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Abstract— We present a theoretical and experimental study
of an optoelectronic oscillator featuring a cubic-nonlinear filter
in the feedback loop. In this architecture, the nonlinearity
introduces an additional timescale that leads to the emergence
of complex behavior and multiscale dynamics, ultimately lead-
ing to chaos as the gain is increased. A complete bifurcation
analysis is performed and successfully compared to experimental
measurements. We expect this class of systems to emulate novel
functionalities for analog signal processing based on time-delayed
optoelectronic oscillators.

Index Terms— Optoelectronic devices, nonlinear oscillators.

I. INTRODUCTION

OPTOELECTRONIC oscillators have been in recent years
the focus of active scientific research from the funda-

mental viewpoint [1]–[8], as well as from the technological
perspective [9], [10]. These systems have found various appli-
cations such as ultra-stable microwave generation [11]–[19],
chaos communications and systems [20]–[23], neuromorphic
computing [24]–[26], sensing [27]–[29], signal processing [2],
[30], [31], among other technological aims [32]–[34]. Recent
developments have demonstrated the possibility to implement
these oscillators on-chip [35]–[38].

The dynamics of OEOs strongly depends on the filtering
properties of the feedback loop in the electric path. For
example, the first-order low-pass filtering dynamics of the
original Ikeda model is known today to be quite different
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from the one of OEOs featuring bandpass filters [9], [10], and
even in the bandpass case, the dynamics of the OEO critically
depends on the wideband [1] or narrowband [39] nature of the
filter. In general, the electric branch is considered to be linear.
However, nonlinear electrical response is a possibility and
has already emerged as an ideal benchmark to investigate the
complex dynamical states in OEOs, such as anti-monotonicity,
spikes, pulse packages, and bursting [40], [41].

In this article, we consider an OEO where the electric
branch features a cubic-nonlinear response, implemented using
a nonlinear capacitor made of simple junction diodes. Nonlin-
ear capacitors are important components in electronic systems,
from both the fundamental and technological points of view.
They are used in snubber circuits for power electronics, can
operate at high frequencies. They can also be used to imple-
ment nonlinear resistors and inductances. For these reasons,
they are commonly used as a source of nonlinearity in several
physical systems [42]–[45]. In our oscillator, the nonlinear
capacitor is used to introduce an additional integral term so
that the resulting OEO model is presented as a novel extension
of the broad bandpass Ikeda-like equation. The system can
display attractors such as fixed points, limit-cycles, and chaos,
and is therefore compatible with all the related applications.
It is also possible to control mixed-mode oscillations which in
return favored a quadrupled-frequency limit-cycle oscillations.
Adding a nonlinear element in the electric branch is also a
natural pathway to emulate complex coherent phenomena in
coupled networks of OEOs (such as cluster synchronization,
for example [46], [47])

The article is organized as follows. In the next
section, we present the experimental system and propose
a time-delayed model to investigate its complex dynamical
behavior. The stability analysis of this equation is performed
in Sec. III, while the nonlinear dynamics of the system is
explored in Sec. IV. The last section concludes the article.

II. SYSTEM AND MODEL

The experimental set-up of the cubic-nonlinear optoelec-
tronic oscillator (CN-OEO) is presented in Fig. 1a. The main
elements are the following. A telecommunication continuous-
wave laser diode with wavelength λL � 1550 nm and power
Pin seeds a Mach-Zehnder modulator (MZM) characterized
by a radio-frequency (RF) and direct-current (DC) half-wave
voltages VπRF = 3.8 V and VπDC = 5 V, respectively.
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Fig. 1. (Color online) (a) Experimental set-up and (b) Nonlinear Capacitor
(NC). VB is the offset phase control voltage; PC: Polarization Controller;
MZM: Mach-Zehnder Modulator; PD: Photodiode; CNBPF: Cubic-Nonlinear
Band-Pass Filter; VS: Voltage Subtractor; Amp: RF amplifier; MC: Microwave
Coupler.

The modulated light at the exit of the MZM is delayed by
an optical delay line of delay TD , and is then converted into
an electrical voltage Vin by a photodiode with a conversion
factor S = 4.75 V/mW. The voltage Vin is filtered with a
cubic-nonlinear band-pass filter (CNBPF) made of a coil L,
a resistor R and a nonlinear capacitor NC . The output voltage
Vout of the CNBPF is the voltage difference probed across the
resistor R: it is amplified using a radio-frequency amplifier
with gain G before being re-injected into the RF electrode
of the MZM. The inner structure of the nonlinear capacitor
is depicted in Fig. 1b [42], [43]. It is implemented using an
operational amplifier U (type LF356), two capacitors C1,2,
one resistor r , and a mixed assembly of eight simple junction
diodes (type IN400X). These junction diodes are characterized
by their thermal voltage VT = 25 mV, inverse saturation
current Is = 5 μA, and number of junction diodes in series
n = 4.

The application of Kirchhoff laws permits to evaluate
the voltage across such a nonlinear capacitor which is a
cubic-polynomial of the charge

q = 1

R

∫ t

0
Vout(s) ds (1)

of the series capacitor, and yields the relationship [42]:

VNC(t) = 1

R

(
1

C1
− nVT

2r IsC2

) ∫ t

0
Vout(l)dl

+ nVT

48(r RIsC2)3

(∫ t

0
Vout(s) ds

)3

, (2)

where t is the time. Then, the output voltage Vout(t) of the
CNBPF is related to the input Vin(t) by:

Vin(t) = L

R

dVout(t)

dt
+ Vout(t) + VNC(t). (3)

Using Eqs. (2) and (3), and the usual closure relationships
of broad bandpass optoelectronic oscillators [1], the system
presented in Fig. 1a obeys the following integro-differential
delayed equation:

x + ρ
dx

dt
+ 1

θ

∫ t

0
x(s) ds + η

(∫ t

0
x(s) ds

)3

= β{cos2[x(t − TD) + φ]}, (4)

where x = πVout(t)/2VπRF is the dimensionless dynamical
variable of the system. According to Eq. (4), the cubic-
nonlinear band-pass filter is characterized by three time scales
which are the high cut-off time ρ , the low cut-off time θ , and
the nonlinearity timescale 3

√
1/η that are explicitly defined via

ρ = L/R (5)

θ = R [(1/C1) − (nVT /2r IsC2)]−1 (6)

η = nVT V 2
πRF/

[
12(r RIsC2)

3(πG)2
]
. (7)

Therefore, adding the delay TD transforms our CN-OEO
into a four-timescales OEO. The other parameters are the
normalized loop-gain β = πκSG Pin/2 VπRF and the offset
phase φ = πVB/2VπDC. Throughout this article, except the
tunable parameters G and Pin, the values of other parameters
are kept compatible with the experimental set-up. They are
set to L = 0.1 mH, R = 2.5 k
, r = 300 
, C1 = 270 pF,
C2 = 9.15 nF, and TD = 3.29 μs.

In order to facilitate the dynamical analysis, it is preferable
to recast Eq. (4) under the form of a flow of first-order coupled
delay differential equations. For this purpose, we introduce the
new variable

y = − 1

θ

∫ t

0
x(s) ds (8)

and the dimensionless time ν = t/θ . Equation (4) is then
transformed into a slow-fast system with x as the fast variable
while y is the slow variable [4]:

ε
dx

dν
= −x + y + ρy3 + β cos2[xσ + φ] (9)

dy

dν
= −x . (10)

The small quantity ε = ρ/θ = 9.7 × 10−4 is the cut-off times
ratio, σ = TD/θ = 8 × 10−2 represents the normalized delay
so that xσ = x(ν − σ) being the time-delayed variable. The
parameter ρ = ηθ3 = 6.4×104 stands for the cubic-nonlinear
parameter.

III. STABILITY ANALYSIS

The first step for the analysis of the cubic-nonlinear OEO
is the study of its stability. Indeed, the equilibrium point of
the set of Eqs. (9) and (10) is (x0, y0), with x0 = 0 and y0
being the real root of the third-order polynomial

ρy3
0 + y0 + β cos2 φ = 0, (11)

which is nontrivial if β or φ is different from 0 or π/2
(mod [2π]), respectively. It is important to mention that y0
is real and unique since ρ and β are positive quantities. The
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Fig. 2. (Color online) Timetraces of the amplitude of the cubic-nonlinear
OEO (blue or black) versus the standard OEO (grey). |γ | = 1.01 and
φ = −π/4. A noticeable effect of the nonlinearity is to increase the frequency
of the limit-cycle induced by the primary Hopf bifurcation.

stability of that equilibrium point can be investigated through
the eigenvalues equation

λ2 + 1

ε

(
1 + γ e−λσ

)
λ + 1

ε

(
1 + 3ρy2

0

)
= 0, (12)

where γ = β sin(2φ) is the effective normalized gain. Limit-
cycle oscillation might occur through a Hopf bifurcation if the
eigenvalues become pure imaginary values (λ = ±iω), with
ω being the frequency of the corresponding limit-cycle which
satisfies the following transcendental equation

εω2 + ω tan(ωσ) −
(

1 + 3ρy2
0

)
= 0, (13)

while the effective normalized gain γ rather satisfies

γ cos(ωσ) = −1. (14)

In the limit of small delay (small σ ), the solutions of Eqs. (13)
and (14) approximated as

ω = ωsd

√
1 + 3ρy2

0, (15)

γ = −1 + 1

2

(
1 + 3ρy2

0

ε + σ
σ 2

)
. (16)

Here,

ωsd = 1/
√

ε + σ (17)

represents the frequency of the limit-cycle for the standard
OEO, that is the one with a linear band-pass filter that does
not feature the cubic-term in Eq. (4).

IV. NONLINEAR DYNAMICS

From Eqs. (15) and (17), it clearly appears that the fre-
quency of the limit-cycle oscillations of our CN-OEO is
greater than the one displayed by a standard OEO for the same
values of parameters. For instance, near the Hopf bifurcation,
and taking the case of |γ | = 1.01 and φ = −π/4, the

frequency increasing factor
√

1 + 3ρy2
0 ∼ 4. Exactly, Fig. 2

validates the increase of the frequency of the CN-OEO, as well
as its amplitude, comparatively to the standard OEO. That
increase of frequency dwells for all values of the gain.

On the contrary, the threshold of the effective normalized
gain is not considerably affected by the cubic-nonlinear term
since γ � −1 as witnessed by the bifurcation diagram

Fig. 3. (Color online) Bifurcation diagrams [(a) and (c)] depicting the routes
to chaos and the largest Lyapunov exponents � [(b) and (d)]. (a) and (b):
Standard OEO [i.e. without cubic-term in Eq. (9)]; the route to chaos is
through breathers that are revealed by the multiple lines in the bifurcation
diagram. (c) and (d): CN-OEO; here the route to chaos is directly through the
Hopf bifurcation, and one can note that the multiple lines have disappeared.

of Fig. 3, showing the evolution of the amplitude as the
effective normalized gain increases. Comparatively to the
standard OEO, one can note that with the CN-OEO, only fixed
point, limit-cycles, and chaos are preserved. Indeed, for the
CN-OEO, when |γ | < 1, the fixed point x0 = 0 dominates the
dynamics of the system. From |γ | = 1, limit-cycle oscillations
occur through a Hopf bifurcation and remain dominant for a
large range of |γ |. When |γ | is further increased, the limit-
cycle disappears to give place to chaos. These transitions are
emphasized by the corresponding largest Lyapunov exponent
(Fig. 3) defined as

� = lim
t→+∞

1

t
ln

[ |δx(t)|
|δx(t0)|

]
, (18)

with δx(t) being a linear perturbation of the system [41]. The
Lyapunov exponent � is known to be a positive quantity for
chaotic behavior and negative or zero otherwise. It is shown
from these figures that the bifurcation diagram and the largest
Lyapunov exponent indicate the same window of dynamical
behaviors for the chosen parameters.

The timetraces at different levels of the bifurcation diagram
of the CN-OEO reveals that close to the Hopf bifurcation,
the system displays harmonic oscillations (Figs. 4a and b).
But, as |γ | increases, harmonic oscillations are replaced by
relaxation limit-cycles demonstrating the alternation between
the slow and the fast transitions as the time evolves
(Figs. 4c and d). For very large values of |γ | timetraces of
Figs. 4e and f illustrate the chaotic behavior of the system.

From the bifurcation diagrams (see Figs. 3a and c),
it is noticeable that for the chosen parameters, mixed-mode
oscillations also known as breathers are missing in our
CN-OEO [1], [4]. The theory of breathers in OEO has been
investigated through the geometric singular perturbation theory
(see [48] and Refs. therein) and it is well known that the
standard wide-band OEO displays breathers while following
the route to chaos [4] (see Figs. 3a and b). To gain insight into
their effect in our system, it is necessary to analyze the case
where only the cubic-term is canceled in Eq. (4). The result
presented in Fig. 5a testifies the presence of breathers which
are manifested by damped oscillations around the attractive
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Fig. 4. (Color online) Experimental and numerical timetraces demonstrating
the dynamical evolutions of the system as the gain increases with φ = −π/4.
From top to bottom, Pin is set to 6.51 mW, 7 mW, and 7.8 mW for the
experimental timetraces, and β is set to 1.1, 1.9, and 3 for the theoretical
ones.

branches of the invariant critical manifold of the system, while
they do not occur when the cubic-term is considered (Fig. 5b).

Indeed, the invariant critical manifolds are those static
S-shaped curves of Figs. 5a and b defined in the (x–y) plane
by setting εdx/dν = 0 in Eq. (9); That is:

ρy3 + y = x − β{cos2[xσ + φ]}. (19)

Each invariant critical manifold is characterized by two fold
points x1 and x2 which are solutions of dy/dx = 0,
yielding

x1 = −π

2
+ 1

2
arcsin

(
1

β

)
− φ, (20)

x2 = −1

2
arcsin

(
1

β

)
− φ. (21)

These critical points are marked with large dots and subdivide
each invariant critical manifold into three branches, two of
which are attractive (solid lines) and one is repulsive (dotted
line) (see Fig. 5).

The slow-fast oscillations recorded in OEO result from
alternate passages of its trajectory from one attractive branch
to another and is characterized by a typical acceleration when
this trajectory enters the zone of the repulsive branch. Indeed,
a point of the trajectory taken near the fold point is accelerated
by the repulsive branch towards the other attractive branch
which is not attached to that fold point. The influence of the
repulsive branch on the trajectory ceases when the “speed”
reaches approaches zero (dx/dν → 0). In the phase plane, this
translates to dx/dy = 0 with σ �= 0, and corresponds to the
points a1 and a2 of Fig. 5a, and b1 and b2 of Fig. 5b. We refer
to them as the first notches, and the position of these first
notches is crucial for the appearance of breathers. If the first
notch (for example a1) is quite far from the attractive branch,

Fig. 5. (Color online) Projections in the (x–y) plane of the trajectories (solid
red (or black)) of: (a) the standard OEO and (b) the cubic-nonlinear OEO.
The timetrace of Fig. 5b is given in Fig. 4d. The dashed and solid greys are
the instable and stable branches of the invariant critical manifold, respectively.
The invariant critical manifolds are plotted for σ → 0 [4]. In both figures,
|γ | = 1.9 and φ = −π/4.

the attraction imposed by the branch on the trajectory is man-
ifested through damped oscillations, which give rise to other
notches (see Fig. 5a). In the time domain, this phenomenology
is known as breathers. On the contrary, if the first notch (for
example b1) is located very close to the attractive branch,
then the trajectory asymptotically converges to this branch
while evolving towards the fold static point (for example x1)
where the acceleration of the repulsive branch takes the relay,
and the cycle starts again. In that case, the system will not
display breathers, and in this regard, the dynamics of this
system significantly differs from the multiscale oscillations
that can be observed in other architectures of OEOs (see for
example [1], [49]–[51]).

V. CONCLUSION

In conclusion, we have demonstrated an OEO with a cubic-
nonlinear electrical part. The limit-cycles generated with the
device are of higher frequency and amplitude compared to
the standard OEO. Our system can be operated either in
narrow-band or wide-band configuration. It can display or
not breathers by tuning some parameters for applications
where they have to be either enhanced or avoided. This result
shows that our CN-OEO is more versatile than the standard
one. Our work also offers a more general overview of the
origin of breathers in the wide-band OEO. We found that that
their appearance depends on how far the first notch is from
an attractive branch of the invariant critical manifold. Fur-
ther investigations will explore concrete applications of these
CN-OEOs in the context of information processing.
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