosh2(s)[2 − sinh2(s) sin2(θA − θB)],

R+− = R−+ = 1 + cosh4 s

− cosh2(s)[2 − sinh2(s) cos2(θA − θB)]. (51)

Using these coincidence rates in the definition of the correla-
tion coefficient of Eq. (14) gives

E (θA, θB) = −2 cosh2(s) cos[2(θA − θB)]

3 cosh(2s) − 1
. (52)
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Finally, using the correlation coefficient of Eq. (52) in Eq. (16)
gives the CHSH parameter as

|S| = 2
√

2
2 cosh2(s)

3 cosh(2s) − 1
. (53)

If we want to express Eq. (53) in terms of the mean number of
pairs μ, we need to compute μ from Eq. (45). This is given as

μ ≡ 〈(â†
HâH + â†

VâV)(b̂†
Hb̂H + b̂†

Vb̂V)〉 = 2 sinh2(s). (54)

Equation (54) now allows us to express Eq. (53) in terms of
the mean number of photons, so that

|S| = 2
√

2
2 + μ

2 + 3μ
. (55)

Equations (53) and (55) have been plotted in Fig. 2(b) using
Eqs. (34) and (35). From Figs. 2(a) and 2(b), we see that the
entanglement from the state generated by the beam-splitter
method of Fig. 1(a) degrades as a function of the number of
pairs more quickly than the entangled state generated by the
Sagnac method of Fig. 1(b). This confirms that the Sagnac
method of Fig. 1(b) is the more efficient method. Also, from
Fig. 2(b), we see that the CHSH parameter initially decreases
linearly as a function of μ, which represents a significant rate
of reduction in the CHSH S parameter.

IV. CONCLUSION

In this article, we have introduced a rigorous theoretical
model for the treatment of multiple photon pairs produced
by SPDC sources. This model did not assume a maximum
number of permitted photon pairs and potentially allows for
infinite pairs. This was achieved using the Husimi-Kano Q
function. This model shows that the CHSH parameter is
dramatically reduced as the mean number of photon pairs
μ increases above zero. This places serious limitations on
the potential of SPDC sources to be used in robust quantum
communication systems.

As was mentioned in the introduction, several other works
have commented on this issue. Most of these works were
either limited by a set number of additional pairs [29] or
relied on a classical probability distribution [19,30–32]. The

classical distribution approach is capable of predicting the
effect of multiple pairs in the Sagnac method of Fig. 1(b).
Reference [19] computed the visibility of two-photon interfer-
ence as a function of the mean number photons for the method
of Fig. 1(b). This was computed using a Poisonnian distri-
bution and was compared to actual experimental data [19].
For small photon numbers, this model did not depend on the
efficiency of the detection system and the resulting visibility
was given as V ≈ 1 − μ [19]. In our case, the two-photon
interference visibility can be given as V = |S|/2

√
2 where

S is defined in Eq. (55). If we let μ ≈ 0, then our visibility
is also given by V ≈ 1 − μ, which agrees exactly with the
result of Ref. [19]. The discrepancy for larger values of μ is
likely due to the fact that Ref. [19] considered an inefficient
detection system whereas we considered an ideal detection
system for simplicity and to highlight the effects of multiple
pairs. Additionally, Refs. [31,32] computed the two-photon
interference visibility using a thermal distribution. The result
for indistinguishable photons in Ref. [31] agrees exactly with
our full V = |S|/2

√
2, where |S| is given by Eq. (55).

While a classical probability distribution is capable of pre-
dicting the resulting CHSH parameter for the method shown
in Fig. 1(b), it is unclear how a classical probability distribu-
tion could be used to give the result for the setup of Fig. 1(a).
This is due to the additional quantum evolution given by
the 50:50 beam splitter. This situation was easily computed
through use of the Q function. We hope to use this method
to compute the results of other, more complicated setups,
as well as analyzing the impact of multiple photon pairs on
teleportation [1] and entanglement swapping [39].

Multiple photon pairs are a critical issue for polarization-
entangled states generated using the SPDC process. Un-
derstanding this issue is important for its mitigation and
diagnosing experimental challenges. We have furthered this
cause by establishing an all-quantum rigorous theoretical
model rooted in a first-principles based approach.
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