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Abstract: We propose a time-domain model to analyze the dynamical behavior of miniature
optoelectronic oscillators (OEOs) based on whispering-gallery mode resonators. In these systems,
the whispering-gallery mode resonator features a quadratic nonlinearity and operates as an
electrooptical modulator, thereby eliminating the need for an integrated Mach-Zehnder modulator.
The narrow optical resonances also eliminate the need for both an optical fiber delay line and
an electric bandpass filter in the optoelectronic feedback loop. The architecture of miniature
OEOs therefore appears as significantly simpler than the one of their traditional counterparts and
permits us to achieve competitive metrics in terms of size, weight, and power. Our theoretical
approach is based on the closed-loop coupling between the optical intracavity modes and the
microwave signal generated via the photodetection of the output electrooptical comb. The
resulting nonlinear oscillator model involves the slowly-varying envelopes of the microwave and
optical fields, and its stability analysis permits the analytical determination the critical value
of the feedback gain needed to trigger self-sustained oscillations. This stability analysis also
allows us to understand how key parameters of the system such as cavity detuning or coupling
efficiency influence the onset of the radiofrequency oscillation. Our study is complemented by
time-domain simulations for the microwave and optical signals, which are in excellent agreement
with the analytical predictions.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optoelectronic oscillators (OEOs) are microwave photonic systems that concatenate a optical
and electronic branch in a closed feedback loop. They have found numerous applications in
lightwave and microwave technology, such as in communication engineering, sensing, analog
computing, and most importantly, time-frequency metrology (see review article [1]). Indeed, one
of the most noteworthy application of OEOs is ultra-low phase noise radiofrequency generation.
This outcome can achieved via the combination of photon storage in a long optical delay line and
narrowband electric filtering, as initially proposed by Yao and Maleki [2–4].

In itsmost conventional configuration, theOEO for ultrapuremicrowave generation incorporates
a laser, an electrooptical (EO) Mach-Zehnder modulator, a few-km-long optical delay line, a
photodiode, an electrical bandpass filter and an RF amplifier, as shown in Fig. 1(a). Using
these commercial-off-the-shelf (COTS) components permits to achieve remarkable phase noise
performances, down to a record −163 dBc/Hz at 6 kHz offset from a 10 GHz carrier [5]. However,
the main drawback of these architectures is that they are bulky, heavy, and energy-greedy – thus
not satisfying the fundamental constraints of size, weight and power (SWAP).
Several alternatives approaches have been proposed to ensure SWAP convergence for OEOs.

One of the most promising approach has been to replace both the delay-lines and electric bandpass
filters with whispering-gallery mode (WGM) resonators, which are low-loss dielectric cavities
capable of trapping photons for long durations via total internal reflection [6–11]. The lifetime τph
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Fig. 1. Comparison between the architectures of conventional and miniature OEOs. The
optical paths are in red, and the electric paths in black. Polarization controllers between the
lasers and the modulators are generally necessary, but have been omitted here for the sake
of simplicity. (a) Conventional OEO. MZM: Mach-Zehnder modulator; DL: Delay line;
PD: Photodiode; PS: Phase shifter; BPF: Narrowband bandpass filter; Amp: RF amplifier.
(b) Miniature OEO. WGMR: Whispering-gallery mode resonator; The other acronyms are
the same as in (a). Note that in the miniature OEO, the WGMR is a single component that
replaces the MZM, the DL and the BPF in the conventional OEO.

of an intracavity photon of angular frequencyω0 characterizes the optical storage capability of the
resonator, and is linked to its quality factor following Q = ω0τph. At the telecom wavelength of
1550 nm, the photon lifetime in ultra-high-QWGM resonators can typically vary from few tenths
to few tens of µs; equivalently, the loaded linewidth 2κ = 1/τph of the corresponding resonances
varies from few tens to few tenths of MHz (×2π). Therefore, because they could perform both
photon storage and narrowband filtering in the linear regime, millimetric or sub-millimetric
WGM resonators have been successfully inserted on OEO loops, and they have permitted a
significant reduction of the oscillators in terms of size – see for example Refs. [12–21].
An additional step can be considered in order to accelerate the SWAP convergence: it is to

couple a microwave strip cavity to a WGM resonator with χ(2) nonlinearity, which can then play
the role of an electrooptical modulator and eliminate the need for its Mach-Zehnder equivalent
[22]. In this case, the three tasks of photon storage, narrowband filtering and nonlinearity can be
performed by the WGM resonator: the oscillator therefore becomes a miniature OEO, whose
architecture is displayed in Fig. 1(b). As discussed by Maleki in Ref. [23], the main interest of
this approach is that it effectively leads to the best SWAP performance for OEOs.
At this date, the deterministic dynamics of narrowband OEOs with time-delayed feedback

is quite well understood, and it is based on the approach of microwave envelope equations [1].
However, to the best of our knowledge, there is no theoretical model available to analyze the
nonlinear dynamics and stability of miniature OEOs. Indeed, understanding the dynamical
behavior of miniature OEOs requires an analysis of the electrooptical conversion phenomena that
are taking place in a WGM cavity pumped by both a resonant laser and coupled to a RF strip
cavity pumped by a microwave signal. These intracavity processes, which involve microwave
and optical photons interacting quantum-mechanically, are the fundamental phenomena enabling
the concepts of electrooptical WGM modulators [24–28] and ultra-sensitive microwave photonic
receivers [29–37] .
Most works related to electrooptical WGM resonators are restricted to the three-modes

operation involving the pump, signal and idler modes. A noteworthy exception is for example
the work of Ilchenko et al. in Ref. [28], where they analyzed the intracavity dynamics for an
arbitrary number of modes. The multimode analysis is indispensable for the understanding and
characterization of the miniature OEO, as these cascaded intracavity interactions contribute to
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the saturation nonlinearity in the feedback loop, thereby defining the amplitude of the stationary
microwave and lightwave oscillations.

The objective of this article is therefore to propose a full time-domain model accounting for all
nonlinear interactions in miniature OEOs based on electrooptical WGM modulators. We also
aim at performing an analytical stability study that will permit the determination of the threshold
value of the feedback gain beyond which self-starting oscillations are triggered.

This article is organized as follows. Section 2 is devoted to the description of the miniature
OEO under study. The time-domain equations governing the dynamics of the microwave and
optical intracavity fields in the open-loop configuration – corresponding to the multimode model
for the electrooptical modulator – are presented in Sec. 3, where the semiclassical equations are
subsequently deduced from their quantum counterparts. The closed-loop equations ruling the
dynamics of the miniature OEO are derived in Sec. 4, where a stability analysis is performed to
determine the threshold gain for the self-oscillations. The optimization analysis is led in Sec.
5, while Sec. 6 analyzes the important case of amplifierless miniature OEOs. The last section
concludes the article.

2. System

The miniature OEO under study is displayed in Fig. 1(b). The WGM resonator is a lithium
niobate (LN) disk of main radius a, that is used as a resonant electrooptical modulator. This
modulator has an optical input, an RF input, and an optical output. The optical input is a
telecom laser signal at power PL with wavelength λL ' 1550 nm, and the corresponding angular
frequency is ωL = 2πc/λL with c being the velocity of light in vacuum. The WGM resonator
has a free-spectral range that can be determined as ΩR = c/ang = 2π/TR , where ng is the group
velocity index of the lithum niobate at the pump wavelength, and TR is the photon round-trip
time in the optical cavity.
The WGM cavity has a loaded quality factor Q = ωL/2κ, where κ = κi + κe is the loaded

half-linewidth of the resonances at telecom wavelength, while κi = ωL/2Qi and κe = ωL/2Qe
correspond to the intrinsic and extrinsic (i.e., coupling) contributions, respectively [10].

The WGMs of the resonator that are involved in this process belong to the same mode family.
Therefore, they can be unambiguously labelled by their azimuthal order `. Since the pumped
mode has an azimuthal order `0, it is useful to introduce the reduced azimuthal order l = ` − `0
so that the WGMs involved in the system’s dynamics can now be symmetrically labeled as
l = 0,±1,±2, . . ., with l = 0 being the pumped mode which has a resonant frequency ω0. The
pump frequency ωL is very close to the resonant frequency ω0 of the pumped mode, the detuning
being equal to σA = ωL − ω0. It is convenient to introduce the normalized optical detuning
α = −σA/κ, which is such that resonant pumping translates to |α | ≤ 1.
The RF strip resonator coupled to the WGM disk has a resonance frequency that matches

the FSR of the optical cavity. It has a loaded quality factor QM = ΩR/2µ, where µ is the
half-linewidth of the loaded RF cavity resonance. The microwave input with power PM has a
frequency ΩM very close to ΩR , with the RF detuning σC = ΩM −ΩR . Here also, we define the
normalized RF detuning ξ = −σC/µ, which is within the resonance when |ξ | ≤ 1.
The second-order susceptibility χ(2) of the lithium niobate crystal is a nonlinearity that

mediates the coherent interaction between the microwave photons ~ΩM fed to the RF strip cavity
and the optical photons ~ωl circulating inside the WGM cavity. At the photon level, the intensity
of this nonlinear interaction is weighted by a normalized coupling parameter g ∝ χ(2), which has
the dimension of an angular frequency [28,33,37,38]. Interestingly, the ratio between the energy
of the optical photons comparatively to their microwave counterparts is approximately equal to
their azimuthal eigenumber ` ' ωl/ΩR , which would be here of the order of a few thousands.
The output optical signal of the WGM resonator is an electrooptical frequency comb whose

intermodal frequency is an RF signal corresponding to the FSR of the cavity. This comb is sent to
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a photodetector (with sensitivity S), that retrieves this beating intermodal frequency and outputs a
microwave signal, which is subsequently amplified and eventually phase shifted before being fed
back to the RF electrode of the WGM electrooptical modulator (input impedance Rout) – thereby
closing the optoelectronic feedback loop. The two main tasks to undertake are now (i) to build a
time-domain model to describe the dynamics of this oscillator, and (ii) to perform the stability
analysis of this model in order to determine the threshold gain leading to the self-oscillatory
behavior.

Unless otherwise stated, we will consider the following parameters for our system throughout
this article, without loss of generality: PL = 1 mW; λL = 1550 nm; ΩR/2π = 10 GHz;
S = 20 V/W; g/2π = 20 Hz; Qi = 5 × 107 and Qe = 107 (this defines all the κ coefficients);
QM = ΩR/2µ = 100; and finally, the RF line is impedance-matched with the modulator input
electrode with Rout = 50 Ω and µi = µe = µ/2.

3. Open-loop configuration

The analysis of the open-loop system is an unavoidable preliminary to the study of its closed-loop
counterpart. In particular, it is essential for the understanding of the nonlinear dynamics of the
WGM electrooptical modulator, which is central to the operation of the miniature OEO.

3.1. Quantum formalism

The interactions inside the WGM generator involve microwave photons of energy ~ΩR , and
and optical photons of energy ~ωl. As explained in Fig. 2, the second-order susceptibility χ(2)
mediates two different processes in the resonator. The first one is parametric upconversion
following ~ωl + ~ΩR → ~ωl+1. This interaction is always stimulated, i. e., it can only occur
when the WGMR is RF-pumped. The second process is parametric downconversion, following
~ωl → ~ωl−1 + ~ΩR . This downconversion can be either stimulated (does only occur in presence
of RF pumping) or spontaneous (does always occur regardless of RF pumping), with both
processes having different microwave photon production rates.
The interaction between optical and microwave photons is best decribed from the quantum-

mechanical view point. In that framework, the intracavity fields are described by the annihilation
operators âl for the optical modes and ĉ for the microwave field, as well as by the corresponding

Fig. 2. Frequency-domain representation of photonic up- and down-conversion in a WGM
resonator with χ(2) nonlinearity. These two processes can be leveraged to translate microwave
energy to the optical domain inside the WGM resonator. When belonging to the same
family, the eigenmodes of the resonator with free-spectral range ΩR are quasi-equidistantly
spaced as ωl ' ω0 + lΩR , where l = ` − `0 is the reduced azimuthal eigenumber, and ω0
is the pumped resonance. (a) Photonic upconversion (stimulated): An infrared photon
annihilates a microwave photon and is upconverted as ~ωl + ~ΩR → ~ωl+1. (b) Photonic
downconversion (stimulated or spontaneous): An infrared photon emits a microwave photon
and is downconverted as ~ωl → ~ωl−1 + ~ΩR .
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creation operators â†l and ĉ†. All these operators commute, except [âl, â†l ] = 1 and [ĉ, ĉ†] = 1.
The operators n̂l = â†l âl and n̂C = ĉ†ĉ stand for the photon numbers in the optical and microwave
fields, respectively. The optical and microwave input signals are treated as quantum coherent
states [39].
The total Hamiltonian of the open-loop system can be explicitly defined as

Ĥtot = Ĥint + Ĥfree + Ĥpump (1)

where
Ĥint = ~g

∑
m

{
ĉ âmâ†m+1 + ĉ†â†mâm+1

}
(2)

is the interaction Hamiltonian corresponding to the quadratic nonlinearity of the WGM resonator,

Ĥfree = ~σC ĉ†ĉ + ~σA

∑
m

â†mâm (3)

is the free Hamiltonian corresponding to the cavity frequency detunings, and

Ĥpump = i~
√
2κe(Ainâ†0 − A

∗
inâ0) + i~

√
2µe(Cinĉ† − C∗inĉ) , (4)

is the Hamiltonian that accounts for the optical and microwave pump fields Ain and Cin, which
are defined as

Ain =

√
PL

~ωL

and Cin =

√
PM

~ΩM

. (5)

We can now use the total Hamiltonian Ĥtot to obtain the following equations for the annihilation
operators in the Heisenberg picture:

Û̂al =
1
i~
[âl, Ĥtot] +

∑
s=i,e

{
− κsâl +

√
2κs V̂s,l

}
= −κ(1 + iα)âl − ig(ĉâl−1 + ĉ†âl+1) + δ(l)

√
2κeAin +

√
2κi V̂i,l +

√
2κe V̂e,l

(6)

Û̂c =
1
i~
[ĉ, Ĥtot] +

∑
s=i,e

{
− µsĉ +

√
2µs Ŵs

}
= −µ(1 + iξ)ĉ − ig

∑
m

â†mâm+1 +
√
2µe Cin +

√
2µi Ŵi +

√
2µe Ŵe ,

(7)

where the temporal vacuum fluctuations associated with losses have been explicitly introduced
using the operators V̂i,l (V̂e,l) for the intrinsic (extrinsic) optical losses for the mode l, and Ŵi
(Ŵe) for the intrinsic (extrinsic) microwave losses, respectively. These operators have zero
expectation value and obey the commutation rules [V̂s,l(t), V̂†s’,l′(t

′)] = δs,s’ δl,l′ δ(t − t′) and
[Ŵs(t), Ŵ†s’(t

′)] = δs,s’ δ(t − t′), with the V̂ and Ŵ operators uniformly commuting as well.

3.2. Semiclassical formalism

The quantum formalism is required when certain phenomena such as spontaneous parametric
down conversion need to be investigated in depth. In our system, we are only interested in
the macroscopic and deterministic behavior of these intracavity fields, and therefore, only
the stimulated effects are of interest. In that case, the approach where the fields are treated
semiclassically is appropriate and provides sufficient accuracy.
Passing from the quantum to the semiclassical model corresponds to transformations where

the creation and annihilation operators are transformed into complex-valued, slowly-varying
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envelopes variables, following âl → Al, â†l → A
∗
l , ĉ → C, and ĉ† → C∗. By analogy to the

photon number operators â†l âl and ĉ†ĉ, the real-valued quantities A∗lAl ≡ |Al |
2 correspond to

the number of optical photons in the mode l, while C∗C ≡ |C|2 is the number of microwave
photons in the RF strip cavity. Both these photon number quantities are dimensionless, and so are
Al and C. However, one should note that while Al and C are cavity fields, the input fields Ain
and Cin are propagating fields: They are such that |Ain |

2 and |Cin |2 correspond to photon fluxes (i.
e., number of photons per second) entering the modulator when the optical and microwave input
powers are PL and PM , respectively. Therefore, the unit of the input fields Ain and Cin is s−1/2.

In our analysis, we are only interested in the deterministic dynamics of the intracavity fields, and
therefore we can disregard the quantum fluctuations (along with any other stochastic influence).
Consequently, the quantum Eqs. (6) and (7) can now be rewritten under the following semiclassical
form:

ÛAl = −κ(1 + iα)Al − ig[CAl−1 + C
∗Al+1] + δ(l)

√
2κeAin (8)

ÛC = −µ(1 + iξ)C − ig
∑
m
A∗mAm+1 +

√
2µe Cin , (9)

where the new dynamical variables of the system are the complex-valued cavity field envelopes
Al and C, of respective carrier frequencies ωL + lΩR and ΩR .

3.3. Output microwave and optical fields

The output optical fields are expressed as

Aout,l = −Ain δ(l) +
√
2κeAl . (10)

for each mode l, and the total output field is

Aout =
∑
l
Aout,l eilΩR t . (11)

Note that Aout is a propagating field like Ain (and not a cavity field like Al), and consequently,
its square modulus |Aout |

2 is also a photon flux with units of s−1. The corresponding optical
output power in units of watts is

Popt, out = ~ωL |Aout |
2 , (12)

and the optical power transmission coefficient of the modulator is therefore |Topt |2 = Pout/Pin =
~ωL |Aout |

2/PL ∈ [0, 1]. In comparison, the transmission coefficient for a typical Mach-Zehnder
electrooptical modulator is defined instead as |Topt |2 = Pout/Pin = cos2[x + φ] ∈ [0, 1], where x
and φ are the suitably normalized RF and bias voltages.
As far as the microwave output power is concerned, we note that an infinite-bandwidth

photodetector would output a RF signal proportional to the incoming optical power, and we can
write

VPD (t) = SPopt, out = ~ωL S|Aout |
2 , (13)

where VPD(t) is in volts, while S is the sensitivity of the photodiode in units of V/W. The
generated microwave would be a multi-harmonic signal, and would feature spectral components
of frequency n ×ΩR , with n = 0, 1, 2, . . . The voltage output of the photodiode can therefore be
Fourier-expanded as

VPD (t) =
1
2
M0 +

+∞∑
n=1

[
1
2
Mn exp(inΩR t) + c. c.

]
≡

+∞∑
n=0

VPD,n(t) , (14)
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where c. c. stands for the complex conjugate of the preceding terms, and

Mn = 2~ωL S
∑
m
A∗out,mAout,m+n (15)

is the complex slowly-varying envelope corresponding to the microwave spectral component
VPD,n(t) of frequency n × ΩR (in volts). The microwave power for the harmonic of frequency
n ×ΩR can then be evaluated as

Prf,0 =
|M0 |

2

4Rout
and Prf,n =

|Mn |
2

2Rout
for n ≥ 1 , (16)

where Rout is the characteristic load resistance in the RF branch.

4. Closed-loop configuration: miniature OEO

4.1. Model

The miniature OEO corresponds to the closed-loop system where the output microwave signal of
the photodetector is used to feed the RF electrode of the WGM electrooptical modulator. In order
to mathematically describe this physical procedure, we assume that only the fundamental tone
M1 [see Eq. (15)] with frequency ΩR of the photodetected optical signal is fed back to the RF
electrode of the modulator, while the DC and higher-harmonic tones are filtered out. Analogously
to Eq. (5), we can determine that the microwave photon flux after the photodetector is Prf,1/~ΩR ,
where Prf,1 is the power of the fundamental tone as defined in Eq. (16). In order to close the
oscillation loop, the corresponding voltage signal is subsequently amplified and phase-shifted
before being injected in the RF electrode of the electrooptical modulator. The envelope of the
normalized microwave signal at the input port of the WGM modulator is now defined as

Cin,OEO = ΓeiΦ[2Rout ~ΩR ]
− 1

2M1 , (17)

where Γ ≥ 0 is the real-valued dimensionless feedback gain, which is controlled by an RF
amplifier just after the photodiode. All the loop losses are lumped into the feedback term Γ as
well (including the portion of the RF signal that is outcoupled for technological utilization, but
excluding the strip and WGM resonator losses). We can therefore express the gain as

Γ = GAGL , (18)

where GA (≥ 1) is the RF amplifier gain, while GL (≤ 1) is the loss factor of the electric branch.
The parameter Φ stands for the microwave rountrip phase shift, that can be adjusted to any value
(modulo 2π) using the in-loop RF phase shifter. From the technological perspective, it is useful
to note that the output optical signal (electrooptical comb) of the miniature OEO is proportional
to Aout, while the microwave output signal is proportional toM1. In the later case, the RF
power at the output of the photodiode is Prf,1, while the microwave power of the signal after the
amplifier is

Prf,out = ~ΩR |Cin,OEO |
2 = Γ2

|M1 |
2

2Rout
= Γ2Prf,1 , (19)

and it corresponds to the maximal RF power generated in the miniature OEO feedback loop.
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By replacing Cin by Cin,OEO in Eq. (9), we obtain the closed-loop model for the miniature OEO
as

ÛAl = −κ(1 + iα)Al − ig[CAl−1 + C
∗Al+1] + δ(l)

√
2κe Ain (20)

ÛC = −µ(1 + iξ)C − ig
∑
m
A∗mAm+1

+ ΓeiΦ η
{
2κe

∑
m
A∗mAm+1 − Ain

√
2κe(A∗−1 +A1)

}
,

(21)

where the dimensionless constant

η = 2~ωL S

√
1

2Rout

2µe
~ΩR

(22)

is a characteristic optoelectronic parameter of the oscillator (' 3.5× 10−3 in our case). Obviously,
this efficiency coefficient η is larger when the photodetector sensitivity S is increased; it increases
as well when ΩR is decreased, that is, when the resonator is enlarged. This is due to the fact
that the electrical energy yields more microwave photons when their individual energy quantum
is lower. This phenomenology indicates that high-Q mm-size WGM resonators, which are
characterized by GHz-range FSRs, are the most suitable form that perspective.

The reader can note that the overall electrical gain of the feedback loop is in fact the parameter
β = ηΓeiΦ, which weights the efficiency of the process that retrieves microwave energy from
the output electrooptical comb generated by the WGM modulator via photodetection, and feeds
it back as an electrical signal inside the RF strip cavity of the modulator. Also note that since
our input optical field Ain is real-valued [see Eq. (5)], we can drop the calligraphic notation and
simply write it as Ain: it means that we have arbitrarily set its phase to 0, and as a consequence,
the optical phase to all the intracavity fields Al is determined with regard to the pump laser field.

4.2. Numerical simulation of the temporal dynamics

Equations (20) and (21) govern the dynamics of the miniature OEO, and permit to undertake
a complete theoretical analysis of that closed-loop system. In particular, they allow us to
achieve a deep understanding of the system’s temporal dynamics via numerical simulation as
the gain Γ is varied. Figure 3 displays numerical simulations performed with the fourth-order
Runge-Kutta algorithm, and we have considered a total of 41 modes (l = −20, . . . , 20). The
initial conditions are set such that there are a few photons in the optical modes and in the RF
cavity (|Al(0)|2 ∼ |C(0)|2 ∼ 1), and the field variables have random phases. The laser detuning is
set at α = 0.5, and the loop phase shift is Φ = 0. The top row displays the time-domain dynamics
of some output optical modes Popt,out,l = ~ωL |Aout,l |

2, where Aout,l is defined in Eq. (10). We
have numerically observed, as expected, that the dynamics of a given mode l is of the same order
of magnitude (but not identical) to the one of its mirror mode −l: for that reason, we have only
plotted the modes l ≥ 0 in order to avoid crowding the figures with redundant plots. The bottom
row displays the temporal dynamics of the RF signal at the output of the amplifier, i. e. Prf,out as
defined in Eq. (19).

For the chosen parameters, numerical simulations asymptotically yield a non-null value for the
pumped mode l = 0, but a null amplitude for the sidemodes l , 0 when Γ<10.97, leading to a null
RF output as well. Once the feedback gain Γ is set to a value higher than 10.97, the sidemodes
dynamics eventually leads to constant non-zero amplitudes, and an RF signal is generated. We
have not observed here metastable (unusually long) transient behavior as it can sometimes be the
case in conventional OEOs (see Ref. [40]).

When Γ = 12, Fig. 3(a) shows that the pumped mode becomes depleted and exchanges energy
with the modes l = ±1, which subsequently settle to a non-null constant value. The dynamics of
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Fig. 3. Time domain dynamics for the optical and microwave power, obtained via the
numerical simulation the model presented in Eqs. (20) and Eqs. (21) for α = 0.5 and Φ = 0.
The different columns correspond to different values of the feedback gain. The top row
displays the temporal dynamics of some output optical modes Popt,out,l = ~ωL |Aout,l |

2,
while the bottom row displays the temporal dynamics of the microwave signal Prf,out =
Γ2 |M1 |

2/2Rout at the output of the RF amplifier. The critical value of the gain below which
there is asymptotically no sidemode and RF oscillation is Γcr ' 10.97.

the other sidemodes (|l| ≥ 2) is still negligible at this point. As shown in Fig. 3(d), this process
generates a RF signal at the same timescale, with Prf,out ' 0.04 mW. When the gain is increased
to Γ = 20 [Fig. 3(b)], the energy exchange from the pump to the sidemodes is more pronounced,
and eventually leads to the situation where the output power in the sidemodes l = ±1 is higher
than the one in the pumped mode l = 0 (note however that these are output fields, and not
intracavity fields). The sidemode pair l = ±2 starts to have a noticeable amplitude as well. The
RF signal dynamics displays a transient behavior qualitatively similar to the one of the optical
modes, before settling to a steady-state value Prf,out ' 0.3 mW [Fig. 3(e)]. As shown in Fig. 3(c),
further increase of the gain to Γ = 40 leads to higher complexity in the pump-to-sidemode
power conversion, so that the sidemode pair l = ±3 starts to display sizable oscillations as well.
Accordingly, the RF signal settles to a higher value with Prf,out ' 0.9 mW [Fig. 3(f)].

Several trends can be outlined in the OEO dynamics as the feedback gain Γ is increased. We
can first observe that the output optical modes always have a power that is of the order of the
laser pump (here, PL = 1 mW), and that the benefit of increasing the feedback gain is to improve
the conversion efficiency from the pump to the sidemodes (up to a certain extent). The top
row consistently shows the excitation of additional pairs of sidemodes as the gain is increased,
thereby confirming that the WGM resonator plays the role of a dynamical frequency converter.
The second observation is that while the optical power is only redistributed amongst the side
modes, the RF power steadily increases with the gain. The third observation is that when the gain
becomes larger, the transient dynamics is shortened while remaining in the µs timescale (set by
the κ photon loss rates). However, this shortened transient dynamics induces pronounced, sharply
peaked relaxation oscillations. In the next sub-section, we will investigate the stability properties
of our time-domain model and define the conditions under which self-starting oscillations are
triggered in the miniature OEO.
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4.3. Stability analysis and threshold gain

When the gain parameter Γ is null, the system receives no RF excitation and the steady state
solution of Eqs. (20) and (21) can be straightforwardly derived as

C = 0 and Al =


√
2κe

κ(1+iα)Ain if l = 0

0 if l , 0
. (23)

This solution is the trivial equilibrium of our oscillator, and it corresponds to a situation where
none of the sidemodes with l , 0 is excited. When Γ is very low, conventional wisdom from
self-oscillators theory (confirmed by our numerical simulations in the previous subsection)
suggest that the same situation should prevail, i.e, the trivial solution represented in Eq. (28)
should remain stable. However, as the gain is increased, there should be a critical value Γcr
beyond which self-sustained oscillations are obtained, with asymptotic values C , 0 and Al , 0.
The objective of this subsection if to find Γcr analytically.

In order to determine the linear stability of the trivial fixed point of Eq. (23), we need to find the
Jacobian of the flow corresponding to Eqs. (20) and (21). If we consider an electrooptical comb
with 2N + 1 sidemodes, the variables of the perturbation flow are δAl with l = −N, . . . ,N and
δC, i.e., the dimensionality of this flow is 2N + 2 and the Jacobian around the trivial solution is
an (2N + 2) × (2N + 2) complex-valued matrix. However, one can note that the perturbations δAl
with |l| ≥ 2 are of second order and do not influence the eigenvalue spectrum of this Jacobian.
This is due to the fact that the first sidemodes to be excited in electrooptical combs are necessarily
the ones adjacent to the pumped mode, with l = ±1, and from there the comb sequentially
grows “outwards” in the frequency domain. In other words, the sidemodes l = ±2,±3,±4, . . .
are excited through a cascaded mechanism that require the modes l = ±1,±2,±3, . . . to be
excited beforehand. This phenomenology is similar to the one observed in WGM OEOs with
Mach-Zehnder modulators (see Ref. [15]), but quite different from the one observed in Kerr comb
formation where the first modes to be excited via modulational instability are not necessarily
adjacent to the pumped mode [10,41].
Along with the perturbations δAl with |l| ≥ 2, the perturbation δA0 of the pumped mode is

also irrelevant for the stability analysis, because it is a neutrally stable with a null eigenvalue.
Therefore, stability analysis is drastically reduced from 2N + 2 to 3 perturbation variables, namely
δA−1, δA1 and δC, which obey the linearized autonomous flow

δ ÛA∗−1 = − κ (1 − iα) δA
∗
−1 + igA

∗
0δC

δ ÛA1 = − κ (1 + iα) δA1 − igA0δC

δ ÛC = − µ (1 + iξ) δC +
[
(2κeβ − ig)A0 − β

√
2κeAin

]
δA∗−1

+
[
(2κeβ − ig)A∗0 − β

√
2κeAin

]
δA1 ,

(24)

where A0 is explicitly defined via Eq. (28), while β = ηΓeiΦ is the overall gain parameter in the
electrical branch. The Barkhausen phase condition for autonomous oscillators imposes that β
should be real-valued, i.e. the phase shifter should be set such that Φ = 0 or π (modulo 2π) – as
we will see later on, the appropriate sign for β will actually depend on the sign of α.

The complex-valued flow in Eq. (24) can be rewritten under the matrix form as δ ÛX = J · δX,
where δX = [δA∗

−1, δA1, δC]T is the perturbation vector and J is the 3 × 3 Jacobian whose
eigenvalues will decide the stability of the trivial fixed point. From the analytical point of view,
it is mathematically difficult investigate the spectral stability of a three-dimensional Jacobian
when it is complex-valued. However, this task is mathematically more tractable for real-valued
Jacobian matrices. For this reason, we transform the complex-valued flow of Eq. (24) into a
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real-valued one by decomposing the perturbation vector and the Jacobian into their real and
imaginary parts, following δX = δXr + iXi, and δJ = δJr + iJi. As a consequence, by plugging
these decompositions into the autonomous flow δ ÛX = J · δX, we find that Eq. (24) can now be
rewritten under the form of a six-dimensional real-valued flow following

δ ÛXr

δ ÛXi

 = Jri


δXr

δXi

 with Jri =


Jr −Ji

Ji Jr

 (25)

being the expanded Jacobian, while the sub-matrices Jr and Ji are explicitly defined as

Jr =


−κ 0 pg

0 −κ pg

(pβ + pg) (pβ − pg) −µ


and Ji =


κα 0 qg

0 −κα −qg

−(qg − qβ ) −(qg + qβ ) −µξ


, (26)

with qg = gRe(A0), pg = gIm(A0), pβ = β[2κeRe(A0) −
√
2κeAin], and qβ = 2κeβIm(A0).

Without loss of generality, we will simplify the calculations in the remainder of the article by
considering that the microwave signal fed back to the RF strip resonator is resonant, i.e. ξ = 0.

The trivial fixed point of Eq. (28) is linearly stable (i.e., the OEO does not oscillate) when the
real parts of all the eigenvalues of the Jacobian matrix Jri are strictly negative. These eigenvalues
are solution of the 6-th order characteristic polynomial

det[Jri − λI6] =
6∑

k=0
m6−kλ

k = 0 , (27)

where the real-valued polynomial coefficients are explicitly defined as

m0 = 1 (28)

m1 = 2 (2κ + µ) (29)

m2 = −4pgpβ + 4qgqβ + 2
(
3 + α2

)
κ2 + 8κµ + µ2 (30)

m3 = 4
{
qg

[
qβ (3κ + µ) + pβακ

]
+ κ

[(
1 + α2

)
κ2 +

(
3 + α2

)
κµ + µ2

]
+ pg

[
qβακ − pβ (3κ + µ)

] } (31)

m4 = 4
(
q2gq

2
β
+ p2gp

2
β

)
+ κ

[(
1 + α2

)2
κ2 + 8

(
1 + α2

)
κµ + 2

(
3 + α2

)
µ2

]
+ 4κ

[(
qgqβ − pgqβ

) (
3κ + α2κ + 3µ

)
+ α

(
qgqβ + pgqβ

)
(2κ + µ)

]
− 8qgpgpβqβ

(32)

m5 = 2κ
[
2qg

(
pβα + qβ

)
− 2pg

(
pβ − qβα

)
+

(
1 + α2

)
κµ

]
×

[
−2pgpβ + 2qgqβ + κ

(
κ + α2κ + 2µ

)] (33)

m6 = κ
2
{
4α2

(
q4g + p

4
g

)
+ 4q2g

(
qβ + pβα

)2
+ 4p2g

[
p2
β
− 2pβqβα +

(
2q2g + q2β

)
α2

]
+ 4qg

(
qβ + pβα

) (
1 + α2

)
κµ +

(
1 + α2

)2
κ2µ2

− 4pg
(
pβ − qβα

) [
2qg

(
qβ + pβα

)
+

(
1 + α2

)
κµ

] }
.

(34)
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The Routh-Hurwitz theorem states a necessary and sufficient condition for all the eigenvalues
of the characteristic polynomial of Eq. (27) to have strictly negative real parts is to fulfill the
inequalities

∆i =

������������������������

m1 m0 0 0 0 · · · 0 0

m3 m2 m1 m0 0 · · · · · · · · ·

m5 m4 m3 m2 m1 · · · · · · · · ·

m7 m6 m5 m4 m3 · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · mi−1 mi−2

· · · · · · · · · · · · · · · · · · mi+1 mi

������������������������

>0 for i = 1, . . . , 6 . (35)

The numerical computation of the determinants ∆i as Γ is varied shows that the lowest-order
critical determinant that fails to fulfill this inequality is ∆3. The direct numerical computation
of the eigenvalue spectrum for both J and Jri confirms that at least one eigenvalue transversely
crosses the imaginary axis when ∆3 = 0. The critical gain value Γcr needed to trigger the
oscillations is therefore a root of the algebraic equation

∆3 = m1m2m3 − m2
1m4 − m0m2

3 + m0m1m5 = a[ΓeiΦ]2 + b[ΓeiΦ] + c = 0 (36)

with
a = 128η2α2κ2eg

2A4
in
(κ − κe) (µ + 2κe)
κ2

(
1 + α2)2 (37)

b = −16ηαgA2
in

κe

κ
(
1 + α2) {4 (

1 + α2
)
κ4 + µ3 (µ + 2κe) + 2κµ2 (3µ + 4κe)

+ 2κ3
[
8µ − 2κe

(
−3 + α2

)]
+ κ2µ

[(
17 + α2

)
µ + 2κe

(
9 + α2

)] } (38)

c = 8κ
[
8
(
1 + α2

)
κ5 +

(
29 + 14α2 + α4

)
κ4µ + 8

(
5 + α2

)
κ3µ2

+2
(
13 + α2

)
κ2µ3 + 8κµ4 + µ5

]
.

(39)

The solution to the quadratic Eq. (36) is

Γcr±eiΦ = −
K1

A2
in

[
1
α
K2 ±

1
|α |

K3

]
(40)

where

K1 =
−

(
1 + α2) κ

16ηgκe(κ − κe)(µ + 2κe)
(41)

K2 = 4κ4
(
1 + α2

)
+ µ3 (µ + 2κe) + 2κµ2 (3µ + 4κe) + 2κ3

[
8µ − 2κe(α2 − 3)

]
+ κ2µ

[
µ

(
17 + α2

)
+ 2κe

(
9 + α2

)] (42)

K3 = (2κ + µ)
{
− 2κ3

(
1 + α2

)
+ µ2 (µ + 2κe) + 2κµ (2µ + 6κe)

+ κ2
[
µ

(
1 + α2

)
+ 2κe

(
5 + α2

)] } (43)
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Equation (40) involves two branches of solutions, the first one being −K1 (K2 − K3) /(αA2
in) and

the second one being −K1 (K2 + K3) /(αA2
in). However, the second branch yields solutions that

are about two orders of magnitude larger than the first one in absolute value: these solutions are
unphysical and can be discarded in our current configuration.
Therefore, we finally obtain the following formula for the critical feedback gain

Γcr = −
K1

A2
inαeiΦ

(K2 − K3)>0 with

Φ = 0 if α>0

Φ = π if α<0
. (44)

The miniature OEO is expected to oscillate when the feedback gain is such that Γ>Γcr, and we
observe that the feedback phase Φ has to be adjusted differently depending on the sign of α, i.e.,
depending on the direction of the detuning from resonance in the pumped mode.

Figure 4 displays the variations of Γcr as a function of the optical detuning α. One can obseerve
that the curve is symmetric with regard to axis of symmetry at α = 0. Moreover, Γcr diverges
when α→ 0 and when α→ ±∞. This can be understood in first aproximation via the variations
of the output field Aout,0 = Ain [2κe/κ (1 + iα) − 1]. On the one hand, when α → 0, the pump
is resonant and accordingly Aout,0 is weak, so that the comb photodetection voltage is low –
thus requiring a high gain Γ to offset this power deficit. On the other hand, when α → ±∞,
the coupling is weak and so is A0, so that the electrooptical comb generation is poor and the
photodetection signal is low as well. Therefore, it appears that optimal operation of the miniature
OEO (i.e., low threshold feedback gain Γcr) requires to detune the pump laser in between these
two asymptotic cases.

Figure 5 shows the bifurcation diagrams for the optical output signalsPopt,out,l, for themicrowave
power Prf,1, and for the RF power Prf,out generated at the output of the RF amplifier as the gain Γ
is varied. The first salient feature is that the optical power in paired modes ±l , 0 displays a
switching behavior, with Popt,out,l , Popt,out,−l: However, the power in the pumped mode l = 0
and in the RF signals varies smoothly with the gain. This behavior is quite different from the one
observed in Kerr optical frequency combs, for example, where paired modes typically have the
same power [8–10]. The second observation that can be made is that quantitatively, Prf,1 � Prf,out,
with a ratio that can grow up to four orders of magnitude in our simulations. The third note is

Fig. 4. Variation of the critical feedback strength Γcr as a function of α. The symbols are
obtained via the numerical simulation of the time-domain OEO model presented in Eqs. (20)
and (21), while the solid line corresponds to the analytical solution provided in Eq. (44).
It can be seen that the stability analysis permits to determine the threshold gain needed to
trigger microwave oscillations with exactitude. It also appears that minimum gain is achieve
for α ' ±1.
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Fig. 5. Bifurcation diagrams for the optical output signals Popt,out,l, for the microwave
power Prf,1 generated by the photodiode (before the RF amplifier), and for the RF power
Prf,out generated at the output of the RF amplifier. The parameters of the system are the
same as those of Fig. 3, with α = 0.5 and Φ = 0. The critical value of the gain below which
there is no OEO oscillation is Γcr ' 10.97, in agreement with Fig. 4. Note that as the gain Γ
is increased, there are optical mode power switches within a given sidemode pair ±l , 0,
while the pumped optical mode l = 0 and the RF signals are varying smoothly.

that qualitatively, the RF power Prf,1 at the output of the photodiode does not increase steadily,
while the power Prf,out after the amplifier always does.

5. Optimization: system parameters leading to the smallest threshold gain

In this section, we determine the optimal conditions leading to the smallest value of the critical
gain Γcr for the feedback gain.

5.1. Optimal laser detuning from resonance

We first need to find the optimal detuning αopt for which the gain becomes minimal. We look for
the roots of the algebraic equation d(Γcr)/dα = 0 for α>0, and we are led to the equation:(

−1 + 2α2 + 3α4
)
κ4 + 2

(
−1 + α2

)
κµ +

(
−1 + α2

)
µ2 = 0 , (45)

which is bi-quadratic in α. There are two roots α2
opt,±; The solution α2

opt,− has to be discarded for
being negative (and thus, unphysical), while the other solution yields the desired results as

αopt,+ ≡ αopt = ±
1
√
6κ

√
−

[
κ2 + (κ + µ)2

]
+

√[
κ2 + (κ + µ)2

]2
+ 12κ2 (κ + µ)2 (46)

The formula above can be simplified: indeed, the miniature OEO is generally configured in a
way that the loaded optical resonance linewidth 2κ is much smaller than the loaded RF resonance
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linewidth. If we write this condition as |κ/µ| � 1 and use this ratio as a smallness parameter, a
Taylor expansion of Eq. (46) yields the following expression for the optimal detuning:

αopt ' ±

[
1 −

1
2

(
κ

µ

)2]
' ±1 when

κ

µ
→ 0 . (47)

It therefore appears that the laser driving miniature OEO should ideally be detuned to the edge of
the optical resonance, since α = ±1 translates to σA = ±κ. This is confirmed in Fig. 4 where it
can be seen that the critical gain Γcr is minimal (' 9) around α = ±1. We note that here, despite
the fact that we have a relatively high ratio κ/µ (' 0.23), the approximation αopt = ±1 already
appears to be very good, since the exact value given by Eq. (46) is 0.94. As noted above, the
precision of this approximation αopt = ±1 is expected to increase as κ/µ→ 0, i. e., for when the
optical resonance becomes increasingly narrower than the microwave one. From a technological
perspective, it is interesting to note that this requirement is fortunately not stringent, as the
minimum appears to be relatively flat: in other words, a deviation of ±5% with regard to αopt
still yields a close-to-minimum critical gain value.

5.2. Optimal resonator coupling coefficient

The objective here is to find the optimal value κe,opt for the resonator coupling coefficient. One
should keep in mind that the intrinsic coupling coefficient κi is an intrinsic property of the
resonator and cannot be tuned. However, κe can be viewed as a coupling efficiency parameter
that is indeed tunable, for example by varying the distance (a few λL ) between the prism and the
resonator in Fig. 1. It results that the loaded linewidth 2κ can be varied by the same token.

The critical gain defined in Eq. (44) is written as a function of κ and κe, which in inconvenient
in the present case because both parameters are coupling dependent. We therefore need to rewrite
that equation in a way that a single parameter becomes responsible for the variations in coupling
strength. For that purpose, it is convenient to introduce the parameter

ρ =
κe
κ
∈ [0, 1], (48)

which is the ratio between outcoupling and total losses in the resonator. The resonator is in the
regime of undercoupling when 0<ρ< 1

2 (most losses are intrinsic), overcoupling when 1
2<ρ<1

(most losses are extrinsic), and critical coupling when ρ = 1
2 . The limit case ρ = 0 corresponds

to the situation where the resonator is uncoupled (all losses are intrinsic), while the limit case
ρ = 1 corresponds to the situation where the intrinsic losses are null (the intrinsic Q-factor is
infinite and all losses are coupling-induced). The critical gain defined in Eq. (44) can now be
rewritten as a function of the intrinsic loss parameter κi, and the coupling ratio ρwhose variations
from 0 to 1 scan all the possible coupling configurations. It is noteworthy that this coefficient ρ
plays a major role in the quantum applications of WGM resonators [42].
In order to find the exact value of the optimal ρopt (or equivalently, the optimal κe,opt), one

has to insert Eq. (46) into Eq. (44), and obtain this optimal value is as the solution of the
algebraic equation dΓcr/dρ = 0. However, this procedure would be cumbersome because the
equations involved are algebraically long and complicated. Nevertheless, these calculations can
be significantly simplified if we straightforwardly consider the approximation |κ/µ| � 1 (along
with αopt ' ±1), which give accurate results as shown in Sec. 5.1 dealing with the optimal laser
detuning. In that case, the formula for the critical gain can be approximated as

Γcr '
µκi

gηA2
inρ(1 − ρ)

when
κ

µ
→ 0 . (49)

The formula above yields Γcr ' 8 with our parameters, a value that approximates quite well the
minimum that is obtained in Fig. 4. Equation (49) also clearly indicates that the critical gain
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needed to trigger the microwave oscillations in the miniature OEO increases when the resonator
becomes too undercoupled (ρ→ 0) or too overcoupled (ρ→ 1). The optimal value ρopt leading
to a minimum critical gain is readily found by solving the algebraic equation dΓcr/dρ = 0, which
therefore leads to the approximation:

ρopt '
1
2
, (50)

corresponding to critical coupling (κi ' κe and Qi ' Qe). Numerical simulations indicate that
the critical coupling condition is not stringent, and a deviation of ±5% with regard to ρopt still
yields a close-to-minimum critical gain value. This optimal value permits to find the absolute
minimum for the critical gain as

Γmin '
4µκi
gηA2

in
=

ωLΩR

gSPLQi

√
~Rout
QM

∝
1

gSPLQi
√
QM

. (51)

For our parameters, we obtain Γmin ' 4.4, which is then the absolute minimum gain needed to
trigger oscillations in our miniature OEO. The formula from Eq. (51) indicates that the threshold
gain can be lowered by increasing the nonlinearity, photodetector sensitivity, and optical power,
which was expected; but more importantly, it indicates that increasing the intrinsic Q-factor of
the WGM resonator is more effective than increasing the Q-factor of the microwave strip cavity.

6. Threshold laser power in the amplifierless miniature OEO

In the preceding sections, we have analyzed an architecture of miniature OEO where an amplifier
is inserted in the electrical branch, and the role of the stability analysis was to find the feedback
strength Γcr needed to self-start the microwave oscillation. We had implicitly assumed that the
amplifier had a tunable gain, while the optical power was fixed.
However, it is possible to have instead an amplifier with fixed gain, while the pump laser is

power-tunable. The question in this case is to find the critical laser power PL,cr that is needed
to trigger RF oscillations. We can use the results from Sec. 4.3 to solve this problem. Hence,
considering the relationships A2

in = PL/~ωL and Γ = GAGL, we can use Eq. (44) to derive the
critical laser power as

PL,cr =
Υ(α, ρ)
GAGL

with Υ(α, ρ) ≡ −~ωL

K1

αeiΦ
(K2 − K3)>0 (52)

where K1, K2, K3, and Φ are the same as in Eq. (44).
It results that high gain amplification allows for lower laser powers, and vice versa. For example,

Ilchenko et al. have reported in Ref. [43] a miniature OEO where the laser power was around 70
µWwhile the amplifier had a gain of 45 dB (i. e., GA ∼ 180). However, on the other hand, higher
laser power permits to use amplifiers with lower gain: In fact, if the optical power is high enough,
it is even possible to get rid of the amplifier, thereby leading to an amplifierless miniature OEO.
The reader can note that amplifierless OEOs have already been demonstrated with conventional
fiber-based architectures (see for example Ref. [44]). In our system, eliminating the amplifier
mathematically corresponds to set GA = 1 in Eq. (52). As a consequence, the OEO architecture
of the miniature OEO presented in Fig. 1 is significantly simplified. The critical laser power
needed to trigger RF oscillations in the amplifierless miniature OEO can be exactly calculated as
PL,cr = Υ(α, ρ)/GL.

From this analysis, we can now define the absolute minimal optical power that is needed to
trigger microwave oscillations in an amplifierless OEO. The procedure for doing so is to consider
negligible electrical losses (GL,opt = 1), optimal laser detuning (α = αopt) and optimal coupling
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(ρ = ρopt), so that this absolute minimal laser power can be calculated as

PL,min =
Υ(αopt, ρopt)

GL,opt
' Υ

(
±1,

1
2

)
' ~ωL

4µκi
gη
'
ωLΩR

gSQi

√
~Rout
QM

. (53)

For our parameters, this value is corresponds to 4.4 mW. The reader can also note that the
last approximations in Eq. (53) can be readily obtained from Eq. (51) by setting Γmin = 1
and extracting the equivalent optical power. It should be noted that if amplifierless miniature
OEOs have the great advantage to simplify the architecture of the system, they require a careful
management of the thermal effects induced in the WGM resonator by the higher laser power
[45–47].

7. Conclusion

In this article, we have proposed a mathematical framework to study the time-domain nonlinear
dynamics of miniature OEOs based on nonlinear WGM resonators. Our model uses time-domain
equations to track the dynamics of the complex-valued envelopes of the optical and microwave
fields. We have performed a stability analysis that permitted to calculate analytically the threshold
value of the feedback gain that is needed to self-start the microwave oscillations. An optimization
analysis has also been performed, and led us to the conclusion that the system should ideally be
operated at the edge of the optical resonance and close to critical coupling. Further investigation
has shown that beyond a certain laser power, RF amplification is not needed anymore and the
miniature OEO can become amplifierless.

Several open points remain with regard to technology related to miniature OEOs. The first one
is to understand the detrimental role played by dispersion, parasitic nonlinearities and thermal
effects inside the WGM resonator [10,48]. The second challenge is to understand how the various
sources of noise are translated to phase noise in the output RF signal. Modifications of the
fundamental architecture can also be considered in order to achieve higher operating frequencies,
such as multiple-FSR microwave pumping or frequency multiplication, for example. Finally,
these miniature OEOs could also emerge as a technological platform of choice to explore several
applications in quantum photonics [38,49–53].
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