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Abstract— We numerically perform the classification of IQ-
modulated radiofrequency signals using reservoir computing
based on narrowband optoelectronic oscillators (OEOs) driven
by a continuous-wave semiconductor laser. In general, the OEOs
used for reservoir computing are wideband and are processing
analog signals in the baseband. However, their hardware archi-
tecture is inherently inadequate to directly process radiotelecom
or radar signals, which are modulated carriers. On the other
hand, the high- Q OEOs that have been developed for ultra-low
phase noise microwave generation have the adequate hardware
architecture to process such multi-GHz modulated signals, but
they have never been investigated as possible reservoir computing
platforms. In this article, we show that these high- Q OEOs
are indeed suitable for reservoir computing with modulated
carriers. Our dataset (DeepSig RadioML) is composed with
11 analog and digital formats of IQ-modulated radio signals
(BPSK, QAM64, WBFM, etc.), and the task of the high- Q
OEO reservoir computer is to recognize and classify them. Our
numerical simulations show that with a simpler architecture,
a smaller training set, fewer nodes and fewer layers than
their neural network counterparts, high- Q OEO-based reservoir
computers perform this classification task with an accuracy better
than the state-of-the-art, for a wide range of parameters. We also
investigate in detail the effects of reducing the size of the training
sets on the classification performance.

Index Terms— Reservoir computing, optoelectronic oscillators,
nonlinear oscillators, IQ modulation formats, radio modulation
recognition.

I. INTRODUCTION

MACHINE learning (ML) has already enacted a deep
impact on modern science and technology. Unlike

Turing-von Neumann machines that require input data and
known rules to provide outputs, ML platforms use input data
and known outputs to infer rules or underlying structure.

The impact of machine learning is expected to be trans-
formational in wireless communications networks, which are
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submitted to a (genuinely) exponential increase of traffic,
en route to reach a zettabyte per year within 3 years. Therefore,
the radiofrequency (RF) spectrum is becoming increasingly
congested with signals sharing the same frequency band.
Processing this amount of information is an unprecedented
and difficult challenge, which could be in part addressed by
machine learning [1].

Effective adoption of ML for wireless networks is neverthe-
less facing several challenges. The first one is that it is quite
common for ML approaches to be solely based on software,
that is, the input signal needs to be converted to a computer-
compatible format before ML-software processing. Along the
same line, in most instances, the machine learning platform
requires transduction or conversion at both the input and output
stages. A second challenge is that in the spectral domain,
wireless signals are generally narrowly centered around a
carrier frequency – up to 70 GHz for the next generation
of wireless networks. An optimal ML platform should be able
to process the modulated signal, without demodulation to the
baseband. A third challenge is that high throughput wireless
networks need to be interconnected with optical fiber networks
both at the backhaul and fronthaul level, since optical fiber is
the optimal technological solution to ensure high-bandwidth
connection between the network nodes. Consequently, from
the hardware perspective, ML solutions should ideally have
the capability to handle both microwave and lightwave signals,
in order to interact seamlessly with both types of signals in
these heterogeneous wireless-fibered networks.

Reservoir computing (RC) based on optoelectronic oscilla-
tors is a machine learning approach that can address the three
aforementioned challenges. OEOs have a hybrid architecture
that concatenates a laser-driven optical fiber line and an
electronic branch, and they have been thoroughly investigated
from both the fundamental and applied points for view (see
review article [2] for a survey of OEO science and technology).

A few years ago, it was shown that wideband OEOs have
the capability to perform machine learning based on reservoir
computing (or RC) with RF and/or optical input signals [3],
[4]. Subsequently, wideband OEOs have been proven to
be a robust RC-compatible platform by numerous studies,
achieving state-of-the-art performances with several bench-
marks such as spoken digit recognition, nonlinear time-series
prediction, packet header recognition, signal radar forecasting,
and even cancer data classification (see for example [3]–[14]).
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This analog computing has also investigated for all-optical
systems as well (see for example [15]–[30]). This compu-
tational power is partially rooted in the fact that RC only
features 3 layers (input, reservoir and output, as explained in
detail in [31]–[33]), and requires to train only the output layer
while the reservoir (or network) layer is fixed: this distinctive
property results in a drastic reduction of processing latency,
ideal for large throughput.

An important property of OEOs for wireless networks is
their versatility, in the sense that they can process input
information either in the microwave domain (RF signals) or
lightwave domain (optical fiber data, etc.). Noteworthy is the
fact that OEOs can operate virtually at any frequency up
to 100 GHz, and have the intrinsic capability handle high-
bandwidth signals and perform ultrafast processing, such as in
the experiment reported in [9] where OEO-based RC permitted
to achieve a record of one million words per second.

In this article, we will extend the concept of OEO-based
RC for the classification of RF modulated signals. Wideband
OEOs are not suitable for this task, as they essentially oper-
ate in the baseband. However, narrowband OEOs, initially
developed for the purpose of ultralow phase noise microwave
generation, are capable of processing RF modulated signals
despite the fact that they have never been considered for the
purpose of RC or ML in general. Our main objective here
is to therefore to show, for the first time to the best of our
knowledge, that narrowband OEOs can be used for RC in
wireless communications. Another objective is to show that
even with a reduced training set size, the reservoir computer
can still provide a high level of performance – sometimes
better than the state-of-the-art – with a faster computing
speed in comparison to other ML alternatives. We consider
a benchmark where an RF signal is IQ-modulated using
11 different formats, and with different levels of signal-to-
noise ratio. The task of the RC computer will be to classify
these incoming signals with the highest accuracy but smaller
training set sizes.

The article is organized as follows. Section II is devoted
to the description of the narrowband OEO that will be used
for RC, while the dynamical equations ruling its interaction
with the incoming IQ-modulated RF signal are derived in
Sec. III. The dataset of IQ-modulated signals is described in
Sec. IV, and Sec. V describes in detail the RC procedure
implemented by the narrowband OEO for this classification
task. Our numerical simulations are presented in Sec. VI, and
their relevance for the field of ML in wireless communications
is discussed. The last section recapitulates our main results and
concludes the article.

II. THE SYSTEM

The system under study is a single-loop OEO with an
input port in the RF branch for the signal to be processed.
A schematic representation of this oscillator is displayed
in Fig. 1, and it consists of the following elements in a closed
feedback loop: (i) A wideband integrated Mach-Zehnder mod-
ulator, seeded by a continuous-wave (CW) semiconductor laser
of optical power P; the modulator is characterized by a DC

Fig. 1. Schematical representation of the reservoir computer based on a
narrowband OEO. DL: Delay line; LNA: Low-noise amplifier. MZM: Mach-
Zehnder modulator; PD: Photodiode.

half-wave voltage VπDC and an RF half-wave voltage VπRF ,
which are both of the order of few volts. (i i) The modulated
laser beam at the output of the modulator is launched into an
optical fiber delay line of length L = 4 km and group velocity
index ng, that creates a time delay of T = ng L/c = 20 μs,
where c is the velocity of light in vacuum; This delay line
also induces microwave ring-cavity modes with a free-spectral
range (FSR) equal to �T /2π = 1/T = 50 kHz. Note that
for our purpose, a physical optical fiber delay line is not an
absolute necessity; the time delay can be implemented using
a digital signal processing (DSP) of field programmable gate
array (FPGA) board. (i i i) The time-delayed optical signal
is converted into an electrical signal by a photodiode with
a conversion factor S, in units of V/W. (iv) The electrical
signal is then sent to narrowband microwave RF filter, that
has the role to select the carrier frequency �0/2π and the
allowed bandwidth ��/2π around it. This central frequency
can be anywere in the 1-100 GHz range, while the bandwidth
is typically few tens of MHz wide. In all cases, the RF quality
factor QRF = �0/�� of the narrowband RF filter is generally
in excess of 100. (v) The filtered electrical is subsequently
amplified with a gain factor G, before being connected back
as a voltage V (t) to the RF electrode of the Mach-Zehnder
modulator. All optical and electrical losses are accounted for
with a single attenuation factor κ . (vi) The IQ-modulated RF
signal to be processed is eventually inserted in the feedback
loop via a microwave coupler, placed just before the RF
electrode of the modulator.

It is important to emphasize here the essential differences
between narrowband and wideband OEOs. As discussed in the
review article [2], both systems are Ikeda-like oscillators char-
acterized by the very same four elements (linear gain, filter,
delay and nonlinearity) and feature similar bandwidth-delay
products (��×T ∼ 100), but the difference in parameters��
and T leads to substantially different dynamical properties.
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Indeed, wideband OEOs feature short time delay and a large
bandwidth filter, while conversely, narrowband OEO feature
a long time delay and a narrow bandwidth filter. The wide-
band OEOs generally output spectrally flat and broad signals,
including hyperchaotic ones. As a consequence, it is intuitively
logical to use them to process baseband electrical signals
through RC. However, narrowband OEOs were intended to
generate a single tone RF signals, so that it is less intuitive to
foresee how they can be useful for RC. Nevertheless, as it will
be shown in this article, RF modulated signals have a spectral
spread that falls within these narrowband OEO bandwidths,
and can therefore be processed.

III. THE MODEL

A. The Narrowband OEO Model

The narrowband OEO obeys an integro-differential equation
that can be written under the simplified and dimensionless
form

x + τ
dx

dt
+ 1

θ

∫ t

t0
x(ξ)dξ = β cos2[xT + φ], (1)

where x(t) = πV (t)/2VπRF is the dimensionless voltage at
the input of the Mach-Zehnder modulator, xT ≡ x(t − T )
is its time-delayed counterpart, β = πκGS P/2VπRF is the
normalized feedback gain, φ = πVB/2VπDC is the Mach-
Zehnder off-set phase. In wideband OEOs, the parameters
τ = 1/2π fH and θ = 1/2π fL are the typical timescales
corresponding to the low- and high-frequency cutoffs fL and
fH of two cascaded first-order filters. However, in narrowband
OEOs, they are written instead as τ = 1/�� and θ = ��/�2

0
and jointly describe the characteristic timescales associated
with the resonant bandpass filter.

However, Eq. (1) is not suitable for the study of the
narrowband OEO because of the very large splitting between
the various timescales [35]. This problem is circumvented
by acknowledging that the narrowband filter forces the oscil-
lations to be quasi-sinusoidal with frequency �0, so that
their complex envelope carries all the relevant dynamical
information. Therefore, we can write the solution of Eq. (1)
as signal with a carrier of frequency �0, which is slowly
modulated by a complex-valued amplitude A(t) following

x(t) = 1

2
A(t)ei�0 t + 1

2
A∗(t)e−i�0t (2)

where the envelope A(t) = A(t)eiψ(t) varies slowly relatively
to the carrier of frequency �0 – a condition that mathemati-
cally translates to |Ȧ(t)| � �0|A(t)|.

It was shown that the envelope obeys the delay-differential
equation [35]–[37]

Ȧ = −μA − 2μγ e−iσ Jc1[2|AT |]AT , (3)

where μ = ��/2 is the half-bandwidth of the radio-frequency
filter, γ = β sin 2φ is the effective gain of the feedback loop,
σ = �0 T is the round-trip phase shift of the microwave, Jc1
is the Bessel-cardinal function defined as Jc1(x) = J1(x)/x ,
and AT ≡ A(t − T ). The phase condition of the oscillation is
γ e−iσ = −1, and it is convenient to set σ = π (modulo 2π),
so that γ ≥ 0.

Equation (3) typically has four dynamical regimes as a
function of γ [36]. For γ < 1, the system does not oscillate
and the trivial fixed point is stable (A = 0). At γ = 1,
the system undergoes a primary Hopf bifurcation and the
system oscillates with a constant complex-valued envelope, i.e.
x(t) is a sinusoidal signal corresponding to a stable limit-cycle
(this regime is the one that is useful for ultrapure microwave
generation). As the gain is increased and reaches the critical
value γcr = {2Jc1[J−1

0 (0)]}−1 � 2.31, the oscillator undergoes
a secondary Hopf bifurcation, also known as a Neimark-Sacker
bifurcation, where the amplitude of the sinusoidal signal
becomes periodically modulated x(t)–in other words, envelope
undergoes a primary Hopf bifucation and the limit-cycle
bifurcates to a torus. This (multi-)periodic regime bifurcates to
chaos when the gain is increased beyond a value around 2.8.

IV. THE OEO MODEL WITH IQ-MODULATED

SIGNAL INJECTION

A. IQ-Modulated Signal Dataset

The data set we have chosen to evaluate the performance
of narrowband OEOs is made of radiofrequency signals with
IQ modulation (“I” for in-phase, and “Q” for quadrature).
The waveforms I (t) and Q(t) are baseband signals, and
the IQ-modulation scheme encodes them onto a radio carrier
whose frequency can be as high as few hundred GHz. This
modulation scheme is popular in modern architectures of
wireless networks because it allows to transmit high-capacity
modulation formats (constellations with more bits per sym-
bol), and therefore permits to optimize the bandwidth of the
transmission link.

As the airspace becomes crowded by many RF signals
sharing the same frequency band allocation, it becomes critical
to have the capacity to identify, and the large throughput of
data favors hardware analog recognition in order to avoid
latency and network congestion. Typical tests involve for
example RF fingerprinting hardware imperfections or emitted
modulation formats. In this article, we are considering the
latter case, which is particularly important in many instances
such as for dynamic spectrum access protocols, which require
the optimization of spectrum allocation. The efficiency of
this optimization procedure greatly relies on the efficient
radio recognition, and while prior works are mostly based on
feature engineering from temporal signals, analog computing
techniques are promising for directly processing these signals
in the physical layer.

From the perspective of machine learning, the radio modula-
tion recognition task could be characterized as a classification
problem that requires correct prediction of the modulation
scheme directly from the radio signals. In order to train
and test our proposed narrowband OEO-based RC, we will
exploit the IQ radiofrequency modulation dataset proposed
by O’Shea, Corgan and Clancy (Deepsig dataset RADIOML
2016.04C–see [34], [38]). This dataset consists of 11 modula-
tion signals generated by GNU radio, as displayed in Fig. 3.
Eight of these modulations are digital modulations, namely
BPSK (binary phase-shift keying), BFSK (binary frequency-
shift keying), QPSK (quadrature phase-shift keying), CPFSK
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(continuous phase-frequency-shift Keying), PAM4 (4-level
pulse-amplitude modulation), 8PSK (8 phase-shift keying),
16QAM (16 quadrature amplitude modulation), and 64QAM
(64 quadrature amplitude modulation), while the remaining
three are analog modulations schemes, namely WB-FM (wide-
band frequency modulation), AM-SSB (single-sideband ampli-
tude modulation), and AM-DSB (double-sideband amplitude
modulation).

Each example in the dataset contains 128 sampled points
for both in-phase and quadrature components. For each type
of modulation, signals are collected with different signal-to-
noise ratio (SNR) ranging from −20 dB to 18 dB with a
step of 2 dB. Hence, the in-phase and quadrature compo-
nents of one example could be expressed by two vectors
of length 128 written as {Xi

I (1), Xi
I (2), . . . , Xi

I (128)} and
{Xi

Q(1), Xi
Q(2), . . . , Xi

Q(128)}, where subscripts I and Q
indicates the signal is in-phase or quadrature component and
the superscript indicates that it corresponds to the i th example
in the dataset.

B. Dynamical Model for the Driven OEO

We need to derive an envelope equation for the narrowband
OEO when it is driven by an IQ-modulated signal. The
modulated IQ signal could be expressed as:

s(t) = I (t) cos�0t + Q(t) sin�0t (4)

and according to the OEO architecture presented in Fig. 1,
this IQ-modulated signal influences the dynamics of the OEO
following

x + τ
dx

dt
+ 1

θ

∫ t

t0
x(ξ)dξ = β cos2[xT + ρs(t) + φ], (5)

where ρ is a dimensionless normalization factor weighting
the amplitude of the signal s(t) in the feedback loop. In order
to determine the envelope equation corresponding to Eq. (5),
we first rewrite the modulated terms inside the nonlinear
function cos2 as

xT + ρs(t) = q(t) cos�0t + r(t) sin�0t (6)

where

q(t) = ρ I (t) + AT cos(ψT − σ) (7)

r(t) = ρQ(t) − AT sin(ψT − σ) (8)

with

AT ≡ |A(t − T )| and ψT ≡ argA(t − T ). (9)

We can now rewrite the signal injected into RF electrode of
the Mach-Zehnder modulator as

xT + ρs(t) = 1

2
Z(t)ei�0 t + 1

2
Z∗(t)e−i�0 t (10)

with Z(t) being its complex-valued envelope explicitly defined
through

|Z(t)| =
√

q2(t)+ r2(t) (11)

argZ(t) = arctan
q(t)

r(t)
− π

2
. (12)

Performing the same algebra as the one that led to Eq. (3),
we are led to the envelope equation

Ȧ = −μA − 2μγ Jc1[2|Z|]Z, (13)

which governs the dynamics of the narrowband OEO envelope
when driven by an IQ modulated signal.

V. RESERVOIR COMPUTING PROCEDURE

A. Conventional Reservoir Computer

Reservoir computing is a particular subset of supervised
machine learning algorithm that arose as a one of the lead-
ing paradigms in the area of neuromorphic computing. This
approach, which is conceptually close to the ones of echo state
network (ESN) or a liquid-state machine (LSM), is a brain-
inspired framework that can perform efficient and real-time
processing for temporal information [31]–[33], [39]). Unlike
the usual neural networks where the full connectivity matrix
is updated via a backpropagation algorithm (for example),
reservoir computing is based on the optimization of “read-out”
coefficients only. The reservoir computer therefore encodes the
information signal to be processed into the highly dimensional
dynamical system.

There are two main advantages justifying our choice of
reservoir computing for our project: (i) Only the output layer
needs to be trained, while the reservoir remains static. This
feature greatly simplifies the determination of the optimal
weights. Once the optimal read-out coefficients are obtained,
they are used to project the nonlinear transient dynamics of
the reservoir onto an identifiable target state. (ii) The second
advantage is that this simpler architecture permits faster train-
ing and testing than in conventional neural networks. Since,
high-throughput inherently imposes a stringent constraint on
computation time, the possibility provided by reservoir com-
puting to expedite the training appears as a critical advantage
for our purpose.

The signals at the input layer are fed into the RC, such that
the reservoir and output states x and y are sequentially updated
at discrete time-steps n ∈ N following

x(n + 1) = fNL [Win · u(n)+ W · x(n)] (14)

y(n + 1) = Wout · x(n + 1) , (15)

where u(n) is the input signal while fNL is a nonlinear vector
function. The optimal readout connectivity matrix Wout is
obtained via ridge regression through

Wopt
out = My · MT

x · [Mx · MT
x + λ · I]−1, (16)

where Mx is a matrix that suitably concatenates the internal
state x generated with some specific training input vectors u,
while My is the target (or teaching) matrix yielding the desired
classification outcome, I is the identity matrix and λ � 1 is
a small regularization factor for to avoid the overfitting of the
inversion problem. The prediction task becomes a regression
problem if the teaching matrix is high-dimensional (quasi-
continuous approximation), and a classification problem when
it is low-dimensional. Despite its simplicity, RC provides
a powerful analog computing algorithm with performances
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Fig. 2. Bifurcation diagram of the narrowband OEO as the effective gain γ is increased. The system undergoes a Hopf bifurcation at γ = 1, and a
Neimark-Sacker bifurcation at γ = 2.31. The timetraces in blue inserts display the transient dynamics of the non-driven OEO to the final state for 5 gains
values of interest. The best classification accuracy achieved with a training set of 230 × 11 = 2530 samples and SNR = 18 dB is indicated as well for these
5 gain values (ρ is scanned from 1.5 to 2.5). The highest classification accuracy in our RC simulations (88.94% for γ = 2.2 and ρ = 1.63) is obtained with
only 1 trained layer: It outperforms the state-of-the-art accuracy of 87% which is achieved using neural networks with 5 trained layers and ∼ 4800 (i.e twice
as many) training samples [34]. Interestingly, our work shows that optimal performance is achieved around the Neimark-Sacker bifurcation, and not around
the primary Hopf bifurcation like in RC using broadband OEOs.

comparable to or even better than RNNs on several bench-
marks [40]. Interested readers could refer to [41] for a more
general and detailed review.

B. Narrowband OEO-Based RC Implementation

In principle, a time-delay system has an infinite dimension-
ality that can be exploited to map input data into arbitrary
high dimensional space. In OEO-based RC, this property
is used to excite a large number of virtual neurons in the
temporal domain as traditional RC does in spatial domain.
The first implementation of RC with time-delayed systems was
implemented using an electronic Mackey-Glass oscillator [42].
We refer the reader to that reference, as well as to [3], [4], [11],
[14] for an in-depth presentation of RC using time-delayed
systems.

In order to implement RC with our narrowband OEO,
we need first to determine the functions r(t) and q(t) intro-
duced in Sec. IV-B, so that we can compute the complex-
valued envelope Z(t) needed to simulate Eq. (13). Before
being fed into reservoir layer, the in-phase and quadrature
components are processed into two token sequence as shown in
Section IV. From these two discrete token sequence, another
two continuous time series are generated by holding every
sampled data point of in-phase and quadrature component
Xi

I (k) and Xi
Q(k) for system delay time T . In this way,

the discrete sample points of one example are processed into
two continuous time series which satisfies:

I (t) ≡ Xi
I (k), (k − 1)T ≤ t ≤ kT (17)

Q(t) ≡ Xi
Q(k), (k − 1)T ≤ t ≤ kT . (18)

While conventional RC couples all data points of one example
into RC layer in parallel, the narrow band optoelectronic RC
exploits the concept of time-division multiplexing by feeding
only one data point into RC layer during one delay time T .
In each delay time T , a data point is coupled to the virtual
nodes after multiplication with the input mask. Thus, the input
mask should be a signal produced temporally with period
equals to the delay time T so that these weights are fixed
for all input points. In our simulations, we use six-valued
masks, following the approach proposed in [43]. To stimulate
N virtual nodes in the RC layer, the weight value of mask must
be separated by time interval �T = T/N , with N = 400 in
our case. As there are two input streams corresponding to in-
phase and quadrature components, we introduce two masks
mI (t) and mQ(t) to couple them into RC layer following:

JI (t) = I (t) · mI (t) and JQ(t) = Q(t) · mQ(t). (19)

The values of A(t) at the end of each time interval of �T
is sampled to give the reservoir states of each virtual nodes.
Thus, the output of RC layer value corresponding to j th virtual
node of i th example of input data is:

Ai j = A[i · T + (N − j) ·�T ]. (20)

The RC states of all data points in the whole training set are
collected and vectorized to train the weights of read-out layer,
which lead to an optimization problem to search for optimal
read-out layer weights WRO:

WRO
opt = argmin

WRO

NTrain∑
i=1

‖WROAi· − Yi‖2 + λ‖WRO‖2 (21)
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Fig. 3. Examples of normalized timetraces of the I (blue) and Q (red) signals
for our 11 modulation formats, when the SNR = 0 dB. Each timetrace has
128 sample points.

where Ai· is the RC states of i th training example, and Yi is
the corresponding label. The optimal read-out layer weights
WRO

opt could be obtained via ridge regression algorithm [40]:

WRO
opt = A(AT A + λI)−1Y (22)

where A is a suitably designed matrix that concatenates all
internal RC states Ai j , Y stands for the labels of training set
and λ is a small regulation term to prevent overfitting.

VI. SIMULATION RESULTS AND DISCUSSION

We consider the following parameters for our numerical
simulations: The delay time is T = 20 μs, the narrowband
filter bandwidth is ��/2π = 20 MHz, the roundtrip phase
shift is σ = �0 T = π , the insertion gain for the input data
is ρ = 5, and the regularization term for ridge regression
algorithm is λ = 0.001.

Here we use the dataset mentioned in Section IV-A as
benchmarks to test our narrow band OEO-based RC. Unless
otherwise stated, we extract 60 training samples and 60 test
samples for every type of modulation and for each SNR,
which leads to a training set and a test set with equal size
of 660. Before multiplying with input mask, we normalized
these signals first so that each training example’s power sums
to one, following:

Xi′
I,Q [ j ] =

128∑
k=1

Xi
I,Q [ j ]√

Xi
I [k]2 + Xi

Q [k]2
(23)

As a classification task, the performance metrics is the classifi-
cation accuracy, which is defined as the percentage of correctly
predicted modulation samples with regard to all predicted
samples. We also introduce the confusion matrix as another
pertinent indicator that helps understand where are the sources
of error in our RC classifier.

As explained in Fig. 2, our best accuracy performance
is 88.94% (with a training set size of 2530 samples and
ρ = 1.62), which is better than the state-of-the-art at 87%
(with a training set size of 4800 samples). The OEO-based RC
is already demonstrating its potential with this performance,
but in this work, one of our key objectives is to investigate
how the RC performs with even smaller training set sizes.

Our results are presented in Table I, which displays the
accuracy of our classifier as a function of the gain γ and

TABLE I

CLASSIFICATION ACCURACY AS A FUNCTION OF GAIN AND SNR (WITH
ρ = 1.61 AND 660 TRAINING SAMPLES)

the signal-to-noise ratio, when the training set size is reduced
to 660 samples. As shown in Fig. 2, the parameter γ is
directly related to the dynamical regime of narrowband OEO.
We can see from the table, the RC performs poorest when
γ = 0.9, which corresponds to the oscillator being in the
trivial equilibrium when not driven by the IQ-modulated signal
[x(t) ≡ 0 and A(t) ≡ 0]. This result seems to be in
contradiction with the conventional wisdom gained from RC
with broadband OEOs, where normalized gain values below
unity provide optimal performance. In the case of narrowband
OEOs, the dynamical regime where RC is the most efficient is
located around the secondary bifurcation, i.e., the one where
the envelope (and not the carrier) undergoes a Hopf bifurca-
tion. This situation actually makes sense when one realizes that
the I and Q signals only contribute to the envelope dynamics,
and not to the one of the carrier: as a consequence, only the
Hopf instability related to the envelope might contribute to the
RC performance. This is exactly what is observed as the value
of the gain is increased: The RC efficiency is ameliorated when
γ is in the area surrounding the Neimark-Sacker bifurcation at
γcr = 2.31. It is indeed unconventional to operate a reservoir
computer beyond a fixed point but previous work had already
shown that this approach is valid under certain conditions for
RNNs [44]. To the best of our knowledge, RC has never been
operated in a chaotic regime, but in our case, the performance
at γ = 3 remains comparable to the maximal efficiency of
our classifier. This is explained by the fact that chaos in
for this gain parameter remains low-dimensional, in many
points similar to the laminar chaos recently discussed in the
literature [45]. However, our simulations show that if the gain
is increased any further, the system becomes more chaotic
and the performance steadily decreases: For an SNR = 0 dB,
the accuracy drops to � 50% for γ = 3.5, and to ∼ 40% for
γ = 4.2.

As shown in Fig. 4, we have also investigated the effect
of SNR on the RC performance, for the fixed gain value
γ = 2.2, but different training size sets sizes. We can first
note that as expected, the RC efficiency is poor when the SNR
is low (typically, SNR < −10 dB). In that case, the reservoir
computer basically operates as a random classifier, allocating
the 11 labels following a uniform probability distribution
with accuracy 1/11 � 9.09%. As the noise is reduced,
the reservoir computer progressively begins to outperform the
random classifier, and it is noteworthy that even when the noise
is 4 times more powerful than the signal (SNR = −6 dB),
RC can still distinguish features and perform much better
than a random guess. Higher SNR values lead to a significant
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Fig. 4. Variation of the classification accuracy of the narrowband reservoir
computer with the SNR, for γ = 2.2. We have considered various set sizes for
the training samples (TS), ranging from ∼ 100 to ∼ 1000 (note that the typical
set size for training in neuronal-network-based ML is ∼ 5000 – see [34]).
The purple line with triangle symbols corresponds to the accuracy when the
training set has 110 patterns (10 for each of the 11 modulation formats);
The green line with diamond symbols corresponds to the accuracy when the
training set involves 220 patterns (20 for each of the 11 modulation formats);
etc. The dashed line indicates the performance of a random classifier (1/11 �
9.09%) For very low SNR (i.e., very high levels of noise), the reservoir
computer does not performs better than a random classifier. However, as the
SNR is increased, the reservoir computer accuracy significantly improves and
achieves a performance approaching 90%.

Fig. 5. Confusion matrices for γ = 2.2, and for two different training sample
sizes. The testing set size is contains 660 items, so that the sum for each line
must is always 60 (the number of testing samples). One can observe that most
errors mainly come from a confusion between WBFM and AM-DSB analog
formats, and from a confusion between the digital formats QAM64, QAM16,
and the PSK (8, Q, and B).

increase of performance, but quite counter-intuitively, higher
SNR does not systematically lead to better accuracy. These
anomalies (also present in Table I) are be explained by the
variability of the dataset.

The confusion matrices of Fig. 5 give us an insight in rela-
tion to the origin of misclassifications. We have reported such
matrices for two sets of parameters yielding good performance.
It appears that there two confusion clusters generate most of
the errors. The first one involves the analog formats WBFM
and AM-DSB, and it can be seen that when the reservoir
computer classifies one of them with high accuracy, it performs
very poorly for the other. This is consistent with the results
from [34], where the classifications is performed with neural

networks. The second confusion cluster involves the 5 digital
formats QAM64, QAM16, 8PSK, QPSK and BPSK, which
are sometimes shuffled by the classifier.

VII. CONCLUSION

In this article, we have investigated the performance of
high-Q OEO-based RC for the classification of IQ-modulated
signals. We have shown that they have an performance better
than the state-of-the-art, while featuring a simpler architecture,
which leads to a faster computing capability. We have also
explored the effect of training set size reduction, and shown
using about ten times less training samples that the state-of-
the-art neural networks leads to only a marginal reduction
of accuracy for our RC. This robustness property gives to
OEO-based RC an edge for real-time computing or ML
with nonstationary datasets, and positions them as promising
ML systems for the processing of radio signals. Our results
also indicate that since OEOs can process both lightwave
and microwave signals, they are suitable as real-time analog
computing nodes in the physical layer of the next generation
of networks, where wireless and fiber communications links
are interconnected.

REFERENCES

[1] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 3, pp. 2224–2287, 3rd Quart., 2019.

[2] Y. K. Chembo, D. Brunner, M. Jacquot, and L. Larger, “Optoelectronic
oscillators with time-delayed feedback,” Rev. Mod. Phys., vol. 91, no. 3,
Sep. 2019, Art. no. 035006.

[3] L. Larger et al., “Photonic information processing beyond Turing:
An optoelectronic implementation of reservoir computing,” Opt. Exp.,
vol. 20, no. 3, pp. 3241–3249, 2012.

[4] Y. Paquot et al., “Optoelectronic reservoir computing,” Sci. Rep., vol. 2,
no. 1, p. 287, Feb. 2012.

[5] S. Ortín et al., “A unified framework for reservoir computing and
extreme learning machines based on a single time-delayed neuron,” Sci.
Rep., vol. 5, no. 1, p. 14945, Oct. 2015.

[6] R. Martinenghi, S. Rybalko, M. Jacquot, Y. K. Chembo, and L. Larger,
“Photonic nonlinear transient computing with multiple-delay wavelength
dynamics,” Phys. Rev. Lett., vol. 108, no. 24, Jun. 2012, Art. no. 244101.

[7] M. Hermans, P. Antonik, M. Haelterman, and S. Massar, “Embodi-
ment of learning in electro-optical signal processors,” Phys. Rev. Lett.,
vol. 117, no. 12, Sep. 2016, Art. no. 128301.

[8] G. Van der Sande, D. Brunner, and M. C. Soriano, “Advances in pho-
tonic reservoir computing,” Nanophotonics, vol. 6, no. 3, pp. 561–576,
May 2017.

[9] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov,
Y. K. Chembo, and M. Jacquot, “High-speed photonic reservoir com-
puting using a time-delay-based architecture: Million words per second
classification,” Phys. Rev. X, vol. 7, no. 1, Feb. 2017, Art. no. 011015.

[10] P. Antonik, M. Haelterman, and S. Massar, “Brain-inspired pho-
tonic signal processor for generating periodic patterns and emulating
chaotic systems,” Phys. Rev. A, Gen. Phys., vol. 7, no. 5, May 2017,
Art. no. 054014.

[11] D. Brunner, B. Penkovsky, B. A. Marquez, M. Jacquot, I. Fischer,
and L. Larger, “Tutorial: Photonic neural networks in delay systems,”
J. Appl. Phys., vol. 124, no. 15, Oct. 2018, Art. no. 152004.

[12] J. D. Hart, L. Larger, T. E. Murphy, and R. Roy, “Delayed dynamical
systems: Networks, chimeras and reservoir computing,” Phil. Trans.
Roy. Soc. A, Math., Phys. Eng. Sci., vol. 377, no. 2153, Sep. 2019,
Art. no. 20180123.

[13] F. Böhm, G. Verschaffelt, and G. Van der Sande, “A poor man’s coherent
ising machine based on opto-electronic feedback systems for solving
optimization problems,” Nature Commun., vol. 10, no. 1, p. 3538,
Dec. 2019.

[14] Y. K. Chembo, “Machine learning based on reservoir computing with
time-delayed optoelectronic and photonic systems,” Chaos, Interdiscipl.
J. Nonlinear Sci., vol. 30, no. 1, Jan. 2020, Art. no. 013111.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 01,2021 at 18:37:53 UTC from IEEE Xplore.  Restrictions apply. 



5000408 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 57, NO. 3, JUNE 2021

[15] K. Hicke, M. A. Escalona-Morán, D. Brunner, M. C. Soriano, I. Fischer,
and C. R. Mirasso, “Information processing using transient dynamics of
semiconductor lasers subject to delayed feedback,” IEEE J. Sel. Topics
Quantum Electron., vol. 19, no. 4, Jul. 2013, Art. no. 1501610.

[16] D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel
photonic information processing at gigabyte per second data rates using
transient states,” Nature Commun., vol. 4, no. 1, p. 1364, Jan. 2013.

[17] K. Vandoorne et al., “Experimental demonstration of reservoir comput-
ing on a silicon photonics chip,” Nature Commun., vol. 5, no. 1, p. 3541,
Mar. 2014.

[18] C. Mesaritakis, A. Bogris, A. Kapsalis, and D. Syvridis, “High-speed
all-optical pattern recognition of dispersive Fourier images through a
photonic reservoir computing subsystem,” Opt. Lett., vol. 40, no. 14,
pp. 3416–3419, Jul. 2015.

[19] Q. Vinckier et al., “High-performance photonic reservoir computer based
on a coherently driven passive cavity,” Optica, vol. 2, pp. 438–446,
May 2015.

[20] J. Bueno, D. Brunner, M. C. Soriano, and L. Fischer, “Conditions
for reservoir computing performance using semiconductor lasers with
delayed optical feedback,” Opt. Exp., vol. 25, no. 3, pp. 2401–2412,
Feb. 2017.

[21] R. M. Nguimdo, E. Lacot, O. Jacquin, Q. Hugon, G. Van der Sande,
and H. G. de Chatellus, “Prediction performance of reservoir computing
systems based on a diode-pumped erbium-doped microchip laser subject
to optical feedback,” Opt. Lett., vol. 42, no. 3, pp. 375–378, Feb. 2017.

[22] F. D.-L. Coarer et al., “All-optical reservoir computing on a photonic
chip using silicon-based ring resonators,” IEEE J. Sel. Top. Quantum
Electron., vol. 24, no. 6, Nov./Dec. 2018, Art. no. 7600108.

[23] Y. Hou et al., “Prediction performance of reservoir computing system
based on a semiconductor laser subject to double optical feedback and
optical injection,” Opt. Exp., vol. 26, no. 8, pp. 10211–10219, Apr. 2018.

[24] A. Katumba et al., “Neuromorphic computing based on silicon photonics
and reservoir computing,” IEEE J. Sel. Topics Quantum Electron.,
vol. 24, no. 6, pp. 1–10, Nov. 2018.

[25] J. Vatin, D. Rontani, and M. Sciamanna, “Experimental reservoir com-
puting using VCSEL polarization dynamics,” Opt. Exp., vol. 27, no. 13,
pp. 18579–18584, Jun. 2019.

[26] D. Yue et al., “Performance optimization research of reservoir computing
system based on an optical feedback semiconductor laser under electrical
information injection,” Opt. Exp., vol. 27, no. 14, pp. 19931–19939,
Jul. 2019.

[27] Y. Chen et al., “Reservoir computing system with double optoelectronic
feedback loops,” Opt. Exp., vol. 27, no. 20, pp. 27431–27440, Sep. 2019.

[28] X. X. Guo, S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, and Y. Hao,
“Polarization multiplexing reservoir computing based on a VCSEL with
polarized optical feedback,” IEEE J. Sel. Topics Quantum Electron.,
vol. 26, no. 1, pp. 1–9, Jan. 2020.

[29] A. Argyris et al., “Comparison of photonic reservoir computing systems
for fiber transmission equalization,” IEEE J. Sel. Topics Quantum
Electron., vol. 26, no. 1, pp. 1–9, Jan. 2020.

[30] C. Sugano, K. Kanno, and A. Uchida, “Reservoir computing using
multiple lasers with feedback on a photonic integrated circuit,” IEEE
J. Sel. Topics Quantum Electron., vol. 26, no. 1, pp. 1–9, Jan. 2020.

[31] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Comput., vol. 14, no. 11, pp. 2531–2560,
Nov. 2002.

[32] H. Jaeger, “Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication,” Science, vol. 304, no. 5667,
pp. 78–80, Apr. 2004.

[33] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt,
“An experimental unification of reservoir computing methods,” Neural
Netw., vol. 20, no. 3, pp. 391–403, Apr. 2007.

[34] T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio modula-
tion recognition networks,” in Proc. Int. Conf. Eng. Appl. Neural Netw.
Springer, 2016, pp. 213–226.

[35] Y. K. Chembo, L. Larger, H. Tavernier, R. Bendoula, E. Rubiola,
and P. Colet, “Dynamic instabilities of microwaves generated with
optoelectronic oscillators,” Opt. Lett., vol. 32, no. 17, pp. 2571–2573,
2007.

[36] Y. K. Chembo, L. Larger, and P. Colet, “Nonlinear dynamics and spectral
stability of optoelectronic microwave oscillators,” IEEE J. Quantum
Electron., vol. 44, no. 9, pp. 858–866, Sep. 2008.

[37] Y. K. Chembo, L. Larger, R. Bendoula, and P. Colet, “Effects of gain
and bandwidth on the multimode behavior of optoelectronic microwave
oscillators,” Opt. Exp., vol. 16, pp. 9067–9072, Jun. 2008.

[38] T. J. O’Shea, J. Corgan, and T. C. Clancy, “Unsupervised representation
learning of structured radio communication signals,” in Proc. 1st Int.
Workshop Sens., Process. Learn. Intell. Mach. (SPLINE), Jul. 2016,
pp. 1–5.

[39] G. Tanaka et al., “Recent advances in physical reservoir computing: A
review,” Neural Netw., vol. 115, pp. 100–123, Jul. 2019.
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