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ABSTRACT

The concept of reservoir computing emerged from a speci�c machine learning paradigm characterized by a three-layered architecture (input,
reservoir, and output), where only the output layer is trained and optimized for a particular task. In recent years, this approach has been
successfully implemented using various hardware platforms based on optoelectronic and photonic systems with time-delayed feedback. In this
review, we provide a survey of the latest advances in this �eld, with some perspectives related to the relationship between reservoir computing,
nonlinear dynamics, and network theory.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5120788

Machine learning (ML) based on neural networks has achieved
a deep and transformational impact on modern science and
technology.1 This bioinspired computational approach, some-
times referred to as neuromorphic computing, has emerged as
one of the most powerful paradigms to solve certain classes
of problems where Turing-Von Neumann machines are com-
putationally ine�cient. ML has been astoundingly successful
in certain contexts such as data mining, sorting, or classi�ca-
tion, thereby proving its superiority in pattern recognition tasks
performed in parameter spaces too large to be searched using
conventional—and exponentially time-consuming—algorithms.
However, beyond mere pattern recognition, ML has succeeded
as well to achieve major breakthroughs in areas where until very
recently, arti�cial intelligence was not expected to bridge the gap
with human intelligence (such as for the games of Go2 or Chess,3

for example). The main upcoming challenge in ML is to achieve
a deeper understanding of the core mechanisms that ensure high
performance in these bioinspired computers.

I. INTRODUCTION

The operating principle of ML using neural networks is based
on two main phases, namely, training and testing. In a nutshell, a

known dataset is used to train the network and to optimize its con-
nectivity for that particular set of data. Unknown information is then
fed to the network, which, therefore, processes the incoming signals
using the previously optimized coupling coe�cients (or weights).
However, this network optimization can be quite energy- and time-
ine�cient depending on many factors such as the complexity of the
task, the size of the network, the nature of the nonlinear nodes (phys-
ical benchmark), the coupling architecture between the nodes, and
the operational bandwidth of connectivity links.

Most of these di�culties can be overcome using the idea of
reservoir computing. This approach �nds its roots in the concepts
of a liquid-state machine (LSM, see Maass et al.4) and one of echo
state networks (ESNs, see Jaeger and Haas5) that were later on uni-
�ed under the concept of reservoir computing (or RC, seeVerstraeten
et al.6). As shown in Fig. 1, reservoir computers consist of three lay-
ers, labeled as input, reservoir, and output. Themost salient feature of
reservoir computing is that only the readout coe�cients of the output
layer have to be trained and optimized, while the input and reservoir
layers are �xed (see Lukosevicius and Jaeger7). This radical simpli-
�cation in the network’s architecture was ideally suited for hard-
ware implementation in several physical platforms, as reviewed by
Tanaka et al.8 It has also been a key factor for the implementation of
reservoir computing using time-delayed dynamical systems.
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FIG. 1. Schematic representation of a conventional reservoir computing architec-
ture. The input and reservoir connectivity matricesWin andW are fixed, and only
the output connectivity matrix Wout is trained for optimization. This architecture
is characterized by a lower computational cost than conventional multilayer per-
ceptron systems and, consequently, permits one to achieve a significantly faster
training.

Since the pioneering work of Arecchi et al.,9 it is well known
that time-delayed systems are in�nite-dimensional, and, as a conse-
quence, they can be mapped into a spatiotemporal representation
(see also the recent review by Yanchuk and Giacomelli10). Conse-
quently, a large number of virtual neurons can be in principle excited
in time-delayed systems, exactly as they would in a spatially extended
system.

Appeltant et al.11 used a Mackey-Glass nonlinear electronic cir-
cuit to propose the �rst implementation of reservoir computing based
on a time-delayed nonlinear dynamics. Their reservoir computing
architecture involved a single nonlinear node fNL that was combined
with a delayed feedback loop of round-trip time T. A total number
N of virtual neurons are emulated by multiplying the input signal to
be processed by a time-domainmaskm(t), which is a T-periodic and
multilevel step function with segments of equal duration δT = T/N.
Up to several thousand virtual neurons can thereby be activated, in
order to process the incoming information in the highly dimensional
reservoir, as shown in Fig. 2 where the generic architecture of input,
reservoir, and output layers in time-delay-based reservoir computers
is presented.

This novel approach to reservoir computing was later on suc-
cessfully translated to optoelectronic and photonic and platforms
(see, for example, review articles by Van der Sande et al.12 and
Brunner et al.13). The suitability of time-delayed reservoir computing
architectures for optoelectronic and photonic systems is justi�ed by
several reasons, the main one being that in optical systems, address-
ing physical nodes in a reservoir and sequentially adjusting their
coupling weights is quite a complex task, while it is a much simpler

FIG. 2. Schematic representation of a reservoir computing architecture based on
a time-delayed system. The temporal signal u(t) to be processed is multiplied by a
mask m(t), before being injected into the feedback loop with time-delay T . The N
virtual nodes have an equidistant temporal separation δT = T/N, and they are
all connected to a single-node via the readout vector Wout, thereby yielding the
output signal y(t).

endeavor using virtual nodes embedded in a temporal delay line. As
far as optoelectronic systems are concerned, they are characterized
by a spectral duality that allows them to process input signals either
in the microwave domain (radar signals, wireless communications)
or in the light wave domain (optical �ber data, video signals, etc.).
They also feature a very broad bandwidth (up to 100GHz) and are,
therefore, capable of ultrafast information processing.

A deeper understanding of the core mechanisms permitting
reservoir computing using these time-delayed systems is still never-
theless required in order to take full advantage of their computing
power. Despite being underdeveloped at this date, research on this
important aspect of reservoir computing could bene�t from vari-
ous techniques borrowed from the theory of nonlinear and complex
dynamical systems.
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This article is organized as follows. We discuss in Sec. II the
main formalisms that have been developed to understand and ana-
lyze reservoir computing. Section III provides a short overview of
the various implementations of reservoir computing systems based
on time-delayed optoelectronic oscillators, while Sec. IV proposes
a survey or the research related to all-optical RC. Some perspec-
tives related to future challenges with optoelectronic and photonic
reservoir computing are explored in Sec. V, with an emphasis on real-
time and energy-e�cient operation. We will consider as well other
aspects such as cross-fertilization with some fundamental concepts
associated with the nonlinear dynamics of continuous spatiotempo-
ral systems and discrete networks. The last section concludes the
article.

II. NONLINEAR DYNAMICS OF RC BASED ON

TIME-DELAYED SYSTEMS

In conventional reservoir computing architectures (see Fig. 1),
the internal state x of the reservoir and the output signal y are updated
at each discrete time step n following

x(n) = fNL[Win · u(n) + W · x(n − 1)], (1)

y(n) = Wout · x(n), (2)

where fNL is a vector nonlinear function (equivalent to the same
scalar function fNL for each row) and u(n) is the input signal that
is injected in the reservoir. In the case of supervised learning, the
optimal readoutmatrixWout is obtained by ridge regression following

W
opt
out = My · MT

x · [Mx · MT
x + λ · I]

−1
, (3)

where Mx is a suitably designed matrix that concatenates the inter-
nal state x obtained with some training input vectors u, My is the
target matrix that yields the desired classi�cation outcome, I is the
identity matrix, and λ � 1 is a small regularization factor required
to circumvent the ill-posedness of the inversion problem. Indeed,
�nding the optimal readout coe�cients via a one-step regression pro-
cedure in reservoir computing provides signi�cantly faster results
than most ML architectures where all the connectivity matrices have
to be optimized via a multistep, slowly converging procedure.

Unlike in the conventional reservoir computing architectures
that are fed by multidimensional and discrete inputs u(n), reser-
voir computing systems based on time-delay are excited with one-
dimensional and continuous input signals u(t). Both approaches
become structurally equivalent when the time-domain signal u(t) is
spatiotemporally mapped into the reservoir via a T-periodic tempo-
ralmaskm(t) that plays the role of the input connectivitymatrixWin.
An important speci�city of reservoir computing based on a nonlinear
delayed feedback loop is that information is injected and retrieved
from the reservoir via time-multiplexing in order to address the N
virtual nodes with δT = T/N temporal spacing. Both experiments
and simulations show that optimal RC e�ciency is achieved when
the oscillators are biased close to the threshold, and it is the infor-
mation signal u(t) that drives the dynamics of the system, which
responds with a high-dimensional temporal dynamics unfolding in
an in�nite-dimensional state space. Hence, optimizing the readout
matrix Wout can be interpreted �nding the optimal coe�cients of
separation hyperplanes that permit pattern classi�cation.

III. OPTOELECTRONIC ARCHITECTURES OF RC

Optoelectronic oscillators (OEOs) are autonomous systems
characterized by a feedback loop where the signal alternatively cir-
culates in the optical and electrical forms, with a round-trip duration
corresponding to the time delay.25

A particularly important class of OEOs is based on a Ikeda-like
architecture that can be characterized by fourmain elements, namely,
a nonlinear transfer function fNL, a delay line T, an ampli�er β , and a

linear �lter Ĥ with an impulse function h(t).26 Typically, these OEOs
have one or several �xed points when β is low, and when the gain is
continuously increased, periodic oscillations are triggered via a Hopf
bifurcation beyond a critical value βcr. Further increase of the gain
leads to multiperiodic and then hyperchaotic oscillations. In recent
years, OEOs have been investigated thoroughly from the standpoint
of nonlinear dynamics.27–38 They have also found numerous applica-
tions in technological areas such asmicrowave generation,39–50optical
pulse generation,51,52 chaos communications,53–60 random number
generation,61,62 optical signal processing,63,64 and sensing.65,66

However, one of the most successful applications of OEOs has
been reservoir computing. In the most widespread con�guration,
OEO-based reservoir computing systems are built using a broadband
Mach-Zehndermodulator as a nonlinear element and an optical �ber
delay line to generate the time-delay, as shown in Fig. 3. This architec-
ture was successfully implemented by Larger et al.18 to demonstrate
spoken-digit recognition for the TI-46 corpus and chaotic laser time-
series predictions from the Santa Fe database. Paquot et al.22 simulta-
neously developed a similar system for time-series prediction of the
nonlinear autoregressive moving average (NARMA) and for nonlin-
ear channel equalization. Following these two pioneering works, the

FIG. 3. An example of OEO-based reservoir computing architecture. The dynam-
ical variable in the feedback loop is x(t) ∝ VRF(t), corresponding to the voltage at
the radiofrequency input of the electro-optic Mach-Zehnder modulator. PC: polar-
ization controller; MZM:Mach-Zehndermodulator; DL: delay line; PD: photodiode;
Amp: RF amplifier; and MC: microwave coupler.
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concept of OEO-based reservoir computing has been extended by
other research groups using various modi�cations to the core archi-
tecture. The computing e�ciency of OEO-based RC has been tested
with a wide variety of tasks that can be organized into two main
categories: classi�cation and prediction problems.

As far as pattern recognition problems are concerned, several
approaches have been proposed to demonstrate high performance to
classify audio signals, images, or temporal laser signals. A reservoir
computer based on anOEOoscillating in wavelength was introduced
by Martinenghi et al.20 for spoken-digit recognition, and it involved
a �eld programmable gate array (FPGA) board that was used to
expand the reservoir size by emulatingmultiple delay lines. Hermans
et al.17 proposed a backpropagation algorithm for the TIMIT bench-
mark, which is an acoustic-phonetic continuous speech test. This
protocol, which is similar to the standard procedure in multilayer
perceptrons, was shown to provide superior performances compar-
atively to the regressive reservoir computing algorithms. A major

breakthrough was achieved later on by Larger et al.19 as they used
a di�erential phase shift keying (DPSK) element as a nonlinear
phase-to-intensity converter in the OEO loop to demonstrate the
state-of-the-art speed performance of one-million words per second
for two spoken-digit tests, namely, TI-46 and AURORA-2. Beyond
audio signals, OEOs have also been considered by Jin et al.67 to
perform numerical simulations of reservoir computing for handwrit-
ten numeral recognition with the MNIST database. In the optical
domain, one of the main applications of OEO-based reservoir com-
puting is optical header recognition, as investigated by Qin et al.,23

Zhao et al.,68 and Bao et al.69

OEO-based reservoir computing was shown as well to be e�-
cient for time-series prediction tasks. For example, Soriano et al.24

have demonstrated thatmultilevel (instead of the standard two-level)
masks lead to higher robustness to noise, while Tezuka et al.70 evi-
denced the relevance of mutually coupling OEOs in order to reduce
the mask modulation frequency. Other architecture innovations

TABLE I. Some of the performances experimentally achieved by OEO-based reservoir computers, with a specification of the number of virtual nodes used in the computation.

FPGA: field programmable gate array; NMSE: normalized mean-square error; NRMSE: normalized root-mean-square error; SER: symbol error rate; and WER: word error rate.

Reference Optoelectronic RC architecture Nodes Performance

Antonik et al.14 Bandpass OEO with voltage dynamical variable; 50 Nonlinear channel equalization:
FPGA-enabled online training SER= 6× 10−6 with SNR= 32 dB

Duport et al.15 Bandpass OEO with voltage dynamical variable; 50 (i) NARMA10: NMSE= 0.18; (ii) nonlinear
simultaneous RC for several tasks channel equalization: SER∼ 10−4 with

SNR= 32 dB; (iii) signal radar forecasting:
NMSE∼ 10−3

Duport et al.16 Bandpass OEO with voltage dynamical variable; 47 (i) NARMA10: NMSE= 0.23; (ii) nonlinear
fully analog system channel equalization: SER∼ 10−4 with

SNR= 32 dB; (iii) signal radar forecasting:
NMSE= 5× 10−3

Hermans et al.17 Bandpass OEO with voltage dynamical variable; (i) 80; (ii) 200 (i) NARMA10: NRMSE= 0.185; (ii)
optimization via backpropagation acoustic-phonetic continuous speech

corpus TIMIT: WER= 35%
Larger et al.18 Low-pass OEO with voltage dynamical variable; 400 (i) Spoken-digit recognition TI46:

proof-of-concept experiment WER= 0.04%; (ii) Santa Fe time-series
prediction: NMSE∼ 12%

Larger et al.19 Bandpass OEO with optical phase dynamical 1113 (i) Spoken-digit recognition AURORA-2:
variable; record of one-million words per second for WER= 6%; (ii) spoken-digit recognition

spoken-digit recognition tasks TI46: WER= 0.04%
Martinenghi et al.20 Low-pass OEO with wavelength dynamical variable; 150 (i) Spoken-digit recognition TI46:

up to 15 delays implemented via FPGA WER= 0.6%
Ortín et al.21 Low-pass OEO with optical phase dynamical 400 (i) Cancer classi�cation with microarray data:

variable; uni�cation of reservoir computing and <5% error (down to ∼2% with >1000
extreme learning machines nodes); (ii) nonlinear channel equalization:

SER∼ 10−3 with SNR= 28 dB
Paquot et al.22 Bandpass OEO with voltage dynamical variable; (i) 50; (ii) 50; (i) NARMA10: NRMSE= 0.17; (ii) nonlinear

proof-of-concept experiment (iii) 200 channel equalization: SER= 1.3× 10−4

with SNR= 28 dB; (iii) spoken-digit
recognition TI46: WER= 0.4%

Qin et al.23 Bandpass OEO with voltage dynamical variable; 400 Optical packet header recognition:
optical packet header recognition from 3 to 32 bits SER= 1.25%

Soriano et al.24 Bandpass OEO with voltage dynamical variable; 400 Santa Fe time-series prediction: NMSE∼ 2%
multilevel preprocessing mask
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include uni�cation with extreme learning machines,21 time-domain
multiplexing within the same reservoir for the simultaneous pro-
cessing of several tasks,15 computation with fully analog input
and output layers,16 recurrent reservoir computing schemes where
the output signals are reinjected into the reservoir,71 or multiloop
con�gurations.72

We refer the reader to Table I for an overview of some experi-
mental results obtained with OEO-based RC.

IV. ALL-OPTICAL ARCHITECTURES OF RC

All-optical systems with time-delayed feedback provide an
ideal platform to investigate complex dynamics in a wide range of
timescales (see the review article by Soriano et al.86). The applications
have been numerous as well, including optical communications,55,56

random number generation,87,88 and various sub�elds of microwave
photonics.89 Several architectures have been proposed in the litera-
ture to implement all-optical RC, such as the one displayed in Fig. 4.

One of the earliest all-optical RC con�gurations was intro-
duced by Duport et al.,78 with a system where the nonlinear node
was a semiconductor optical ampli�er (SOA). Soon after, Dejon-
ckheere et al.77 proposed a RC scheme where the nonlinearity
was originating from a semiconductor saturable absorber mirror
(SESAM). In both cases, the RC performance was theoretically and
experimentally investigated with various tasks such as nonlinear

FIG. 4. An example of all-optical reservoir computing architecture, based on an
external-cavity semiconductor laser (ECSL). The dynamical variable in the feed-
back loop is the slowly-varying complex envelope E(t) of the output laser field.
PC: polarization controller; MZM: Mach-Zehnder modulator; DL: delay line; PD:
photodiode; and c: circulator.

channel equalization, the IPIX radar test (sea clutter radar data), and
the spoken-digit recognition test TI46.

Another popular framework for all-optical RC is based on using
an external-cavity semiconductor laser as a nonlinear node. This
approach was introduced by Brunner et al.,75 in a pioneering exper-
iment where they demonstrated chaotic time-series, spoken-digit,
and speaker recognition at data rates beyond 1Gbyte/s. Further anal-
ysis was shortly after provided by Hicke et al.79 with regard to the
performance of this system.

The e�ciency of this ECSL-based RC architecture is intimately
associated with the concept of consistency, initially introduced by
Uchida et al.90 Along that line, Nakayama et al.91 studied the rela-
tionship between the consistency of the laser dynamics and RC
performance. They compared the RC performance depending on
the analog, digital, or chaotic nature of the input temporal mask
and showed that the chaotic mask improved the e�ciency of the
reservoir owing to the complexity of its dynamical response. Further
research by Kuriki et al.80 con�rmed the relevance of such chaotic
masks for RC. On the other hand, Bueno et al.76 investigated the opti-
mal conditions ECSL-based RC by evidencing the interplay between
consistency andmemory, thereby permitting the identi�cation of the
most suitable parameters for various prediction tasks.

As far as optical communications are concerned, the potential
of ECSL-based RC has been initially considered for optical packet
header recognition.92 More recently, other tasks such as postprocess-
ing for �ber distortion correction and �ber transmission equalization
have been successfully demonstrated.73,74,93

Alternative architectures of ECSL-based RC have recently been
explored in the literature, such as semiconductor lasers with dou-
ble optical feedback and optical injection,94 mutually delay-coupled
semiconductor lasers,95 or architectures where the information is
injected in the electrical electrode of the laser.85,96

Vertical cavity surface-emitting lasers (VCSELs) have been pro-
posed as well for the purpose of all-optical RC. These lasers have
the speci�city to display a polarization dynamics that provides addi-
tional degrees of freedom from the dynamical and computational
standpoints. Vatin et al.97 proposed to implement RC using a VCSEL
with time-delayed feedback and optical injection and theoretically
demonstrated the technological relevance of this system. This con-
cept was later on successfully implemented at the experimental level
with benchmark tasks such as chaotic time-series prediction and
nonlinear channel equalization.83 It was recently shown that VCSELs
are suitable as well for multiplexing and parallel computation in con-
�gurations featuring mutual coupling,98 double optical feedback,99 or
polarized optical feedback.100

Other architectures for all-optical RC based on time-delayed
feedback have been explored in the literature, characterized by dis-
tinctive features such as coherently driven passive cavities,84 semi-
conductor ring lasers,46,101 diode-pumped erbium-doped microchip
lasers,81 photonic integrated circuits,82 optical neurons based on
optical ampli�ers,102 or semiconductor laser networks with optical
feedback.103

Finally, one should note that another important category of all-
optical RC systems is based on photonic networks where the nodes
are passive or active microrings.104–112

We refer the reader to Table II for an overview of some experi-
mental results achieved with all-optical RC.
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TABLE II. Some of the performances experimentally achieved by all-optical reservoir computers, with a specification of the number of virtual nodes used in the computation.

ECSL: external-cavity semiconductor laser; NMSE: normalized mean-square error; PAM-4: 4-level pulse amplitude modulation; SER: symbol error rate; VCSEL: vertical cavity

surface-emitting laser; WER: word error rate.

Reference All-optical RC architecture Nodes Performance

Argyris et al.73 ECSL; bit pattern recognition 66 BER improvement by up to two orders of
magnitude; extension of the

communication range by over 75%
Argyris et al.74 ECSL; distortion correction of optical �ber 32 21- and 4.6-km transmission at 56 and

transmission lines via RC postprocessing 112Gb/s, respectively, for 14 dBm launched
peak power of a PAM-4 signal

Brunner et al.75 ECSL; Santa Fe chaotic time-series, 388 Chaotic time-series prediction with error
spoken-digit and speaker recognition at <10%; WER< 1% for the spoken-digit test;

data rates beyond 1Gbyte/s error rate <1% for speaker recognition
Bueno et al.76 ECSL; Mackey-Glass chaotic time-series 330 NMSE∼ 5%

prediction
Dejonckheere et al.77 Semiconductor saturable absorber mirror (i) 50; (ii) 50; (i) Nonlinear channel equalization:

(SESAM); nonlinear channel equalization, (iii) 200 SER< 10−4 with SNR= 32 dB; (ii) IPIX
IPIX radar test, and spoken-digit radar: NMSE∼ 0.2%; (iii) spoken-digit

recognition test TI46 recognition TI46: WER= 2.6%
Duport et al.78 Semiconductor optical ampli�er (SOA); (i) 50; (ii) 50; (i) Nonlinear channel equalization:

nonlinear channel equalization, IPIX radar (iii) 200 SER< 10−3 with SNR= 32 dB; (ii) IPIX
test, and spoken-digit recognition test TI46 radar: NMSE∼ 0.1%; (iii) spoken-digit

recognition TI46: WER= 3%
Hicke et al.79 ECSL; Santa Fe chaotic time-series, 388 Chaotic time-series prediction: NMSE∼ 10%;

spoken-digit recognition WER= 0% for the spoken-digit test
Kuriki et al.80 ECSL with optical injection; analysis of the 177 NMSE∼ 10%

in�uence of the mask
Nguimdo et al.81 Erbium-doped microchip laser with optical 100 NMSE∼ 5%

feedback; Santa Fe time-series prediction
task

Takano et al.82 Photonic integrated circuit; Santa Fe Up to 250 NMSE∼ 5%
time-series prediction task

Vatin et al.83 VCSEL with data insertion via optical 390 (i) Santa Fe time-series prediction:
injection; Santa Fe time-series prediction NMSE= 1.6%; (ii) nonlinear channel
task and nonlinear channel equalization equalization: SER= 1.5%

Vinckier et al.84 Coherently driven passive cavity; NARMA10, (i) 50; (ii) 50; (i) NARMA10: NMSE∼ 10%; (ii) nonlinear
nonlinear channel equalization, and (iii) 200 channel equalization: SER< 10−4 with
spoken-digit recognition test TI46

SNR= 32 dB; (iii) spoken-digit recognition
TI46: WER= 0% without noise and

WER= 0.8% with noise at 3 dB SNR level.
Yue et al.85 ECSL with information injection by current 200–800 NMSE∼ 5%

modulation Santa Fe time-series prediction
task

V. PERSPECTIVES IN OPTOELECTRONIC AND

PHOTONIC RC

Research on the topic of optoelectronic and photonic reservoir
computing has already led to important milestones, as discussed in
Sec. III. There are, however, several aspects in this area that could
even more increase the impact of these research e�orts in the near
future.

Indeed, it is known that arrays of nonlinear coupled oscillators
can display a wide variety of coherent behaviors,113–115 and it is

expected that the capabilities of reservoir computing can be sig-
ni�cantly expanded from the on-going research on networks of

coupled OEOs.116 In general, networks in time-delayed OEOs are

built either by physically coupling several oscillators,117–120 by emu-

lating a complex network architecture using FPGA boards,121,122 or

by using spatially coupled systems.123,124 Each of these con�gura-

tions has the potential to provide a relevant extension to the exist-

ing architectures of OEO-based reservoir computers, as recently
discussed by Hart et al.125 Recent works have also highlighted the
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relevance of FPGA-based Boolean logic networks for both time-
series prediction126 and pattern recognition,127 which could be asso-
ciated with OEOs in order to gain the capability to handle optical
signals.

As highlighted earlier, delay-dynamical systems are in�nite-
dimensional and, in that aspect, are analogous to spatially extended
systems. Insightful theoretical results have been recently achieved in
the context of spatiotemporal dynamics forecasting.128,129 In princi-
ple, thesemethodologies could be successfully translated in the realm
of photonic reservoir computers, in combination with information-
theoretic approaches130–132 and novel architectures.133

One of the main challenges in reservoir computing is opera-
tion in real time. Indeed, o�-line reservoir computing is suitable for
certain tasks (e.g., data mining or classi�cation), while many other
applications require both training and testing to be performed in real
time (e.g., data routing or monitoring). Achieving real-time reser-
voir computing with high e�ciency implies solving critical technical
problems, such as fast convergence to low-error rate operation dur-
ing the online training phase, short processing latency (including pre-
and postprocessing time), and high throughput bandwidth.

It, therefore, appears that reservoir computing has a core archi-
tecture that is inherently suitable for such real-time computing,
because it is a machine learning paradigm where only the output
layer needs to be trained, while the reservoir remains static, thereby
greatly speeding the determination of the optimal weights. Another
key advantage of OEO-based reservoir computers is that digital sig-
nal processing (DSP) boards can be inserted in the feedback loop
in order to provide added functionalities, and FPGA boards rapidly
emerged as particularly suitable platforms for this endeavor.20,121,122

In fact, it is logical to expect these FPGA-based OEOs to be competi-
tive solutions for real-time reservoir computing, as shownbyAntonik
et al.,14 who implemented a gradient descent algorithm for the pur-
pose of online training for nonlinear channel equalization. It should
also be added that a fundamental property of reservoir computers,
namely, fading-memory, is fully compatible with real-time operation
as it requires the reservoir to progressively loosememory of remotely
past states.

The constraint of energy-e�ciency in reservoir computing
should equally deservemuch attention in the short term. Indeed, one
of the main motivations in the area of bioinspired computing archi-
tectures is the fact that biological brains are outperforming arti�cial
ones from the energetic standpoint. For example, the human brain
merely needs a few tens of watts, while for certain tasks, supercom-
puters need a power consumption thousand or even million times
higher for a similar or poorer result. In fact, this challenge of energy-
e�ciency was central in the pioneering work of Jaeger and Haas,5

which was focused on saving energy in wireless communication
networks.

Finally, it is interesting to note that several concepts adjacent to
photonic reservoir computing have been developed recently, such as
OEO-based coherent Ising machines (or CIMs; see Bohm et al.134).
Cross-fertilization with other types of delay-based RC that involve
physical principles di�erent from those of photonics (see, for exam-
ple, Torrejon et al.,135 Dion et al.,136 Estébanez et al.,137 and Riou
et al.138) would also provide further opportunity to develop het-
erogeneous platforms, which would favor the rapid and ubiquitous
deployment of multiphysics machine learning hardware.

VI. CONCLUSION

In the last decade, photonic oscillators have been successfully
used to perform reservoir computing for a large variety of tasks.

From the fundamental viewpoint, both the problems of opti-
mal convergence and convergence rate are still open for reservoir
computing, in general, and delay-based reservoir computing, in
particular. As highlighted in Sec. V, cross-fertilization with closely
related works in the domain of spatially extended systems and net-
works could o�er new opportunities to advance our understanding
of delay-based photonic reservoir computing.

The main attributes of photonic systems—particularly dual
microwave/light wave operation, wide bandwidth, and compatibil-
ity with digital signal processing systems—place them at the inter-
face between wireless and optical communication systems, with the
potential to play an important role in the inclusion of reservoir com-
puting in modern communication systems. Finally, addressing the
usual constraints of size, weight, and power (SWAP), along with the
main challenges of low-latency, high throughput, and real-time oper-
ation, is the essential route that will most likely allow OEO-based
reservoir computers to have an impact beyond academic research.
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