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ABSTRACT

We investigate the effects of environmental stochastic fluctuations on Kerr optical frequency combs. This spatially extended dynamical system
can be accurately studied using the Lugiato–Lefever equation, and we show that when additive noise is accounted for, the correlations of the
modal field fluctuations can be determined theoretically. We propose a general theory for the computation of these field fluctuations and
correlations, which is successfully compared to numerical simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006303

Nonlinear phenomena in ultrahigh Q whispering-gallery mode
(WGM) resonators have attracted a great deal of interest in recent
years. Typically, a resonance is pumped by a continuous-wave
laser, and neighboring sidemodes are excited via the bulk non-
linearity of the resonator. Due to the possibility of chip-scale
integration and power-efficient operation, they have provided
an important and alternate way to produce frequency combs for
both fundamental research and practical applications. Many of
these applications require the combs to operate in an ultra-low-
noise regime, where they feature the highest temporal coherence.
The understanding of the interaction of external noise with the
nonlinear dynamics of the intracavity field would permit the
design of optimal strategies to ensure the highest performance for
technological applications.

I. INTRODUCTION

In the last decade, nonlinear phenomena in ultrahigh-Q
whispering-gallery mode (WGM) resonators emerged as one of the

major research topics in photonics.1–5 This exceptional amount of
interest has been driven by the promise of important technologi-
cal breakthroughs for several applications such as optical filtering,
modulation, and multimode lasing, just to name a few.

When the intracavity bulk medium is amorphous or cen-
trosymmetric, the prevalent nonlinear interaction is the Kerr effect.
As a resonator is pumped by a continuous-wave (CW) laser, the
small volume of confinement, high photon density, and long photon
lifetime induce a very strong light–matter interaction, which may
excite the neighboring eigenmodes via four-wave mixing.6,7 These
cascaded photonic interactions ultimately yield a dissipative pattern
in the spatial domain (resonator cavity) and an optical frequency
comb—or the Kerr comb—in the spectral domain.8

The deterministic dynamics of Kerr combs is quite well under-
stood today, and a comprehensive overview of this topic has been
offered in Ref. 9. However, the effect of noise on these combs has
been largely disregarded at this date, despite their critical impor-
tance. Indeed, any external noise excitation is mixed and redis-
tributed in the comb in a nontrivial fashion that requires a ded-
icated study. A deep understanding of this noise mixing process
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is critical for almost all the applications related to Kerr combs, as
noise in this context directly translates to shorter temporal coher-
ence, a higher signal-to-noise ratio, and ultimately decreased perfor-
mance in applications such as coherent optical communications10 or
microwave generation.11

The objective of this work is, therefore, to provide a general
framework to analyze the effect of additive noise in Kerr combs. We
aim at showing that once the power of this noise is known, it is pos-
sible to calculate the amplitude of the stochastic fluctuations for each
mode, as well as the cross correlations among them.

The article is organized as follows. Section II presents the model
for the stochastic Kerr comb analysis, while Sec. III is devoted to the
calculation of the fluctuation correlations. A specific case of interest
is the one of primary combs originating from roll (Turing) patterns,
for which we perform numerical simulations to test the validity of
our analytical predictions in Sec. IV. Section V concludes the article.

II. THE STOCHASTIC MODEL

The deterministic dynamics of Kerr combs can be accu-
rately investigated using the Lugiato–Lefever equation (or LLE—see
Refs. 12 and 13 for a wider perspective). This equation gov-
erns the spatiotemporal evolution of the intracavity laser field in
the whispering-gallery mode resonator.14–16 Depending on the fre-
quency and power of the pump laser, various dynamical states can
be excited, such as roll patterns, bright and dark solitons, breathers,
and hyperchaos. An understanding on the stability properties of
these patterns can be achieved via the spatial stability analysis of the
flat solutions17,18 or using other techniques such as the normal form
theory.19–22

The LLE with additive external noise can be written as

∂ψ

∂τ
= −(1 + iα)ψ + i|ψ |2ψ − i

β

2

∂2ψ

∂θ 2
+ F + ζ(θ , τ), (1)

where ψ(θ , τ) is the complex amplitude of the overall field in the
cavity, θ ∈ [−π ,π] is the azimuthal angle along the cavity cir-
cumference, τ = t/2τph is the normalized time, with τph = 1/2κ
being the photon lifetime, 2κ = ω0/Qtot the loaded linewidth, and
Qtot the loaded quality factor. The parameter α = −(ωL − ω0)/κ

stands for the detuning between the pump laser and the cold res-
onance frequencies ωL and ω0, respectively. The parameter β repre-
sents the second-order dispersion of the resonator, while F stands
for the amplitude of the pump laser field. The external complex-
valued noise perturbation is considered white and Gaussian with the
correlation

〈ζ(θ , τ)ζ ∗(θ ′, τ ′)〉 = 0δ(θ − θ ′) δ(τ − τ ′) (2)

and the mean value 〈ζ(θ , τ)〉 = 0, where0 is the noise square ampli-
tude and δ(x) the usual Kronecker function equal to 1 for x = 0 and
to 0 otherwise. The Gaussian noise can be interpreted at the most
fundamental level as the vacuum fluctuations entering the cavity,
and its amplitude can be derived from a quantum model.36 How-
ever, in practice, this noise will result in first approximation from all
the environmental fluctuations influencing the experimental system.
Throughout this article, we consider 0 = 1.6 × 10−7.

The intracavity field can be decomposed according to the
following modal expansion:

ψ(θ , τ) =
∑

l

ψl(τ )e
ilθ , (3)

with l = `− `0 being the azimuthal eigennumber of the photons
with respect to the pumped mode (the pumped mode is, therefore,
l = 0, while the sidemodes correspond to l = ±1, ±2, . . . ). In this
analysis, we will consider a comb spanning from l = −N to l = N,
that is, a comb that can potentially have 2N + 1 modes overall.

By plugging the expansion of Eq. (3) inside the LLE, the follow-
ing set of ordinary differential equations ruling the dynamics of each
mode is obtained:

ψ̇l =

[

−(1 + iα)+ i
β

2
l2
]

ψl + δ(l) F

+ i
∑

m,n,p

δ(m − n + p − l) ψmψ
∗
nψp + ζl(τ ), (4)

where the overdot denotes the derivative relatively to the dimen-
sionless time τ , while m, n, p, and l are eigenumbers labeling the
interacting modes following the interaction ~ωm + ~ωp ↔ ~ωn +

~ωl. The modal noise excitation terms are obtained by Hermitian
projection as

ζl(τ ) =
1

2π

∫ π

−π

ζ(θ , τ) e−ilθdθ , (5)

which actually correspond to the Fourier spectral density of the
noise at the frequency corresponding to the mode l. The correspond-
ing correlation is, therefore,

〈ζl(τ )ζ
∗
l′ (τ

′)〉 = 0 δ(l − l′)δ(τ − τ ′) (6)

and is also Gaussian and white.
Figure 1 proposes a schematic representation of noisy dissipa-

tive patterns and their corresponding combs. Our objective will be to
evaluate the amplitude of the stochastic fluctuations for each mode,
as well as the correlations among them.

III. FLUCTUATION CORRELATIONS IN STOCHASTIC

KERR COMBS

In order to compute the correlations between the modal fluctu-
ations, we consider a stationary Kerr comb spanning from l = −N
to l = N (a total of 2N + 1 modes). The steady state amplitude of
the oscillating modes obey the set of (2N + 1) nonlinear algebraic
equations with l = −N, . . . , N,

[

−(1 + iα)+ i
β

2
l2
]

ψl + δ(l) F

+ i
∑

m,n,p

δ(m − n + p − l) ψmψ
∗
nψp = 0. (7)
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FIG. 1. Schematic representation in space [(a)–(d)] and frequency [(e)–(h)] of a stochastic Kerr comb at a given time t (snapshot). The upper row displays the intra-cavity

field intensity |ψ |2, while the lower row displays the corresponding stem plot for the modal intensities |ψl |
2 ≡ |ψ̃(l)|2 in a logarithmic scale (note that these are technically

not Fourier spectra, for being snapshots). The study of these stochastic fluctuations can be extended to those of quantum fluctuations (see Ref. 23). (a) and (e) Flat state.
(b) and (f) Roll (Turing) pattern of order L = 20. (c) and (g) Bright soliton. (d) and (h) Dark soliton.

The noise driven fluctuations are ruled by the following set of
equations, obtained after linearizing Eq. (4) around the solution (7):

δψ̇l =

[

−(1 + iα)+ i
β

2
l2
]

δψl

+ i
∑

m,n,p

δ(m − n + p − l){δψmψ
∗
nψp

+ ψmδψ
∗
nψp + ψmψ

∗
n δψp} + ζl(τ ). (8)

The above equation can be synthetically rewritten as

δψ̇l =

N
∑

p=−N

Rlp δψp +

N
∑

p=−N

Slp δψ
∗
p + ζl(τ ), (9)

where

Rlp =

[

−(1 + iα)+ i
β

2
l2
]

δ(p − l)

+ 2i
∑

m,n

δ(m − n + p − l) ψmψ
∗
n , (10)

Slp = i
∑

m,n

δ(m + n − p − l) ψmψn (11)

can be considered as the elements of the (2N + 1)th-order square
matrices R and S.

If we introduce the (2N + 1)-dimensional fluctuation and
noise vectors

δ9(τ ) =







δψ−N(τ )

...
δψN(τ )






, Z(τ ) =







ζ−N(τ )

...
ζN(τ )






, (12)

then we can write Eq. (8) under the form of a noise-driven linear
flow,

[

δ9̇

δ9̇
∗

]

= J
[

δ9

δ9∗

]

+

[

Z(τ )
Z∗(τ )

]

, (13)

where

J =

[

R S
S∗ R∗

]

(14)

is a composite (block matrix) Jacobian of order 2(2N + 1). It is
interesting to note that in Ref. 24, the flow of Eq. (13) is written
by associating <[δ9] and =[δ9] instead of δ9 and δ9∗ as we
have done here. This latter choice is motivated by the possibility to
express the Jacobian matrix of the perturbation flow in a simple and
explicit way. It should be noted that this Jacobian matrix has to be
determined numerically (since its components exclusively depend
on the steady state values of the various ψl).

If we consider that there is a matrix P that diagonalizes J to
D following D = PJP−1, then we can introduce the 2(2N + 1)-
dimensional diagonal field fluctuations and noise vectors as

δ8(τ ) = P
[

δ9(τ )

δ9∗(τ )

]

and ϒ(τ ) = P
[

Z(τ )
Z∗(τ )

]

(15)

so that the stochastic flow is now diagonalized as

δ8̇ = D δ8 + ϒ(τ ). (16)

Note that δ8 and ϒ have a dimension that is the double of the one of
δ9 and Z, respectively. In particular, the noise vector in the diagonal
base can be explicitly expanded as a linear combination of ζl and ζ ∗

l

following

ϒm =

2N+1
∑

n=1

Pmn ζn−N−1 +

4N+2
∑

n=2N+2

Pmn ζ
∗
n−3N−2

=

N
∑

l=−N

{Pm,l+N+1 ζl + Pm,l+3N+2 ζ
∗
l }. (17)
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It can straightforwardly be inferred that 〈ϒm(τ )〉 = 0, while the
various correlations between the components of this noise vector are

〈ϒm(τ )ϒ
∗
n (τ

′)〉 = 0mn δ(τ − τ ′),

〈ϒm(τ )ϒn(τ
′)〉 = 0̃mn δ(τ − τ ′),

(18)

with

0mn = 0

4N+2
∑

k=1

PkmP∗
kn,

0̃mn = 0

4N+2
∑

k=1

PkmPkn.

(19)

The above equations permit the computation of the stochastic field
amplitudes and cross correlations for any kind stationary comb,
namely, roll patterns (sub- or supercritical) and solitons (bright,
dark, or flaticons). It is worth emphasizing that the present work
does not investigate the influence of noise on a bifurcation; it is
about the effect on noise on a given pattern after the bifurcation has
occurred. The underlying idea developed in this section is, therefore,
not to linearize the pattern close to a bifurcation point, and then
using that pattern profile further away, in which case, the effect of
weakly nonlinear terms should be accounted for (see, for example,
Ref. 25). Instead, here, we start from the fully nonlinear pattern for
the parameters far away from the bifurcation point. Without noise,
this pattern has a neutrally stable Goldstone mode associated with
translational symmetry and otherwise is stable (all other perturba-
tions are damped). In this work, we only linearize the effect of the
noise on the pattern, which is reflected in the excitation of the Gold-
stone mode and the less damped modes (soft modes). We hereafter
focus on the case of primary combs as they feature a particular struc-
ture where only a reduced set of modes is excited, while other modes
are not.

IV. THE SPECIFIC CASE OF PRIMARY COMBS

Primary combs are the spectral signature of Turing (roll) pat-
terns. In the spatial domain, Turing patterns feature an integer
number L of rolls in the azimuthal direction, while in the frequency
domain, they are characterized by combs with teeth separated by L
times the free-spectral range, i.e., l = 0, ±L, ±2L, . . . Hence, in the
case of a Turing pattern with the wavenumber L, Eq. (3) can be
written as

ψ(θ , τ) =
∑

n

ψn(τ )e
inLθ , (20)

where n = 0, ±1, . . . , ±M, and M is the integer part of N/L. Figure 2
shows an example of such solution for α = 1.5 and F = 1.2525. Such
patterns are found spontaneously above threshold starting from a
random initial condition. Simulations of Eq. (1) including noise are
done using a pseudospectral method where the linear terms in the
Fourier space are integrated exactly, while the nonlinear ones are
integrated using a first-order in time approximation.24 Determin-
istc stationary solutions are found by solving Eq. (4) with a Newton
method.

In this case, the Jacobian of Eq. (14) becomes block diagonal,
with L/2 + 1 boxes. It results that the eigenvectors of each box take
the form of Bloch waves,

δψq(θ , τ) =
∑

n

δψn,q(τ )e
i(nL+q)θ +

∑

n

δψn,−q(τ )e
i(nL−q)θ , (21)

where q is an integer number between 0 ≤ q < L/2 (the first Bril-
louin zone of the pattern) and which labels the corresponding box
of the Jacobian. There are, therefore, 4M + 2 eigenvalues λn,q for
each value of q 6= 0 and 2M + 1 eigenvalues for q = 0. They can
be ranked according to the real parts of their eigenvalues following
<[λ0,q] ≥ <[λ1,q] ≥ · · · ≥ <[λ4M+2,q]. In Fig. 3, we plot the spec-
trum (left) and the real part of the eigenvalues as a function of q
(right) where one can clearly distinguish the different branches of

FIG. 2. Snapshot of a periodic pattern with the wavenumber (L = 16) in the ring cavity. The left panel shows the real field, while the right panel shows the Fourier transform
of the pattern solution showing the corresponding frequency comb.
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FIG. 3. Eigenvalues of the Turing pattern shown in Fig. 2. The full spectrum is shown on the left panel. On the right, we plot the real part of the eigenvalues as a function of
the wavenumber q of the Bloch modes. Only the branches closer to zero are shown.

eigenvalues. The spectrum of the LLE shows a characteristic sym-
metry about the plain <[λ] = −1. We note also that there is a
branch starting from <[λ] = 0. The mode with <[λ] = 0 at q = 0
is the Goldstone mode associated with the breaking of the transla-
tional invariance. The excitation of this mode changes only a global
phase of the comb corresponding to the origin of the pattern in the
real space. The modes of this branch with q ∼ 0 are known as soft
modes and describe long wavelength modulations of the phase of
the pattern, what is known as phase dynamics.28

Under the influence of noise, the dynamics of the amplitudes
of the diagonal modes8n,q follow,

δ8̇n,q = λn,q8n,q +ϒn,q(τ ), (22)

which is, therefore, the reduced counterpart of Eq. (16) for roll pat-
terns. The above equation is an Ornstein–Uhlenbeck process for the
modes for which <[λn,q] < 0 and a Wiener process (or the Brown-
ian motion) for the Goldstone mode with <[λ0,0] = 0 (see Ref. 29).
The formal solution corresponding to these stochastic processes is

8n,q(τ ) =

∫ τ

0

eλn,q(τ−s) ϒn,q(s) ds (23)

when the initial conditions are set to zero.
The correlations can be analytically calculated as in Ref. 24, and

they asymptotically yield

〈8m,q(τ )δ8
∗
n,q(τ

′)〉 =
0
(q)
mn

−2(λm,q + λ∗
n,q)

δ(τ − τ ′),

〈8m,q(τ )8n,q(τ
′)〉 =

0̃
(q)
mn

−2(λm,q + λn,q)
δ(τ − τ ′),

(24)

where the superscript (q) indicates that from (19), we take only the
elements of the box corresponding to this wavenumber of the Bloch
mode. In particular, the autocorrelation (mean square amplitude) of

the damped modes characterized by <(λn,q) < 0 can be calculated
as

〈|8nq(τ )|
2〉 =

0
(q)
nn

−4<(λn,q)
, (25)

while the Goldstone mode with <(λ0,0) = 0 diffuses as

〈|80,0(τ )|
2〉 =

0
(0)
00

4
τ . (26)

The divergence induced by the Goldstone mode does not invalidate
the linear approximation, as the Goldstone mode is neutral at all
orders and, therefore, it drifts indefinitely. The fluctuations of this
neutral mode, however, do not hinder practical applications as it
induces a change in the global phase of the frequency comb only.
A change in this global phase corresponds to a shift of the pattern
inside the cavity. The Goldstone mode does not change the intensity
of the peaks.

The next modes contributing the most to the field fluctua-
tions are the soft modes (n = 0, q & 0). These modes correspond
to long wavelength modulations of the phase, which in the fre-
quency space correspond to exciting the modes nearby the main
peaks, thus broadening them and ultimately limiting the precision of
the frequency combs for measurements. Figure 4 shows the average
square amplitude of the frequency comb fluctuations obtained both
by direct numerical simulations with noise and analytically adding
up the contributions of all modes given by Eq. (25). We first note
that, according to (12) and (21), δψl = ψn,q such that nL + q = l.
Then,

〈|δψn,q|
2〉 =

∑

l

∑

m

P−1
ln,qP

−1∗
mn,q〈δ8l,qδ8

∗
m,q〉, (27)

where P−1
q is the matrix that diagonalizes the block q of the Jaco-

bian. There is a very good agreement between the linear analytical
calculation and the numerical simulations of the full model. Two
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FIG. 4. Average square amplitude of the fluctuations in the frequency space. The left panel shows the results obtained analytically adding up the contributions of all modes
given by (25). On the right, we compare the analytical calculations with numerical (symbols) simulations of the full model in Eq. (1).

differences need, however, to be discussed. First, a slight difference
in the background for large frequencies can be attributed to accu-
racy of the calculations, as the amplitudes become very small and
relative errors are large. The second difference is in the amplitudes
of the frequencies very close to the peaks of the comb. In this case,
the difference stems from the linear approximation. According to
(25), the amplitude of the softmodes diverges when q → 0 because
<(λo,q) ∝ −q2. Then, these modes experience nonlinear saturation,
and the results from the numerical simulation of the full model
depart from the linear calculation.

The intensity fluctuations of the main frequency peaks will
be dominated by other modes with q = 0. In particular, those
with <[λ1,0] ∼ −0.3, which have a non-zero imaginary part, induce
homogeneous oscillations of the pattern, precursors of a Hopf bifur-
cation for not so distant values of the parameters.26 This mode
excites equally positive and negative frequencies. Finally, the most
damped mode, with <[λ2M+1,0] = −2, corresponds to intensity fluc-
tuations that affect positive and negative frequencies with an oppo-
site sign, creating an unbalance in the symmetry of the frequency
comb.24 One can note that in the case of frequency combs created by
cavity solitons, L = 1, and all modes of the cavity are excited. In this
case, there are no soft modes, and only perturbations with q = 0 are
possible.

V. CONCLUSION

In this article, we have investigated the fluctuation and correla-
tion properties of Kerr optical frequency combs subjected to additive
Gaussian white noise. We have provided a generic methodology to
compute these estimators, and we have successfully compared our
analytical results to numerical simulations.

Future work will be focused on exploring the fluctu-
ation dynamics with different intracavity patterns,27,28 other
nonlinearities,30–32 and extending the theory to a broader framework
that would include quantum fluctuations.23,33–39
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