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Abstract: We present a theoretical analysis for tunable optoelectronic oscillators (OEOs) based
on stimulated Brillouin scattering (SBS). A pump laser is used to generate a Brillouin gain which
selectively amplifies a phase-modulated and contra-propagating laser signal. The radiofrequency
beatnote generated after photodetection is filtered, amplified and fed back to the phase modulator
to close the optoelectronic loop. Tunability is readily achieved by the adjustable detuning of the
pump and signal lasers. OEOs based on stimulated Brillouin scattering have been successfully
demonstrated at the experimental level, and they feature competitive phase noise performances
along with continuous tunability for the output radiofrequency signal, up to the millimeter-wave
band. However, the nonlinear dynamics of SBS-based OEOs remains largely unexplored at
this date. In this article, we propose a model that describes the temporal dynamics of the
microwave envelope, thereby allowing us to track the dynamics of the amplitude and phase of the
radiofrequency signal. The corresponding nonlinear and time-delayed differential equation is
then analyzed to reveal the underlying bifurcation behavior that emerges as the feedback gain
is increased. It is shown that after the primary Hopf bifurcation that triggers the microwave
oscillations, the system undergoes a secondary Neimark-Sacker bifurcation before fully developed
chaos emerges for the highest gain values. We also propose a model for the chipscale version
of this SBS-based OEO where the delay line is replaced by a highly nonlinear waveguide. The
numerical simulations are found to be in excellent agreement with the analytical study.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optoelectronic oscillators (OEOs) are microwave photonic systems that have found a plethora
of applications in various disciplines related to microwave photonics (see review article [1]).
The most important and most investigated application so far is the generation of ultra-pure
radiofrequency (RF) signals [2–4]. In their most basic configuration, they feature a closed
loop where an amplitude-modulated laser signal is launched into a few km-long optical fiber
delay line before being photodetected, and the output microwave signal is frequency-filtered and
amplified before being fed back to the light modulator [5]. This original architecture had the
great advantage of simplicity and offers a competitive phase noise performance. However, since
the filtering occurs in the RF domain, the resulting oscillator is generally not tunable in frequency.
Another drawback is narrowband RF filtering in the mm-wave range (frequency beyond 30 GHz)
becomes progressively less effective as the frequency increases.

Both these problems are addressed by OEOs based on stimulated Brillouin scattering (SBS).
Using Brillouin scattering to improve the functionalities of OEOs is a widespread strategy that
has been implemented in various platforms [6–9]. In the configuration of interest in this article, a
pump laser is launched in an highly nonlinear fiber spool in order to generate a Brillouin gain
profile at an adjacent redshifted frequency. This process permits the selective amplification of
a phase-modulated and contra-propagating laser signal. Most importantly, the RF oscillation
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frequency solely depends on the spectral gap between the pump and signal lasers, and is thereby
easily tunable. From that regard, a main characteristic of this approach is that frequency selection
is achieved by the means of a microwave photonic filter instead of an RF filter [10–12]. Once
the RF beatnote is generated after photodetection, it is filtered, amplified and fed back to the
phase modulator to close the optoelectronic loop. It has been demonstrated by several research
groups that these SBS-based OEOs feature frequency tunability from DC to more than 60 GHz
and an ultra-low phase noise figure [13–15]. In fact, the km-long fiber spool can be replaced by a
sub-cm-long highly nonlinear waveguide, and in that case, the system has the potential to be
reduced to a chipscale size [16].

Fig. 1. Schematic representation of the SBS-based OEO, for the generic case where T ≠ 0.
Circ: Circulator; Filter: RF filter intended to select the beatnote frequency Ωrf (wideband);
ISO: Isolator; HNLF: Highly nonlinear fiber; PC: Polarization-controller; PD: Photodetector;
PM: Phase modulator; PS: Phase shifter; RFA: Radiofrequency amplifier.

Despite the potential and many distinctive advantages of SBS-based OEOs, no dynamical
model has ever been proposed to describe their nonlinear behavior. Indeed, previous research
has shown that it is in general possible to obtain an equation for the envelope of the microwave
generated by these OEOs [1,17–19]. In this article, we undertake a theoretical analysis showing
that an delay-differential envelope equation for SBS-OEOs can be derived, analogously to what
had been done earlier for the conventional architectures of OEOs. In agreement is shown that as
the gain is increased, the system undergoes a primary Hopf bifurcation and then a secondary
Neimark-Sacker bifurcation before being driven to fully developed chaos.

The outline of the article paper is following. In Sec. 2, the SBS-based OEO is presented and
its principle of operation is described. Section 3 is devoted to the analysis of the stimulated
Brillouin scattering dynamics, and an input-output relationship is derived for the selectively
amplified signal wave. The dynamical characterization of the SBS-based microwave photonic
filter enables us to obtain a time-domain differential equation for the OEO in Sec. 4. Sections
5 and 6 are focused on evaluating the stability of the stationary dynamical states predicted by
the model in the cases where the frequency-selective amplification is mediated by a km-long
fiber delay line (T ≠ 0) or by a sub-cm-long waveguide (T ≃ 0), respectively. The last section
concludes the article.

2. System and operation principle

The schematic representation of the SBS-based OEO is presented in Fig. 1. The dynamics of this
system can be described by two key variables. The first one relates to electric field E(t) at the
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input of the phase modulator, while the second relates to the voltage V(t) feeding the modulator.
Instead of working directly with the real-valued variables E(t) and V(t), we use instead their
complex slowly-varying amplitudes E(t) = E(t)eiϕ(t) and V(t) = V(t)eiψ(t) defined through

E(t) =
1
2
E(t)eiω0t +

1
2
E∗(t)e−iω0t (1)

V(t) =
1
2
V(t)eiΩ0t +

1
2
V∗(t)e−iΩ0t , (2)

where ω0 ≡ ωs and Ω0 ≡ Ωrf are the angular frequencies associated with the signal infrared laser
beam (around 1550 nm) and to the microwave signal (multi-GHz frequency to be defined later),
respectively.

Fig. 2. Schematic Representation of a chipscale SBS-based OEO. This system corresponds to
the case T = 0 in our analysis (see Sec. 4.4). Only the essential elements have been included
in the figure. Circ: Circulator; HNLW: Highly nonlinear waveguide; PD: Photodetector.
PM: Phase modulator; A proof-of-concept experiment for chispscale SBS-based OEOs has
been presented in Ref. [16], using a chalcogenide waveguide.

The pump optical path is also called high-order frequency selection branch, and it is where the
RF frequencyΩ0 is determined. The pump field is Ep(t) while Es(t) is the phase-modulated signal
field that is launched at the input of the highly nonlinear fiber. The two waves counter-propagate in
the nonlinear fiber spool, and the pump wave stimulates Brillouin backscattering. The frequencies
of the fields involved in this process are related as ωp = ωs + Ωrf + ΩB, so that the RF output
frequency can be obtained as

Ωrf ≡ Ω0 = ωp − ωs −ΩB (3)

where ΩB is the Brillouin shift in the fiber (typically 2π × 10–20 GHz). In the oscillator, the
first blue-sidemode is chosen for the SBS amplification. The peak of the Brillouin gain is such
that ωB = ωp −ΩB, and the microwave photonic filter amplifies this mode while narrowing its
linewidth [see Fig. 1(a)]. In Eq. (3), the frequencies ωs and ΩB are fixed: however, the tunability
of ωp allows the RF output frequency to be tunable as well. As a result of the frequency-selective
amplification, the zeroth (central) and first-order (blue-side) modes of the phase-modulated
signal beam become dominant [see Fig. 1(b)], and their spectral spacing defines the RF beatnote
frequency after photodetction.

It is important to note that one of the most outstanding challenge in OEO technology is the
generation of mm-waves [20–23]. In general, achieving such high frequencies (>30 GHz) is
achieved via frequency multiplication [24–30]. Additionally, The other outstanding challenge for
OEOs is tunability, which has been addressed using several different techniques [31–40]. From
that perspective, a key advantage of SBS-based OEOs is that they addresses both challenges
simultaneously and the only limitation for the maximal frequency of the RF signal is the bandwidth
of the photodiode and phase modulator.
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3. Frequency-selective amplification based on stimulated Brillouin scattering

3.1. Brillouin amplification

The phenomenology of frequency-selective Brillouin amplification is the following. We consider
that the highly nonlinear fiber of length L and aligned along an axis z such that the fiber is located
at 0 ≤ z ≤ L. The pump laser wave

Ep(t) =
1
2
Epeiωpt +

1
2
E∗

pe−iωpt (4)

is launched on the right end (at z = L), with power Pp = |Ep |
2 and optical frequencyωp ≃ 2π×193

THz (i. e. λp ≃ 1550 nm). As it propagates in the −z direction, it creates a Lorentzian Brillouin
gain profile

gB (ω) = gB0

(∆ΩB/2)2

(∆ΩB/2)2 + (ω − ωB)2
(5)

around the red-shifted frequency ωB = ωp − ΩB, where ΩB is the Brillouin shift in the fiber
(typically 2π × 10–20 GHz), ∆ΩB being the full width at half-maximum (FWHM) of the gain
profile (typically 2π × 10–50 MHz) and gB0 being the peak value of the Brillouin gain (in m/W).

Consider now a contra-propagating signal laser beam Es(t) defined as

Es(t) =
1
2
Eseiωst +

1
2
E∗

s e−iωst , (6)

that is launched on the left end (at z = 0), with power Ps = |Es |
2 and a frequency that falls within

the bandwidth of the Brillouin gain, that is ωs ≃ ωB [note that this simplified situation does not
correspond to the one described in Fig. 1(a), where it is a sidemode of the phase-modulated
signal that is amplified, so that we have instead ωs ≃ ωB −Ωrf ; equivalently, one can say that both
configurations are equivalent is Ωrf ≡ 0]. The signal wave would undergo frequency-selective
amplification, i.e., the spectral components of the signal falling within the bandwidth will be
amplified, while those that are outside would remain unchanged (provided we ignore all other
effects in the fiber, such as losses, cross- and self-phase modulation, etc.). Since the fiber has
a length L, it takes a time T = L/vg for the signal Es to exit the fiber amplifier, with vg being
the group velocity of light in the fiber. The output signal would therefore a selectively amplified
and time-delayed counterpart of the input signal, and the purpose of this section is to find the
dynamical relationship between both.

3.2. Equations of the traveling waves

The time-domain slowly-varying envelope of the input and output signals are written as E in
s (t)

and Eout
s (t), respectively (in units of

√
W). We can introduce their corresponding intensities as

Iin,out
s (t) = |E

in,out
s (t)|2/Aeff (in units of W/m2), with Aeff being the effective area of the fiber.

If we neglect dispersion and cross/self-phase modulation in the fiber, the pump and signal
intensities Ip(z, t) and Is(z, t) at any point of the Brillouin amplifier obey the well-known equations
[41,42]

∂Ip

∂z
−

1
vg

∂Ip

∂t
= gB0 IsIp + αIp (7)

∂Is
∂z
+

1
vg

∂Is
∂t
= gB0 IpIs − αIs , (8)

where α stands for the linear losses in the fiber (in units of m−1). Note unlike in Ref. [42], the
z-coordinate is here oriented along the propagation direction of the signal laser wave (instead of
the pump wave), for being the variable of interest in our study.
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We furthermore make the following two assumptions: (i) The pump laser power is assumed
undepleted (i. e. Ip is assumed approximately constant, and such that Ip ≫ Is); (ii) and the
losses in the fiber are negligible in comparison to the Brillouin amplification (i. e., α ≃ 0). As a
consequence, the above equations are reduced to the single equation

∂Is
∂z
+

1
vg

∂Is
∂t
= gB0 IpIs with Ip = Const., (9)

which has a generic solution of the form

Is(z, t) = egB0 Ipz I
(︃
t −

z
vg

)︃
(10)

where I is at this point an arbitrary waveform propagating along the fiber in the z direction.
Indeed, the input and output signals in the fiber can be defined as

Iin
s (t) ≡ Is(0, t) = I (t) (11)

Iout
s (t) ≡ Is(L, t) = egB0 IpL I(t − T), (12)

where L = vgT is the length of the Brillouin-active fiber yielding a time-delay T when light
travels at the group velocity vg. We therefore deduce

Iout
s (t)

Iin
s (t − T)

= egB0 IpL (13)

and since egB0 IpL>1, it results as expected that owing to stimulated Brillouin scattering, the output
signal is an amplified version of the delayed input signal.

3.3. Accounting for frequency selection

Equation (13) does not account for frequency selection in the amplification process; more
precisely, it assumes that the pump and the input/output signals are perfectly monochromatic
signals with center frequencies ωp and ωs = ωB, respectively.

Accounting for the effect of the Brillouin gain bandwidth on the amplification process requires
rewrite Eq. (13) in the Fourier domain and to replace the gain parameter gB0 by the Brillouin gain
profile gB (Ω), following

Ĩout
s (Ω)

Ĩin
s (Ω)

=
|Ẽout

s (Ω)|2

|Ẽ in
s (Ω)e−iΩT |2

= egB (Ω)IpL , (14)

where Ω = ω − ωB is the frequency detuning from the center frequency of the Brillouin gain. It
is important to note here that according to Eq. (14), the Brillouin gain viewed by the incoming
signal Ĩin

s (ω) is not a Lorentzian; Instead, it is the exponential of a Lorentzian. This gain profile,
which can prosaically be described as a hump on top of a flat background equal to 1, provides a
sound intuitive description of the Brillouin selective amplification. On the one hand, frequency
components ω far outside the gain profile are not amplified [gB (ω) ≃ 0, i.e. egB (ω)IpL ≃ 1] and the
input signals are unaltered; On the other hand, frequency components ω inside the gain profile
amplified [gB (ω ≃ ωB)>0, i.e. egB (ω)IpL>1].

We need now to rewrite Eq. (14) in terms of fields in the Fourier domain, so that the phase
information of all the signals involved can be retrieved. We first express the Brillouin gain as

gB (Ω) = gB0 |LB(Ω)|
2 , (15)
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where
LB(Ω) =

(∆ΩB/2)
(∆ΩB/2) + iΩ

(16)

is the complex-valued Lorentzian profile as viewed by the signal field. Using the equality

egB (Ω)IpL ≡

|︁|︁|︁e 1
2 gB0 IpL LB(Ω)

|︁|︁|︁2 , (17)

we can now rewrite Eq. (14) as

Ẽout
s (Ω)

Ẽ in
s (Ω)e−iΩT

= e
1
2 gB0 IpL LB(Ω) . (18)

It is not possible to perform rigorously an inverse Fourier transform for the fields Ẽ in,out
s (Ω) in

Eq. (18). The main reason is that there is no closed-form relationship giving the inverse Fourier
transform for the exponential of Lorentzian. However, one can note that for small gain (i. e.
gB0 IpL ≪ 1), the exponential of a Lorentzian can be approximated to a Lorentzian superimposed
to a flat background, following

e
1
2 gB0 IpL LB(Ω) ≃ 1 +

1
2

gB0 IpLLB(Ω) (19)

which allows to perform a closed-form inverse Fourier transform for the field Ẽ
in,out
s (Ω) in

Eq. (18).
Because of this useful mathematical property (the possibility to perform an inverse Fourier

transform), we propose to generalize the small-gain expansion of Eq. (19) to the case of large
gain. We therefore consider that gain is the sum of a flat background (= 1) and a Lorentzian,
even in the case of large gain, that is

e
1
2 gB0 IpL LB(Ω) ≃ 1 + GoLeq(Ω) with Leq(Ω) =

µ

µ + iΩ
, (20)

where Leq(Ω) is an equivalent Lorentzian with full width half maximum bandwidth 2µ, while
Go is the equivalent peak gain. The rationale behind the approximation of Eq. (20) is twofold.
The first reason is that as explained earlier, we can find a closed-form analytical formula for the
inverse Fourier transform for a Lorentzian gain, while we cannot do so for the exponential of a
Lorentzian. The second reason is related to the experimental features if Brillouin grain: Indeed,
in practice, the gain profile gB (Ω) of the Brillouin gain is only approximated by a Lorentzian,
so that strictly speaking, expressing our gain as the exponential of the Brillouin Lorentzian in
Eq. (14) is also an approximation, and not an exact result; therefore, the choice of the fitting
function for the Brillouin amplification is not critical as long as that function displays the main
features of frequency-selective amplification (input signal is unaltered outside of bandwidth,
while it is amplified when within bandwidth; see for example [43,44]).

For the approximation of Eq. (20) to be physically valid, we have to make sure that the peak
value and half-linewidth values of the equivalent Lorentzian gain 1 + GoLeq(Ω) match those of
the “exact” profile e

1
2 gB0 IpL LB(Ω). We therefore have the equalities

Gain peak condition:
|︁|︁|︁e 1

2 gB0 IpL LB (0)
|︁|︁|︁ = |︁|︁1 + GoLeq(0)

|︁|︁ (21)

Gain bandwidth condition:
|︁|︁|︁e 1

2 gB0 IpL LB (±µ)
|︁|︁|︁ = |︁|︁1 + GoLeq(±µ)

|︁|︁ (22)

that lead to
Go = e

1
2 gB0 IpL − 1 (23)
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µ =
∆ΩB

2

⌜⃓⎷ gB0 IpL

ln
[︂

1
2

(︂
egB0 IpL + 1

)︂]︂ − 1 . (24)

Note that unlike Brillouin scattering that has a peak gain and bandwidth independent of the pump
intensity Ip, frequency-selective Brillouin amplification has a pump dependent peak gain and
bandwidth.

3.4. Time-domain equations for Brillouin amplification

We now have all the elements needed to perform the inverse Fourier transform that will give the
us the equations ruling the field dynamics in the time domain. Let us first rewrite the output
signal as

Eout
s (t) = E

amp
s (t) + E in

s (t − T) (25)

where E
amp
s (t) is the amplified portion of the output signal. Then, we can use Eqs. (18) and (20)

to express the Fourier transform of this amplified portion as

Ẽ
amp
s (Ω) = Ẽout

s (Ω) − Ẽ in
s (Ω)e

−iΩT

= Go
µ

µ + iΩ
Ẽ in

s (Ω)e
−iΩT .

(26)

After multiplying both sides of this equation by µ + iΩ, we can perform an inverse Fourier
transform and finally obtain the desired equation

Ė
amp
s (t) = −µE

amp
s (t) + µGo E

in
s (t − T) (27)

where the overdot stands for time derivative. Equation (27) rules the frequency-selective
amplification in the time domain, and the output signal Eout

s (t) is recovered via Eq. (25). It
is interesting to note that we have mapped the partial differential Eq. (9) into a time-delayed
equation, while adding the narrowband filtering property of the amplifier.

It is interesting to note that: (i) We do not need to add a detuning σ; (ii) We adopt an
input-output convention such that the excitation term is not multiplied by i; (iii) By definition, the
initial condition for Eamp

s is null, i.e. Eamp
s (0) = 0.

4. OEO model

4.1. Phase modulation

The signal laser emits a monochromatic wave, that can be written as

EL =
√︁

P0 , (28)

where P0 is the optical power of this continuous-wave laser (i.e., EL is in units of
√

W). We
assume that this phase modulator has an RF modulation signal V(t), so that its output optical
field is

EPM(t) = EL exp

{︄
iπ

V(t)
Vπp

}︄
(29)

=
√︁

P0 exp

{︄
iπ

|V(t)|
Vπp

cos[Ω0t + ψ(t)]

}︄
. (30)

The Jacobi-Anger expansion gives

eix cosα =

+∞∑︂
n=−∞

inJn(x)einα (31)



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 14637

where Jn is the n-th order Bessel function of the first kind. Therefore, we have the expansion

EPM(t) =
√︁

P0 E(t) =
√︁

P0

+∞∑︂
n=−∞

En(t)einΩ0t (32)

with the modal fields
En(t) = inJn

[︃
π
|V(t)|
Vπp

]︃
einψ(t) . (33)

Note that the complex envelope field E and its modal components En are dimensionless.
The first sidemode E1(t) is now injected into the Brillouin amplifier. Following the analysis

led in the preceding Section, the amplified portion of the signal in the fiber obeys the equation

Ḃ(t) = −µB(t) + µGoE1(t − T) (34)

with initial condition B(0) = 0 [also note that B(t) is a dimensionless variable]. The total output
optical field after Brillouin amplification is now

F (t) =
+∞∑︂

n=−∞
Fn(t)einΩ0t , (35)

with Fn(t) being defined as

Fn(t) = En(t − T) + δ(n − 1)B(t) ≡
⎧⎪⎪⎨⎪⎪⎩

E1(t − T) + B(t) for n = 1

En(t − T) otherwise
, (36)

where δ(x) is the Kronecker function (equal to 1 for x = 0 and to 0 otherwise), while all the
modal fields En(t) are defined as in Eq. (33).

4.2. Accounting for the Brillouin amplification

Now that we have the equation ruling the Brillouin amplification, we can proceed with calculating
the voltage generated by the photodetection of this optical signal, which can be expressed as (in
units of V):

Vpd(t) = SP0 |F (t)|2 = SP0

|︁|︁|︁|︁|︁ +∞∑︂n=−∞Fn(t)einΩ0t

|︁|︁|︁|︁|︁2
=

1
2
M0(t) +

+∞∑︂
k=1

{︄
1
2
Mk(t)eikΩ0t + c.c.

}︄
,

where c. c. stands for the complex conjugate of the preceding terms, and

Mn(t) = 2SP0
∑︂
m

F ∗
m (t)Fm+n(t) (37)

is the complex slowly-varying envelope corresponding to the microwave spectral component of
frequency n ×Ω0 (in volts), while S stands for the photodiode sensitivity (in units of V/W). This
photodetected signal is then bandpass filtered, so that it rejects the DC component M0 and the
harmonics Mk with k ≥ 2. Hence, only the spectral component at frequency Ω0 is allowed to
pass through (note that this filter is not narrow, so that it does not specifically induce dynamical
effects other than fundamental mode selection). The slowly-varying amplitude of the voltage at
the output of the photodiode is therefore M1(t) (still in units of V). This signal is then amplified
in the electrical branch with a gain Ge (dimensionless). We can also account for all the loop
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losses through a single loss coefficient κ (dimensionless). Therefore, the slowly-varying envelope
V(t) of the microwave signal fed back to the RF input of the phase modulator is

V(t) = κGeeiΦM1(t)

= 2κGeSP0eiΦ
+∞∑︂

n=−∞
F ∗

n (t)Fn+1(t) ,
(38)

where the phase factor eiΦ accounts for the effect of the microwave round-trip phase shift Φ. If
necessary, this phase be tuned to any desired value (modulo 2π) using an RF phase shifter.

We now need to put all these elements together in order to obtain our final model. Let us
introduce the dimensionless microwave envelope

A(t) =
π

Vπp

V(t) (39)

and the optoelectronic gain as
β =

πκGeSP0
Vπp

. (40)

Note that β is not a loop-gain parameter as it is the case for conventional fiber-based OEOs, since
it explicitly excludes the Brillouin amplification.

We therefore have the following four-step model for our tunable OEO based on Brillouin
amplification:

En(t) = in Jcn[|A(t)|]An(t) (41)

Ḃ(t) = −µB(t) + µGoE1(t − T) (42)

Fn(t) = En(t − T) + δ(n − 1)B(t) (43)

A(t) = 2βeiΦ
+∞∑︂

n=−∞
F ∗

n (t)Fn+1(t) (44)

where
Jcn(x) =

Jn(x)
xn with x ∈ R and n ∈ Z , (45)

is the Bessel-cardinal function of order n.
Note that the gain of this OEO can be tuned in this system following two different ways: either

via the optical gain Go (controlled by the power of the pump laser), or via the optoelectronic gain
β (controlled via the gain Ge of the RF amplifier of the electronic branch). In this study, we will
consider without loss of generality that the optical gain Go is fixed, while the optoelectronic gain
β is tunable via Ge.

4.3. Envelope equation for the generic case T ≠ 0
The four-step model presented in the preceding subsection can be simplified. We have indeed

A(t) = 2βeiΦ
+∞∑︂

n=−∞
F ∗

n (t)Fn+1(t) (46)

= 2βeiΦ
{︂
B(t)J0[|A(t − T)|] − B∗(t)Jc2[|A(t − T)|]A2(t − T)

}︂
(47)

+2iβeiΦeiψ(t−T)
+∞∑︂

n=−∞
Jn[|A(t − T)|]Jn+1[|A(t − T)|], (48)
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but however, Bessel functions of the first kind obey

+∞∑︂
n=−∞

Jn(x)Jn+m(x) ≡ 0 (49)

for all x ∈ R and all m ∈ Z. Knowing that E1 = i Jc1[|A|]A, we can now rewrite the four-step
model under the simpler form

Ḃ = −µB + iµGoJc1[|AT |]AT (50)

A = 2βeiΦ
{︂
BJ0[|AT |] − B∗Jc2[|AT |]A

2
T

}︂
. (51)

Equation (51) can be furthermore simplified. Indeed, an analysis of the above equations shows
that the phases ψ and φ of A and B are such that

φ(t) =
π

2
+ ψ(t − T) and ψ(t) = Φ + φ(t) (52)

which leads to the solution

Φ = −
π

2
and ψ(t) = φ(t) −

π

2
= Constant . (53)

Note that a direct consequence of this solution is that we now have eiΦ = −i, so that a phase
shifter has to be introduced in the loop to implement this phase condition. A phase rotation
therefore allows to obtain

A = −2iβB
{︂
J0[|AT |] + J2[|AT |]

}︂
= −4iβB Jc1[|AT |] , (54)

where we have used the recurrence relationship

Jn−1(x) + Jn+1(x) =
2nJn(x)

x
. (55)

Note that Eq. (54) preserves the phase relationship of Eq. (53).
Let us now rewrite Eqs. (54) and (50) as

B = −
A

4iβ Jc1[|AT |]
(56)

Ḃ =
µA

4iβ Jc1[|AT |]
+ iµGo Jc1[|AT |]AT (57)

meaning that both B and Ḃ are expressed completely as a function of A and AT .
We can now determine Ȧ as

Ȧ =
∂A

∂B

∂B

∂t
+

∂A

∂ |AT |

∂ |AT |

∂t
(58)

=
∂A

∂B
Ḃ +

∂A

∂ |AT |
∂t |AT | , (59)

where

∂t |AT | = ∂t[ATA
∗
T ]

1
2 =

ȦTA
∗
T +ATȦ

∗
T

2|AT |
(60)
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is the derivative of |AT | with regard to time. It is important to note that ∂t |AT | ≠ |∂tAT | =

[ȦTȦ
∗
T ]

1
2 . From Eq. (54), we obtain

∂A

∂B
= −4iβ Jc1[|AT |] (61)

∂A

∂ |AT |
= −4iβBJc′1[|AT |] . (62)

We now use the results from Eqs. (57), (56), (61), and (62) to rewrite Eq. (59) as

Ȧ = −4iβ Jc1[|AT |]

{︄
µA

4iβ Jc1[|AT |]
+ iµGo Jc1[|AT |]AT

}︄
− 4iβJc′1[|AT |] ∂t |AT |

{︄
−

A

4iβ Jc1[|AT |]

}︄
,

(63)

and using Jc′1(x) = −J2(x)/x, this can be finally be written as

Ȧ = −µA + 4µΓ Jc2
1[|AT |]AT −

{︄
J2[|AT |]

J1[|AT |]
∂t |AT |

}︄
A (64)

with Γ = βGo being the loop gain.
Equation (64) is well-defined, and in particular, the time-delayed terms in the brackets in

the right-hand side are well-defined at any time. The term ∂t |AT | is indeed unusual, but is not
problematic from the mathematical viewpoint because at any time t, the variable AT and any
variable that univocally depends on it can be determined unambiguously, even at the numerical
level. One can also note that in the steady state, we have Ȧ = 0, ∂t |AT | = 0. Note that unlike the
conventional envelope equations for OEOs, Eq. (64) involves coupling between the delayed and
non-delayed variables. Also note that the phase dynamics is irrelevant in the deterministic case,
and can be disregarded but will become key at the time to investigate the noise performance of
the system [45–49].

4.4. Envelope equation for the particular case T = 0
Using Eq. (64), we can obtain an envelope equation for the case T = 0, which corresponds to
the physical configuration where the system is chipscale (see Fig. 2). We first note that the
phase ψ of the microwave envelope A is a constant of motion [see Eq. (53)]. It results that
[∂t |A|]A = Ȧ|A| and consequently, Eq. (64) can be written as

Ȧ = −µA + 4µΓ Jc2
1[|A|]A −

{︄
J2[|A|]

J1[|A|]
|A|

}︄
Ȧ , (65)

from which we directly obtain

Ȧ = −µA
1 − 4Γ Jc2

1[|A|]

1 + J2[|A|]/Jc1[|A|]
. (66)

This equation is the one that has to be considered to track the temporal dynamics of the microwave
envelope in the case where T = 0.
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5. Stationary states and their stability for T = 0

We already know that the phase of A is an arbitrary constant, which can be set without loss of
generality to zero. In that case, A becomes real-valued and we can remove the calligraphic fonts
following A ≡ A ≥ 0, so that the amplitude equation reads

Ȧ = −µA
1 − 4Γ Jc2

1[A]
1 + J2[A]/Jc1[A]

. (67)

The stationary state of Eq. (67) can be obtained as

Ast
4Γ
=

J2
1[Ast]

Ast
(68)

and two possible solutions are

Ast =

{︄
Atr = 0
Aosc = Jc−1

1

[︂
± 1

2
√
Γ

]︂ (69)

where Atr = 0 is the trivial solution, Aosc ≠ 0 is the oscillatory (nontrivial) solution, and Jc−1
1 is

the inverse function of Jc1 (whenever single-valued). The above solutions are valid regardless of
there is a time-delay or not. Equation (68) and (69) are graphically shown in Fig. 3. The trivial
solution exists for the all gains while the oscillatory solution is valid for Γ>1.

Fig. 3. The graphical representation of Eq. (68) where L(Ast) = Ast/4Γ (linear in Ast)
and NL(Ast) = J2

1[Ast]/Ast (nonlinear in Ast) are expressed as discontinuous colored and
continuous black lines respectively.

Equation (69) shows two possible oscillatory solutions, but we can reduce to one by confirming
the limit of the Bessel-Cardinal function. The function oscillates between −0.066<Jc1(x)<0.5. If
we consider Γ is a positive value, the two solutions should cover the positive and negative range
separately, and thus

Jc1[Aosc] =

{︄
+ 1

2
√
Γ

for 0<Jc1[Aosc]<0.5
− 1

2
√
Γ

for − 0.066<Jc1[Aosc]<0
. (70)

The only requirement for the validity of the positive solution is Γ>1 while the negative solution
needs Γ>56.0 practically very difficult to achieve. We can only consider the positive solution,
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and therefore, the oscillatory solution Aosc we will consider is

Aosc = Jc−1
1

[︃
1

2
√
Γ

]︃
where 1<Γ<56.0. (71)

Now, we need to determine the stability of the two solutions. However, since the upper limit
Γ ≃ 56 is already far beyond physically achievable, we are going to restrict our analysis to the
range 0 ≤ Γ<56 for the gain values.

5.1. Stability of the trivial solution

To evaluate the stability of the trivial solution Atr = 0, we can perturb the fixed point and check if
it decays or grows by depending on the loop gain Γ. Considering a very small perturbation δA
around the fixed point leads Eq. (67) to be written as

δȦ = −µ(1 − Γ) δA (72)

where higher order nonlinear terms are neglected. It is trivial to show that δA decays to zero for
Γ<1, while it diverges for Γ<1. Therefore, feedback gain Γth ≡ 1 defines the threshold below
which the trivial fixed point Atr = 0 remains stable (no oscillations), and above which microwave
oscillations are triggered (microwave oscillation of frequency Ω0 and constant amplitude). It can
be shown that this bifurcation corresponds to a Hopf bifurcation for the microwave signal, and a
pitchfork bifurcation for its amplitude [1,17–19].

5.2. Stability of the oscillating solution

We now perturb the oscillating solution Aosc (which only exists for Γ>1), so that the linearized
counterpart of Eq. (67) can be written as

δȦ = −µΓR1 δA with. R1 =
8Jc1[Aosc]J2[Aosc]

1 + J2[Aosc]/Jc1[Aosc]
. (73)

Since the constant coefficient R1 is always positive, it appears that we always have δA → 0 for
1<Γ<56, so that the oscillatory solution Aosc is always stable for that range of gain values.

5.3. Numerical simulation for the case T = 0
Figures 4(a) and (b) display the transient dynamics of the SBS-based OEO with null delay for
Γ = 0.9 and Γ = 1.1, that is, just below and above the threshold value Γth = 1. On the other hand,
Figs. 4(c) and (d) show the dynamics of the oscillator at Γ = 2.49 and Γ = 56, thereby showing
that oscillating solution is indeed stable in the gain range of interest in for that solution (1<Γ<56).
The amplitudes of the oscillating solutions also correspond to the intersections points in Fig. 3.
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Fig. 4. Numerical simulation of the SBS-based OEO with null delay [Eq. (66)] for various
values of the gain Γ. The value of the Brillouin gain bandwidth is set to µ = 2π × 25 MHz.

6. Stationary states and their stability for T ≠ 0

We now consider the generic case where the delay is not null. Here also we can take advantage
of the fact that that the phase ψ of the microwave is a constant. Once again it is convenient
to arbitrarily set ψ = 0, so that the envelope A becomes real-valued, with A ≡ A>0 and
AT ≡ AT>0. The microwave dynamics is now ruled by

Ȧ = −µA + 4µΓ Jc2
1[AT ]AT −

J2[AT ]

J1[AT ]
AȦT , (74)

It first appears that the stationary states of Eq. (74) are exactly the same as those obtained for
the case T = 0. We have trivial and oscillatory solutions given by Eq. (69), and the restriction
discussed in Eq. (71) also apply in the present case.

We can determine the stability of the two solutions in the same way as T = 0 case.

6.1. Stability of the trivial solution

When we perturb the trivial solution with δA = δA0 exp[(λtr + iξtr)t], the coefficients λtr and the
ξtr will obey

λtr = −µ + µΓe−λtrT cos ξtrT (75)

ξtr = −µΓe−λtrT sin ξtrT . (76)

We can only consider near λtr = 0 where the sign change of the λtr occurs. Equation (76)
generates two possible solutions ξtr = 0 and ξtr = π/T but the later one cannot satisfy Eq. (75).
Therefore, the unique solution is

λtr ≃
Γ − 1
TΓ

(77)

ξtr = 0 (78)

where we have assumed the condition µT ≫ 1. This solution generates the same result as for the
case T = 0, i.e. the trivial solution is stable for Γ<Γth and unstable otherwise.
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6.2. Stability of the oscillating solution

When we perturb the oscillatory solution Aosc, the linearization of Eq. (74) yields

δȦ = −µδA + µR2 δAT − R3 δȦT (79)

where
R2 = 8ΓJc1[Aosc]J0[Aosc] − 3 and R3 = J2[Aosc]/Jc1[Aosc] . (80)

If we define δA = δA0 exp[(λosc + iξosc)t], the real and imaginary parts will be ruled by

λosc =
−µ + µR2e−λoscT cos ξoscT − R3e−λoscTξosc sin ξoscT

1 + R3e−λoscT cos ξoscT
(81)

ξosc =
−(µR2 − R3λosc)e−λoscT sin ξoscT

1 + R3e−λoscT cos ξoscT
(82)

and it leads to two possible solutions

λosc ≃

{︄
R2−1
R2T if R2>0
R2+1
R2T if R2<0

(83)

where we are still assuming µT ≫ 1. Equation (83) shows that λosc is negative for |R2 |<1, and
that condition corresponds to the gain range 1<Γ<2.49. Therefore, if we define Γcr ≡ 2.49 as the
critical value for which the microwave is destabilized, then the oscillatory solution is stable for
Γth<Γ<Γcr.

The secondary bifurcation occurring at Γcr = 2.49 is a Neimark-Sacker or torus bifurcation
[1,17,19,50,51]. It should be noted that in the case of a short (but non-null) delay with µT ∼ 1,
the formalism developed above is not valid anymore and a more involved calculation would be
needed to determine Γcr – see Ref. [52].

6.3. Numerical simulation for the case T ≠ 0
Figures 5(a) and (b) display the transient dynamics of Γ = 0.9 and Γ = 1.1 the just below and
above the threshold value Γth. On the other hand, Figs. 5(c) and (d) show the dynamics of the
oscillator at Γ = 2.48 and Γ = 2.5, that is, just before and just after the torus bifurcation. The
amplitude of the output microwave is stable below the critical value (Γcr) and unstable above, as
predicted by the bifurcation analysis. When the gain is further increased, the oscillator displays
4T-periodic behavior [Fig. 5(e)] while further increase of Γ leads to a chaotic behavior. [Fig. 5(f)].
The overall dynamics of the oscillator can be described via a bifurcation diagram as displayed in
Fig. 6, where the Hopf and Neimark-Sacker bifurcations are shown to occur exactly where they
where analytically predicted.
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Fig. 5. Numerical simulation of the SBS-based OEO when T ≠ 0 [Eq. (74)] for various
values of the gain Γ. The insets of (c) and (d) show the asymptotic dynamical behavior of
the system, evidencing the qualitative difference induced by the Neimark-Sacker bifurcation
at Γcr = 2.49. The parameters of the system are µ = 2π × 25 MHz and T = 5 µs.

Fig. 6. Bifurcation diagram for the SBS-based OEO. The labels (a)–(f) indicate the values
of the gain Γ used for the time-domain simulations in Fig. 5. The Hopf and Neimark-Sacker
bifurcations numerically emerge at the gain values Γth = 1 and Γcr = 2.49 (resp.), as
predicted by the theory. The parameters of the system are µ = 2π × 25 MHz and T = 5 µs.
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7. Conclusion

In this article, we have studied the nonlinear dynamics of SBS-based OEOs. We have first
analyzed the SBS effect in the nonlinear fiber acting as a microwave photonic filter, and we have
derived as well the differential equation ruling the input-output relationship of frequency-selective
amplification. This modelling of the SBS process has enabled us to obtain a delay-differential
equation governing the microwave envelope dynamics of the OEO output signal. We have then
performed a stationary state analysis in order to find the various solutions (trivial and oscillatory),
and to evaluate their stability. This procedure has led us to the analytical determination of
the threshold gain value triggering the onset of microwave oscillations, as well as the critical
value leading to their destabilization via amplitude modulation. Our numerical simulations have
confirmed the stability analysis.

Future research will specifically focus on the phase noise optimization of these oscillations.
This endeavor will include a detailed analysis of the beneficial effects of Brillouin scattering with
regard to the close-in phase noise performance of the output microwave.
Funding. A. James Clark School of Engineering; Office of Naval Research (N00014-21-1-2098).
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