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We propose a theoretical study to analyze how both dark and bright Kerr solitons can be generated in whispering-
gallery mode resonators with various regimes of the group-velocity dispersion, namely normal, anomalous, and
null. The coexistence of these solitonic structures in each regime is shown to appear around a critical value of the
laser pump. We also evidence that these solitons build up owing to a mechanism related to oscillation locking
of switching waves, which connect the upper and the lower homogenous steady states. © 2020 Optical Society of

America
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1. INTRODUCTION

The generation of optical frequency combs using whispering-
gallery mode (WGM) resonators with Kerr nonlinearity has
been intensely studied in recent years. These Kerr frequency
combs are the spectral representation of nonlinear dissipative
patterns traveling inside the resonator [1,2]. Indeed, Kerr fre-
quency combs are generated through a cascade of nondegenerate
photonic interactions known as four-wave mixing, where two
photons interact via Kerr nonlinearity to yield two output pho-
tons with different frequencies. From the mathematical point
of view, the topic of Kerr combs is an extension of a previous
body work dealing with Kerr-nonlinear cavities pumped with a
continuous-wave laser (see [3,4] and review article [5]).

The study of Kerr optical frequency combs has demonstrated
a plethora of novel solitonic effects, with immediate applica-
tions that include precision measurement and optical signal
processing [2,6–21]. However, its scope has been widened to
incorporate atomic/molecular clock and spectroscopy [22–24],
telecommunication engineering [25–27], astrophysics [28],
biology [29], and integrated photonics [30–32].

Dispersion is required for a Kerr comb to be generated
[1,2,33]. From this requirement, one can foreshadow the
central role that it plays, and several studies have focused on
investigating its various effects. In general, the most prevalent
dispersion term corresponds to second-order dispersion, also

referred to as group-velocity dispersion (GVD). Bright solitons
are usually obtained with negative GVD (anomalous regime)
[15,34,35], while dark solitons are favored when the GVD is
positive (normal regime) [15,36–38]. It is important to note
that the dispersion of a resonator can to some extent be engi-
neered to yield a dispersion profile closely corresponding to
arbitrary configurations [39–45].

Recent research in the normal dispersion regime has high-
lighted a mechanism leading to the emergence of dark and
bright solitons via switching waves connecting the homog-
enous steady-state solutions that underlay the architecture of
these solitons [36,37]. More precisely, these switching waves
are traveling front solutions connecting the upper and lower
homogenous steady-state solutions [36–38,46,47]. Dark
solitons originate from the oscillation interlocking of these
switching waves around the lower steady state, whereas bright
solitons are a consequence of the same process around the
upper steady state. The coexistence of bright and dark solitons
was also demonstrated with normal GVD and attributed to a
joint contribution of the third-order dispersion (TOD) and
high detuning [38]. Moreover, the coexistence of both bright
and dark solitons was also demonstrated in the case of zero
GVD [48]. However, the origin of this coexistence was not
investigated. Furthermore, and to best of our knowledge, such
coexistence has not yet been considered in the case of resonators
featuring anomalous GVD.
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In this paper, we study the mechanism that is at the origin of
the coexistence of bright and dark solitons in Kerr-nonlinear
WGM resonators. The paper is organized as follows. In
Section 2, we briefly present the model, while Section 3 high-
lights the switching wave phenomenology that allows for the
coexistence of solitons in the zero-GVD regime. In Section 4, we
use the same method to evidence the coexistence of the solitonic
waveforms in both the normal and anomalous GVD regimes.
The last section concludes the article.

2. THE MODEL

The spatiotemporal dynamics of intracavity laser fields in
WGM resonators is described with high precision by the mean-
field Lugiato–Lefever equation (LLE) [3]. In a dimensionless
form, the generalized LLE can be explicitly written as

∂ψ

∂t
= F − (1+ iα)ψ + i |ψ |2ψ + i

nmax∑
n=2

in bn

n!
∂nψ

∂θn
, (1)

where ψ(θ, t) represents the complex slowly varying envelope
of the total intracavity field, which is related to the intracav-
ity power in watts by |E |2 = [~ωlas/2g 0τphTFSR ]|ψ |

2, with
TFSR = 2π/�FSR being the intracavity round-trip time, whereas
�FSR is the angular free-spectral range (FSR) of the resonator.
The parameter g 0 is characteristic of the Kerr response and pro-
portional to the nonlinear coefficient n2 of the refraction index.
The dimensionless time t in Eq. (1) is obtained by rescaling the
time with twice the photon lifetime, following 2τph = 2/1ωtot,
where 1ωtot is the total linewidth of the pumped resonance.
The variable θ ∈ [−π, π ] stands for the azimuthal angle along
the circumference of the resonator, and F is the dimensionless
pump field of the resonator. The parameter α =−2σ/1ωtot

is the dimensionless frequency detuning parameter with
σ =ωlas −ωres (frequency detuning) being the difference
between the angular frequencies of the pumping laser (ωlas)
and the cold-cavity resonance (ωres). The nth-order dispersion
parameters bn (2≤ n ≤ nmax) can be expressed as

bn = 2vg τphβn�
n
FSR

. (2)

A contribution of bn≥2 expresses the deviation of the reso-
nance frequencies from an equidistant spacing defined for bn=1

[34]. In Eq. (2), vg is the group velocity in the bulk material at
the pump laser frequency and βn is the nth-order dispersion
coefficient as usually defined in optical materials.

The stability analysis of the equilibrium intracavity fieldψe of
Eq. (1) fulfills the following third-order polynomial:

F 2
= ρ3
− 2αρ2

+ (α2
+ 1)ρ, (3)

with ρ = |ψe |
2 being the homogeneous steady-state solution.

For lower values of the detuning α <
√

3, Eq. (3) has only one
single stable real solution. For large detuning α >

√
3, three

real-valued solutions ρd , ρm , and ρu might exist, satisfying
ρd <ρm <ρu , withρd andρu being stable, whereasρm is unsta-
ble. The subscripts d , m, and u mean down, middle, and upper,
respectively. In the (ρ − F 2) plane, F 2 presents a critical pump
power, which is the average of the two extrema [48], following

Fc =

√
2α
(
α2 + 9

)
27

. (4)

It is also known that for a pump value lower than Fc , the
down steady stateρd is favored, while the upper steady stateρu is
favored instead when the pump applied to the resonator is larger
than this critical value [48]. The GVD, TOD, and fourth-order
dispersion (FOD) parameters respectively correspond to b2, b3,
and b4. By convention, the anomalous GVD regime is defined
by b2 < 0, while normal GVD corresponds to b2 > 0. In the
next sections, we will investigate the effect of these dispersion
parameters on the spatiotemporal dynamics of the cavity, and
three main cases will be outlined as a function of the GVD.

3. COEXISTENCE OF SOLITONS WITH ONLY
THE TOD

In this section, Eq. (1) is considered with all the dispersion
coefficients being equal to zero, except the TOD coefficient b3

(b3 6= 0 and bn 6=3 = 0). The effect of TOD on dissipative struc-
tures has already been analyzed in several research works. Several
phenomena have been thereby investigated, such as soliton drift,
shift, and (des)tabilization [33,49–54]. In this configuration,
bright and dark solitons yielding Kerr combs with single-FSR
spacing are obtained (see Fig. 1).

It can also be noted in Fig. 1 that both bright and dark soli-
tons can be obtained depending on the initial condition. As
suggested in [36–38], the appropriate way to understand why
both bright and dark solitons coexist consists of analyzing the
switching waves (SWs) connecting the homogeneous steady-
state solutions ρd and ρu . Their analysis requires that the time
derivative must be set to zero. By doing so and by introduc-
ing the following intermediate variables fr ,i = ∂θψr ,i and
g r ,i = ∂θ fr ,i , the LLE (with bn 6=3 = 0) can be transformed into
a set of first-order differential equations:

∂τψr = fr , (5)

∂τ fr = g r , (6)

∂τ g r = 6
[
ψr − αψi − v fr +ψiψ

2
r +ψ

3
i − F

] /
b3, (7)

Fig. 1. Coexistence of bright and dark solitons and their corre-
sponding spectra in a zero-GVD regime. The parameters are α = 2.5,
b2 = 0, b3 = 4.08× 10−5 (corresponding to β3 = 1 ps3/km), and
b4 = 0. The pump value is F =

√
6.26' 1.688 for both solitons and

spectra.
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∂τψi = fi , (8)

∂τ fi = g i , (9)

∂τ g r = 6
[
αψr +ψi − v fi −ψrψ

2
i −ψ

3
r

] /
b3, (10)

where ψ has been expanded into its real ψr and imaginary ψi

parts following ψ =ψr + iψi (with i2
=−1). It is impor-

tant to note that Eq. (1) has been rescaled with regard to
τ ≡ θ − vt , where v is the drift velocity. The spatial eigen-
values of the Jacobian matrix calculated from Eqs. (5)–(10) obey
the characteristic equation

λ6
+

12v

b3
λ4
−

12

b3
λ3
+

(
6v

b3

)2

λ2

+
36

b2
3

[
1+ α2

− 4αρ + 3ρ2]
= 0. (11)

For being of sixth-order polynomial, Eq. (11) will yield com-
plex value solutions under the form λ= q + i�, where q is the
damping rate and� the frequency of the oscillatory tails around
ρd andρu .

According to [36–38], ρd is approached and left by SWd and
SWu , respectively, which expressions can be linearly approxi-
mated by SWd ≈ ρd e λd θ . Similarly, ρu is also approached and
left by SWu and SWd , respectively, which in this case yields
SWu ≈ ρue λuθ . The switching waves and their corresponding
spatial eigenvalues are plotted in Fig. 2. As can be seen, the
spatial eigenvalues are not symmetric with regard to the oblique
gray lines of Figs. 2(b) and 2(d). Therefore, ρd and ρu are always
approached and left in different ways. Moreover, the spatial
eigenvalues are complex valued. As a consequence,ρd andρu are
always approached in an oscillatory way (� 6= 0); however, they
can be left in a monotonic way (if �= 0) or in an oscillatory
way. The fact that � 6= 0 induces damped oscillations around
the steady states. These oscillations occurring on the upper
(top) steady state (ρu) favors the formation of bright solitons,
whereas damping oscillations on the lower (bottom) steady
state (ρd ) are favorable to the formation of dark solitons. These
solitons are the consequences of the locking phenomenon of

Fig. 2. Switching waves (a) SWd and (c) SWu , and the spatial
eigenvalues corresponding to λd and λu are shown in (b) and (d),
respectively. λd and λu are the different solutions of Eq. (11) when
ρ = ρd and ρ = ρu , respectively. The oblique gray lines of (b) and
(c) materialize the line of symmetric eigenvalues. The parameters are
α = 2.5, b3 = 4.08× 10−5, and F =

√
2.833≈ 1.683.

these damping oscillations on each steady state. Therefore, for
the same values of the system parametersα, b3, and F , the lower
and the upper steady states ρd and ρu simultaneously display
damped oscillations [see Figs. 2 (a) and 2(c)], so that both bright
and dark solitons are susceptible to coexist. Figure 1 evidences
the coexistence of these solitons [see Figs. 1(a) and 1(c)] as well
as their corresponding frequency combs [see Figs. 1(b) and
1(d)]. It is noteworthy that for an appropriate choice of α, such
coexistence of solitons is observed in a narrow region located
around the critical pump Fc as was also found in Ref. [48].

The next section is devoted to a similar analysis when the
GVD is taken into account.

4. COEXISTENCE OF SOLITONS IN NORMAL
AND ANOMALOUS GVD

In this section, the effects of normal GVD and anomalous
GVD are analyzed separately. Figure 3 evidences the coexistence
of both bright and dark solitons (left columns) as well as the
single-FSR character of their frequency combs (right columns).

Conserving the value of TOD as in Section 3, and consider-
ing normal GVD (b2 > 0), solitons are quenched for the same
value of the detuning. However, solitons and their frequency
combs are effectively generated if the detuning is increased
[in Figs. 3(a)–3(d), α = 4 instead of α = 2.5 as was the case in
Fig. 1]. This result confirms the prediction of [36], according
to which for normal GVD, solitons occur only for high values
of the detuning. As illustrated in the previous section, these
solitons are also originating from the locking of damped oscilla-
tions related to the switching waves (SWu,d ) towards the upper
and the lower steady states ρd and ρu [see Figs. 4(a) and 4(c)].
Applying a similar procedure as in Section 3, the spatial eigen-
values here are solutions of the following sixth-order algebraic
polynomial equation:

λ6
+

1

b2
3

(
9b2

2 + 12vb3
)
λ4
−

12

b3
λ3
+

36b2

b2
3

(
α − 2ρ +

v2

b2

)
λ2

−
72v

b2
3

λ+
36

b2
3

[
1+ α2

− 4αρ + 3ρ2]
= 0,

(12)

which has nonsymmetric complex-valued solutions [Figs. 4(b)
and 4(d)]. Therefore, SWd and SWu can develop damped oscil-
lations around ρd and ρu , which allow bright and dark solitons
to form simultaneously. The oscillations of SWd and SWu are
shown in Figs. 4(a) and 4(c). Like in the case of zero GVD,
we obtain the coexistence of both types of solitons around
F = 2.502, which is close to the critical pump (Fc ≈ 2.72 for
α = 4).

When the sign of GVD is negative (anomalous GVD or
b2 < 0), bright soliton combs are generated while dark soliton
combs are not, even if the detuning is maintained. However, the
FOD term can drastically change this situation. This is in accor-
dance with the results of [50], demonstrating that dark solitons
can be generated in the anomalous regime only when the FOD
dispersion is taken into account. Bright and dark solitons are
thereby obtained at high detuning [see Figs. 3(e)–3(h)]. In this
case, the oscillations of switching waves, which are responsible



A72 Vol. 37, No. 11 / November 2020 / Journal of the Optical Society of America B Research Article

Fig. 3. Normal: Coexistence of bright and dark solitons and their corresponding spectra in a normal regime. The parameters are α = 4,
b2 = 4.86× 10−4, b3 = 4.08× 10−5, and b4 = 0 (coresponding to β2 = 1 ps2/km and β3 = 1 ps3/km). The pump value is F =

√
6.26≈ 2.502

for both solitons and spectra. Anomalous: Coexistence of bright and dark solitons and their corresponding spectra in an anomalous regime. The
parameters are α = 4, b2 =−7.25× 10−7, b3 = 4.08× 10−5, b4 = 3.93× 10−10 (corresponding to β2 =−1.45× 10−3 ps2/km, β3 = 1 ps3/km,
and β4 = 1.15× 10−4 ps4/km). The FOD is added in order to satisfy the condition required to obtain dark soliton in an anomalous GVD [50]. The
pump value is F =

√
7.41≈ 2.722 for both solitons and spectra.

Fig. 4. Normal: Switching waves (a) SWd and (c) SWu , and the spatial eigenvalues corresponding to ρd and ρu are shown in (b) and (d), respec-
tively.α = 4, b2 = 4.86× 10−4, b3 = 4.08× 10−5, b4 = 0, and F =

√
6.4≈ 2.53. Anomalous: Switching waves (e) SWd and (f ) SWu , and the spa-

tial eigenvalues corresponding to ρd and ρu are shown in (g) and (h), respectively.α = 4, b2 =−7.25× 10−7, b3 = 4.08× 10−5, b4 = 3.93× 10−10,
and F =

√
7.5≈ 2.738.

for the creation of these solitons, are displayed in Figs. 4(e) and
4(g). As previously demonstrated, these oscillations are the man-
ifestations of the complex and nonsymmetric form of the spatial
eigenvalues [see Figs. 4(f ) and 4(h)], which are the solution of
the following eighth-order polynomial derived from Eq. (1):

λ8
−

(
4b3

b4

)2

λ6
−

96

b2
4

[
ρ2(ρ − α)

F 2
b4 +

3

2
b2

2 + 2b3v

]
λ4

+
192b3

b2
4

λ3
−

576b2

b2
4

[
2ρ2

F 2

(
(ρ − α)2 − 1

)
+ α +

v2

b2

]
λ2

+
1152v

b2
4

λ−
576

b2
4

[
1+ α2

−
4αρ2

F 2
((ρ − α)2 + 1)

]

−
1728ρ4

F 4b2
4

((ρ − α)2 + 1)2 = 0.

(13)

Once again, like in the case when only the TOD was con-
sidered, the coexistence of bright and dark solitons here is

also observed in the neighborhood of the critical pump [see
Figs. 3(e)–3(h)], that is, around Fc ≈ 2.72 and calculated from
Eq. (4).

In general in this section, we have noticed that for both cases
of normal and anomalous GVD, and for a given value of detun-
ing, the widths of solitons are larger when the pump is approach-
ing the critical pump Fc than when it is moving away from Fc .
Moreover, a larger pump on the right hand of Fc induces upper
steady stateρu , while a lower pump far away from Fc leads to the
lower steady stateρd . Similar results were obtained for the case of
zero TOD [48].

5. CONCLUSION

In this work, we have investigated the dynamics of Kerr optical
frequency combs when the group-velocity dispersion is posi-
tive, negative, or null. All the dispersion parameters have been
selected to be relatively small. We have demonstrated that each
of these regimes of the group-velocity dispersion enables the
emergence of bright and dark solitons. The solitons have also
been shown to coexist in specific ranges of the laser pump power
and detuning frequency. The formalism of oscillation locking
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for switching waves has permitted us to understand how such a
phenomenon happens. Future work will focus on the study of
the influence of other nonlinear and thermal effects on soliton
dynamics [55–57].

Disclosures. The authors declare that there are no conflicts
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