
Chaos 29, 033104 (2019); https://doi.org/10.1063/1.5064679 29, 033104

© 2019 Author(s).

A normal form method for the determination
of oscillations characteristics near the
primary Hopf bifurcation in bandpass
optoelectronic oscillators: Theory and
experiment
Cite as: Chaos 29, 033104 (2019); https://doi.org/10.1063/1.5064679
Submitted: 07 October 2018 . Accepted: 08 February 2019 . Published Online: 01 March 2019

Jimmi H. Talla Mbé , Paul Woafo , and Yanne K. Chembo

ARTICLES YOU MAY BE INTERESTED IN

Mixed mode oscillations and phase locking in coupled FitzHugh-Nagumo model neurons
Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 033105 (2019); https://
doi.org/10.1063/1.5050178

Critical behavior of power transmission network complex dynamics in the OPA model
Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 033103 (2019); https://
doi.org/10.1063/1.5066370

Nonlinear dynamics with Hopf bifurcations by targeted mutation in the system of rock-paper-
scissors metaphor
Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 033102 (2019); https://
doi.org/10.1063/1.5081966

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/1476640043/x01/AIP/HA_AuthorServices_CHAOS_PDFCover/HA_AuthorServices_CHAOS_PDFCover.jpg/686254725256755a63754d4141593558?x
https://doi.org/10.1063/1.5064679
https://doi.org/10.1063/1.5064679
https://aip.scitation.org/author/Talla+Mb%C3%A9%2C+Jimmi+H
http://orcid.org/0000-0002-4928-6578
https://aip.scitation.org/author/Woafo%2C+Paul
http://orcid.org/0000-0002-7918-4118
https://aip.scitation.org/author/Chembo%2C+Yanne+K
https://doi.org/10.1063/1.5064679
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5064679
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5064679&domain=aip.scitation.org&date_stamp=2019-03-01
https://aip.scitation.org/doi/10.1063/1.5050178
https://doi.org/10.1063/1.5050178
https://doi.org/10.1063/1.5050178
https://aip.scitation.org/doi/10.1063/1.5066370
https://doi.org/10.1063/1.5066370
https://doi.org/10.1063/1.5066370
https://aip.scitation.org/doi/10.1063/1.5081966
https://aip.scitation.org/doi/10.1063/1.5081966
https://doi.org/10.1063/1.5081966
https://doi.org/10.1063/1.5081966


Chaos ARTICLE scitation.org/journal/cha

A normal form method for the determination of
oscillations characteristics near the primary Hopf
bifurcation in bandpass optoelectronic oscillators:
Theory and experiment

Cite as: Chaos 29, 033104 (2019); doi: 10.1063/1.5064679

Submitted: 7 October 2018 · Accepted: 8 February 2019 ·
Published Online: 1 March 2019 View Online Export Citation CrossMark

Jimmi H. Talla Mbé,1,2,a) Paul Woafo,2,3 and Yanne K. Chembo4,b)

AFFILIATIONS

1Laboratory of Condensed Matter, Electronics and Signal Processing, Department of Physics, University of Dschang, P.O. Box 67,

Dschang, Cameroon
2Laboratory of Modelling and Simulation in Engineering, Biomimetics and Prototypes, Department of Physics, Faculty of

Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
3Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
4GeorgiaTech-CNRS Joint International Laboratory (UMI 2958), Atlanta Mirror Site, School of Electrical and Computer

Engineering, 777 Atlantic Dr NW, Atlanta, Georgia 30332, USA

a)Electronic mail: jhtallam@yahoo.fr
b)Present address: Institute for Research in Electronics and Applied Physics (IREAP) and Department of Electrical and Computer

Engineering, University of Maryland, College Park, Maryland 20742, USA.

ABSTRACT

We propose a framework for the analysis of the integro-differential delay Ikeda equations ruling the dynamics of bandpass opto-
electronic oscillators (OEOs). Our framework is based on the normal form reduction of OEOs and helps in the determination of
the amplitude and the frequency of the primary Hopf limit-cycles as a function of the time delay and other parameters. The study
is carried for both the negative and the positive slopes of the sinusoidal transfer function, and our analytical results are confirmed
by the numerical and experimental data.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5064679

Owing to the richness of their dynamical behavior,
OEOs have found many applications such as ultra-stable
microwave generation, optical communications, and neuro-
morphic computing, amongst others. This richness results
from the complex interplay between the system parameters,
namely, the two timescales of the bandpass filter, the time
delay, the feedback loop strength, and the nonlinear transfer
function. The aim of this work is to analytically compute and
experimentally validate the expressions of the frequency
and the amplitude of the primaryHopf limit-cycles as a func-
tion of the parameters mentioned above, without neglecting
the time delay as it is usually the case. Since primary Hopf
limit-cycles are important attractors formost of the applica-
tions related to these oscillators, such analytical expressions
help for the better calibration and optimization of OEOs.

I. INTRODUCTION

Time delay effects appear naturally in various physi-
cal, biological, chemical, and technological systems and are
sources of oscillatory instabilities.1,2 Delay differential sys-
tems are indeed ubiquitous, as they emerged in a wide variety
of fundamental and applied disciplinary area such as elec-
tronics, fluid dynamics, biological models, chemistry, and
photonics.3–9 In recent years, one of the most popular bench-
marks to study nonlinear delay dynamics has been the opto-
electronic oscillator (OEO), as comprehensively reviewed in
Ref. 10. OEOs have found numerous practical applications in
areas as diverse as microwave generation,11–22 chaos-based
communications,23–27 chaotic radars,28 bioinspired information
processing,29 or sensing.30
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The dynamics of OEOs can generally be investigated using
the paradigm of the Ikeda equation.31 Indeed, in the case the
feedback loop features a wide bandpass filtering character-
istic (bandwidth much larger than the free-spectral range),
the system can display a rich dynamics that include limit-
cycles, pulse packages, chaotic breathers, and hyperchaos.32–43

The richness of the bandpass OEO dynamics originates from
the interplay between its three main timescales, related to
the delay and to the high- and low-pass filter timescales. In
particular, the primary Hopf bifurcation as the feedback gain
is increased has evidenced several scenarios, characterized
by oscillation frequencies that are split by several orders of
magnitude.32,34,35,39

The analytic study of these attractors is generally diffi-
cult to carry out, mainly because time-delayed systems are
inherently infinite-dimensional. However, close to bifurcation
points, the theoretical analysis of delayed systems can be
performed by circumscribing their long-term dynamics in an
invariant manifold where their most significant dynamical sig-
natures can be recovered. This is essentially the main idea
underlying the technique of normal form reduction.44–49

In this paper, we develop this normal form approach for
the characterization of the integro-differential delay systems,
near the primary Hopf bifurcation. The paper is organized
as follows. In Sec. II, the system is presented along with its
mathematical model. Section III is devoted to the bifurcation
analysis of the oscillator, which is then used in Sec. IV to per-
form the normal form analysis, which helps one to understand
the oscillation properties of the system. Section V concludes
the article.

II. THE SYSTEM

The system under study is displayed in Fig. 1. It con-
sists of a telecommunication continuous-wave laser diode
(λL ' 1550nm), which sends a polarization-controlled signal
via a polarization controller (PC) to an integrated electro-optic
Mach-Zehnder intensity modulator (MZM) of half-wave volt-
ages Vπdc = 5V and Vπrf = 3.8V. The modulated light at the
output of the MZM is delayed using an optical fiber spool (DL)
with a time delay equal to T = 60ns, before being converted
to an electrical signal with a photodiode (PD) of responsiv-
ity S. The resulting electrical signal is then filtered with a
wide bandpass filter. The output signal of the filter is ampli-
fied using a RF amplifier (Amp). At the output of the amplifier,
a microwave coupler (MC) is used to split the electrical power
into two: One part is re-injected into the RF input of the MZM,
thereby closing the loop of the oscillator; the other part is used
to monitor the signal of the oscillator using a digital oscillo-
scope. This OEO then can be described by the following Ikeda
integro-differential delay equation (iDDE):32

x + τ
dx

dt
+

1

θ

∫ t

t0

x(s)ds = β cos2[xT + φ], (1)

where x = πV/2Vπrf is the dimensionless variable standing
for the voltage V(t) at the radio-frequency (RF) input of the

FIG. 1. Experimental setup of the OEO. PC, polarization controller; MZM,
Mach-Zehnder modulator; DL, delay line; PD, photodiode; Amp, RF amplification;
MC, microwave coupler.

MZM and xT ≡ x(t − T) is the time-delayed variable, while
the parameters of the equation are the high cut-off time
τ = 1/2π fH and the low cut-off time θ = 1/2π fL of the band-
pass filter. Throughout this article, the cut-off times of the
bandpass filter are θ = 16.24 µs and τ = 1.06 ns. The normal-
ized loop-gain is β = πSεP/2Vπrf, where P is the laser pump
and ε is the overall attenuation of the feedback loop. The
offset phase φ = πVB/2Vπdc defined the slope of the non-
linear transfer component, with VB being a constant bias
voltage.

The parameters β and T are the two independent control
parameters for the system, and the purpose of this paper is to
gain insight into the bifurcation dynamics of the oscillator as
a function of these two parameters.

III. BIFURCATION ANALYSIS OF THE OEO

Our first step is to rescale Eq. (1) with regard to the
dimensionless time t/τ , which we will still refer to as t for the
sake of mathematical convenience. This equation can then be
rewritten under the following normalized form:

dx1
dt

= −x1 − σx2 + β[cos2(x1ν + φ) − cos2 φ], (2)

dx2
dt

= x1, (3)

with x1 ≡ x and x2(t) ≡ 1
τ

∫ t

0 x(s)ds. The parameter σ = τ/θ is
the ratio between the low and high cut-off frequencies, and
ν = T/τ represents the normalized delay.

In order to derive the normal form, it is convenient to
separate Eqs. (2) and (3) into a linear and nonlinear part.
One should note that just before the Hopf bifurcation point,
the whole dynamics of the system is ruled by the trivial sta-
ble equilibrium point (x1,0, x2,0) = (0, 0), and this trivial fixed
point might lose its stability via a Hopf bifurcation. Therefore,
in the neighborhood of the Hopf bifurcation point, a Taylor
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expansion around that equilibrium can be performed as

dx1
dt

= −x1 − σx2 − β

[

sin(2φ)x1ν + cos(2φ)x21ν −
2

3
sin(2φ)x31ν

]

,

(4)

dx2
dt

= x1. (5)

For mathematical simplicity and without loss of generality,
Eqs. (4) and (5) are rewritten under the matrix form

dX

dt
= LX + RXν + F(Xν), (6)

with X = (x1, x2)T, where the superscript T stands for the
transpose. This equation is characterized by the matrices

L =
[

−1 −σ

1 0

]

and R = γ

[

1 0
0 0

]

, (7)

with γ = β sin(2φ) being the effective linearized gain and
by the column vector F(Xν) = β[− cos(2φ)x21ν + (2/3) sin(2φ)

x31ν , 0]
T.
It is important to verify that the truncated flow [Eqs. (4)

and (5)] provides an accurate description of the OEO dynam-
ics close to the Hopf bifurcation point and agrees with the
results obtained directly from the original flow [Eqs. (2) and
(3)]. Figure 2(b) confirms that the truncated flow is indeed a
valid approximation that can be used later on for the normal
form analysis.

We consider that the linear part

dX

dt
= LX + RXν (8)

of Eq. (6) has solutions that can be written under the form
X = X0eλt. The eigenvalue λ = η + iω verifies the following
equation:

λ[1 + λ + γ e−λν] + σ = 0 (9)

and the solutions are asymptotically stable when η < 0 and
unstable when η > 0, while the critical case η = 0 marks the

FIG. 2. Timetraces of the limit-cycle near the Hopf bifurcation point, with
φ = −π/4. (a) Experimental timetrace with P = 8.4 mW, VB = 13.22 V. (b)
Numerical timetrace, with parameters β = 1.03, φ = −0.795, ν = 56.6, and
σ = 6.53 × 10−5. The solid line represents the timetrace obtained with Eqs. (2)
and (3), while the symbols (black circles) correspond to the numerical results
obtained with Eqs. (4) and (5). For the numerical simulations, the initial condition
has been uniformly set to x1 = 0.2 for the time interval [−ν, 0] and x2 = 10−3 at
t = 0.

Hopf bifurcation point. When the critical case is satisfied, the
values of the effective gain γ = γc = βc sin(2φ) and frequency
ω = ωc fulfill accordingly

− ω2
c + γcωc sin(ωcν) + σ = 0, (10)

ωc + γcωc cos(ωcν) = 0. (11)

Combining Eqs. (10) and (11), the critical frequency verifies the
transcendental equation

σ − ω2
c = ωc tan(ωcν). (12)

It should be noted that we have ν 6= 0 and σ 6= ω2
c , and it is

known that solving Eqs. (10)–(12) yields two different Hopf
bifurcations.32 For the negative slope case (γ < 0), we obtain

γc,n ' −1 −
T

2θ
' −1 −

σν

2
, (13)

ωc,n ' τ

√

1

θT
'

√

σ

ν
, (14)

which correspond to slow-scale oscillations, while for the
positive slope case (γ > 0), we have

γc,p ' 1 +
1

2

(

σν2 − π2

πν

)2

, (15)

ωc,p ' π
τ

T
'

π

ν
(16)

corresponding to fast-scale oscillations. Note that throughout
the article, the subscripts n and p refer to the negative and
positive slopes, respectively.

The study of the linearized flow provides insight into the
dynamics of the system in the close neighborhood of the bifur-
cation but gives little information about what happens beyond.
Such an insight can be achieved using the normal form of the
system, as developed in Sec. IV.

IV. DERIVATION OF THE NORMAL FORM THROUGH

THE METHOD OF CENTER MANIFOLD REDUCTION

There exist different methods for the computation of
the normal form for a dynamical system (see, for example,
Refs. 46–48). In this article, we choose to follow the method of
center manifold reduction,48which is convenient, based on the
fact that the long-time dynamics of a system can be reduced
to the dynamics on its center manifold, also known as the
reduced form of the system, or simply its normal form. This
method is appropriate for our system since no small quan-
tity multiplies the right hand of Eq. (2); otherwise, the method
of multiple time scales would have been used. Moreover,
the method of center manifold reduction has already been
successfully applied and tested on other delay systems.48,49

The reader can refer to these references for more details
on the computational details, in particular those related to
Eqs. (18)–(34).

Let us introduce the bifurcation parameter δ = γ − γc =
(β − βc) sin(2φ), which represents the relative gain, and is
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such that δ � 1 near the Hopf bifurcation point. For a neg-
ative slope, δ < 0, whereas δ > 0 for the positive slope. By
Taylor-expanding Eq. (6) with respect to δ and neglecting
higher-order terms, it yields

dX

dt
= LX + RcXν + F(Xν), (17)

where Rc is the operator R evaluated at the critical Hopf
bifurcation point. The vector F(Xν) is a third-order polynomial
function defined as F(Xν) = (−δx1ν − γcζx

2
1ν + 2

3
γcx

3
1ν , 0)T, with

ζ = [tan(2φ)]−1. Equation (17) is a delay-differential equation,
and the evaluation of the corresponding variable requires to
take into account the state of the system within two time
intervals [−ν, 0] and [0,+∞]. It is convenient to separate the
times in the two intervals. Let us call the time µ within the
interval [−ν, 0] and maintain the notation of time t within
[0,+∞]. By so doing, Eq. (17) becomes a step function

dXt(µ)

dt
= AXt(µ) + G[Xt(µ)], (18)

where Xt(µ) = X(t + µ) is a portion of the solution trajectory in
the recent past. A is the linear operator with pure imaginary
eigenvalue iωc, which transforms a center subspace function
p(µ) as follows:

Ap(µ) = iωcp(µ)

=











dp(µ)

dµ
for − ν ≤ µ ≤ 0,

Lp(0) + Rcp(−ν) for µ = 0.

(19)

Since the eigenvalues for the Hopf bifurcation point are sym-
metric (±iωc), it is advisable to define the adjoint operator A∗

of A with the eigenvalue equal to the conjugate of the first one
and which applied on another given subspace function q(µ)

yields

A∗q(µ) = −iωcq(µ)

=











−
dq(µ)

dµ
for 0 ≤ µ ≤ ν,

L∗q(0) + R∗
cq(ν) for µ = 0,

(20)

where L∗ and R∗
c are the adjoints of the operators L and Rc,

respectively. In Eq. (18), the vector function G is deduced from
Eq. (17) as

G =
{

0 for − ν ≤ µ ≤ 0,
F for µ = 0.

(21)

One key condition in the theory of the center manifold reduc-
tion requires that the functions p and q obey the inner product

〈q,p〉 = q(0)p(0) +
∫ 0

−ν

q(ξ + ν)R∗
cp(ξ)dξ , (22)

with overline expressing complex conjugation. Since Xt(µ)

must be finite, it is necessary to introduce a normalization
condition such that 〈q,p〉 = 1 and 〈q,p〉 = 0.

Using the inner product defined in Eq. (22), the solutions
of Eqs. (19) and (20) are, respectively,

p(µ) =
(

iωc

1

)

eiωcµ; q(µ) = b

(

1
−iσ/ωc

)

eiωcµ, (23)

with

b =
[

1 − 2iωc + γc(1 + iωcν)eiωcµ
]−1

(24)

being a complex-valued parameter.
Having determined the center subspace p(µ) and its

adjoint q(µ), the following step consists of decomposing Xt(µ)

into two components: the first one is y(t)p(µ) + y(t)p(µ), and
it lies in the center subspace; the second one is the infinite-
dimensional component ut(µ), which is transverse to the
center subspace. We can therefore write

Xt(µ) = y(t)p(µ) + y(t)p(µ) + ut(µ) (25)

and the transversality of ut(µ) yields: 〈p,u〉 = 0 and 〈p,u〉 = 0.
Then, by substituting Eq. (25) into Eq. (18) and using the inner
products, we find that y(t) satisfies the following first-order
differential equation:

ẏ(t) = iωcy − δ bρy − bγcζ(ρy + ρ y)2

− 2i bγ 2
c ζ 2ρ2ρ

[

b

ωc
ρ − 7

b

3ωc
ρ + 2ωc0e

−2iωcν

]

y2y

+ 2bγcρ
2ρy2y + NRT. (26)

The acronym NRT represents the non-resonant terms of the
equation, and the overdot stands for differentiation with
respect to time. The complex coefficients ρ and 0 are explicitly
given by

ρ = iωce
−iωcν , (27)

0 =
[

4ω2
c − σ − 2iωc

(

1 + γce
−2iωcν

)]−1
. (28)

Finally, the last step is to perform the near-identity transfor-
mation, with respect to Eq. (26), which is as follows:48

y(t) = z(t) + d1z
2(t) + d2z(t)z(t) + d3z

2
(t). (29)

By replacing Eq. (29) into Eq. (26) and eliminating the secular
terms, the coefficients dj ( j = 1, 2, 3) yield

d1 =
ibγcζ

ωc
ρ2, (30)

d2 = −
2ibγcζ

ωc
ρρ, (31)

d3 = −
ibγcζ

3ωc
ρ2. (32)

The remaining terms, which are non-secular, constituting the
complex normal form of the system are given by

ż = iωcz − δ bρz + bγcρ
2ρ

[

2 − 4iωcγcζ
20e−2iωcν

]

z2z (33)

so that the local dynamics of Eq. (1) is ruled by Eq. (33). In the
first approximation, the solution of Eq. (33) can be expressed
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as z(t) = A(t)eiωct. Hence, the complex amplitude A fulfills the
following first order differential equation, which is its complex
normal form:

Ȧ = −δ 31A + 32A
2
A. (34)

The coefficients 31 and 32 have the following expressions:

31 =
iωce−iωcν

1 + 2iωc + γc(1 − iωcν)e−iωcν
, (35)

32 = 2γcω
2
c31

[

1 − 2iωcγcζ
20e−2iωcν

]

. (36)

Equation (34) is a complex equation, which can furthermore
be decomposed using A = A(t) eiϕ(t) and this enabling to track
the amplitude and phase dynamics around the bifurcation.

Beyond the Hopf bifurcation point at the gain value |γc|,
the system undergoes a Hopf bifurcation, and from Eq. (34),
it can be shown that the frequency and amplitude of the
limit-cycle can be explicitly defined as a function of δ ≡ γ − γc
following

ωeff = ωc + (γ − γc)
<[31]=[32] − =[31]<[32]

{<[32]}2
, (37)

A = 2ωc

√

(γ − γc)
<[31]

<[32]
. (38)

The symbols< and = stand for the real and the imaginary parts
of their arguments, respectively. The above formulas lead to
drastically different behaviors depending on the actual sign of
γc [or equivalently, the sign of sin(2φ)]. It is noteworthy that in

FIG. 3. Variation of the limit-cycle amplitude as the gain is varied beyond the Hopf
bifurcation point γc as δ ≡ γ − γc. The analytical results obtained from Eq. (38)
are displayed with a solid line, while the numerical results obtained using Eqs. (2)
and (3) are represented with the symbols (black circles). (a) Case of negative
slope with φ = −π/4; (b) case of positive slope with φ = π/4. Both curves are
almost symmetric to zero, confirming that the negative slope is only defined for
δ < 0 and the positive slope requires δ > 0.

the particular case where γc < 0 with φ = −π/4, the amplitude
can be simplified as

A '
√

−2
β − βc

1 + σν

2

, (39)

while it can be approximated as

A '
√

√

√

√

2
β − βc

1 + 1
2

(

σν2−π2

πν

)2
(40)

in the case where γc > 0 with φ = π/4. Figure 3 displays an
example of plots of the variations of amplitude when the
gain is increased beyond the Hopf bifurcation point, for pos-
itive and negative γc, with a very good agreement between
numerical and analytical results. Indeed, it is known that
the amplitude is expected to scale as

√
|δ| beyond the Hopf

bifurcation, but a key challenge in the case of a delayed sys-
tem is to be able to compute the proportionality factor as
a function of all the time constants of the oscillator. On the
other hand, Fig. 4 shows the variations of the oscillation fre-
quency as a function of the normalized time delay. Here again,
the agreement between theory and numerical simulations is
excellent and validates the normal form analysis. It is notewor-
thy that the oscillation frequency monotonously decreases as
the time delay increases. This trend is accurately described
by the normal form analysis even in the asymptotic case of
very large delays (ν > 1000), even though the limit-cycles have
significantly different characteristic frequencies.

FIG. 4. Evolution of the limit-cycle frequency as a function of the normalized
delay ν = T/τ . The analytical results obtained from Eq. (37) are displayed
with a solid line, while the numerical results obtained using Eqs. (2) and (3) are
represented with the symbols (black circles). (a) Case of negative slope with
φ = −π/4 and δ = −4 × 10−2 and (b) case of positive slope with φ = π/4
and δ = 1.5 × 10−2.
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V. CONCLUSION

In this work, we have computed the normal form of
the Ikeda integro-differential delay equation, which rules the
dynamics of bandpass optoelectronic oscillators. These nor-
mal forms have allowed us to evaluate the frequency and the
amplitude of the Hopf-induced limit-cycles, as a function of
system parameters such as the gain, the filter time-constants,
and the delay. Unlike the typical case of limit-cycles in systems
without delay, normal forms in delayed oscillators have to
account for the dependence of the amplitude and oscillation
frequency with regard to the delay. The technique we have
used in this work permitted us to evaluate this dependency
with great accuracy and over a wide range of parameters.

In future research, we intend to explore the normal forms
of other architectures of OEOs (such as Refs. 50 and 51), and
in general, of different types of time-delayed systems.1,2,48 We
also aim to develop asymptotic techniques to deal with the
cases of very long10,14 or very short28 time delays and experi-
mentally investigate the effect of a large variation of these time
delays.52
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