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In this paper, the research related to the formation
of optical dissipative structures in Kerr-nonlinear
whispering-gallery mode resonators pumped
with continuous-wave lasers is reviewed. Pattern
formation in these systems can be analysed using
the paradigmatic Lugiato–Lefever model, which is
a partial differential equation ruling the dynamics
of the intra-cavity laser field. Various dissipative
structures such as Turing rolls, solitons, breathers and
spatio-temporal chaos can emerge in the resonator
depending on the laser power and frequency. The
bifurcation analysis enables a classification of these
patterns, and also permits identification of their
basins of attraction.

This article is part of the theme issue ‘Dissipative
structures in matter out of equilibrium: from
chemistry, photonics and biology (part 1)’.

1. Introduction
The topic of dissipative patterns in nonlinear optical
cavities has been a very fertile area of research in the
years following the invention of the laser. A paradigmatic
model in this area is the Lugiato–Lefever equation (LLE),
introduced 30 years ago by Luigi Lugiato and René
Lefever to investigate the nonlinear dynamics of laser
fields confined in nonlinear, diffractive and dissipative
optical cavities [1].
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Indeed, nonlinear partial differential equations (PDEs) analogous to the LLE had been
introduced earlier to investigate the complex behaviour of plasmas [2], one-dimensional
condensates [3] and dissipative solitons [4]. The dispersive LLE was introduced later on by
Haelterman, Trillo and Wabnitz in the context of fibre ring cavities [5]. A special issue devoted
to the theory and applications of the LLE has been published recently and provides an excellent
overview of the current research in that field [6].

From a broader perspective, the research related to the LLE is intimately related to the
fundamental concepts pioneered by Ilya Prigogine about the formation of dissipative structures
in complex dynamical systems [7,8].

In the context of nonlinear photonics, one of the most important innovations in recent years
has been the introduction of ultrahigh-Q whispering-gallery mode (WGM) resonators as a novel
platform to investigate the dynamical properties of optical dissipative patterns. Effectively,
the long-lifetime intra-cavity photons can efficiently interact via the nonlinearities of the bulk
medium [9,10]. For the particular case of the Kerr nonlinearity, the resonator enhances four-wave
mixing interactions of the kind h̄ωa + h̄ωb → h̄ωc + h̄ωd, where two input photons labelled a and
b interact coherently via the Kerr nonlinearity to yield two output photons labelled c and d.
Owing to this mechanism of cascaded photonic interactions, it is possible to excite as many as
several hundred cavity modes while pumping only one, and thereby obtain a coherent optical
frequency comb [11]. These optical frequency combs are generally referred to as Kerr combs in
the scientific literature, and they are expected to provide major technological breakthroughs in
modern photonics [12–14].

However, in order to fulfill the promise of a technological dividend, a prerequisite is to achieve
a clear understanding of the spatio-temporal dissipative patterns leading to these Kerr combs. It
was shown a few years ago that the LLE is an ideal model in this regard as it accounts for the
five main effects that are in play, namely laser frequency, laser power, dispersion, losses and Kerr
nonlinearity [15–19]. In this article, an overview of the main theoretical results obtained from
the LLE analysis for Kerr comb generation is proposed. The structure of the article is as follows.
In the next section, the LLE model in the context of Kerr-nonlinear WGM resonators is briefly
presented. Section 3 analyses the existence and stability of stationary dissipative patterns, as well
as the bifurcations among them. The case of non-stationary patterns is discussed in §4. The final
section provides a conclusion.

2. System and model
Modelling optical dissipative patterns in WGM resonators must account for certain relevant
parameters which are related to the geometry of the resonator, to the properties of its bulk
material, and to the coupling conditions.

From the geometrical perspective, the WGM resonators are characterized by their main radius
a, or more precisely, the perimeter L = 2πa, followed by an intra-cavity photon to perform one
round trip. This radius defines the free spectral range (FSR) of the resonator as FFSR = c/ngL =
vg/L, where c is the velocity of light in vacuum, ng is the group-velocity refraction index at
the pump wavelength and vg is the corresponding group velocity. The resonators are always
multimode, with a large number of radial, polar, polarization and azimuthal modes.

Each of them is unambiguously identified by a single eigenparameter [10,14]. However, in
the simplest configurations, spatio-temporal patterns leading to Kerr combs only involve a single
family of modes, that is, a set of modes having the same eigenparameters except for the azimuthal
ones. These azimuthal modes have an integer wavenumber �, which quantifies the angular
momentum of the photons as h̄�/a. If �0 is considered as the eigennumber of the pumped mode
of frequency ω0, the azimuthal modes of interest have a reduced eigennumber l = �− �0 that
symmetrically expand as l = ±1, ±2, . . . around the pump. The corresponding eigenfrequencies
ωl can be Taylor-expanded as ωl =ω0 +∑+∞

k=1 (ζk/k!)lk, with ζ1 ≡ 2πFFSR =ΩFSR being the FSR,
ζ2 the group-velocity dispersion (GVD), and ζk for k ≥ 3 representing the higher-dispersion
terms. The photons are confined in torus-like azimuthal modes with an effective mode volume
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Veff = LAeff, with Aeff being the effective mode area. The resonances have a loaded quality factor
Q =ω0τph, where τph is the photon lifetime. Typically, Q ∼ 106–109 at 1550 nm, and accordingly,
τph ranges from a few nanoseconds to a few microseconds. The corresponding half-linewidth
for these resonances is κ =ω0/2Q = κin + κext, which has intrinsic (bulk) and extrinsic (coupling)
contributions. Finally, the nonlinear parameter of the system is the bulk Kerr nonlinearity, which
modifies the refraction index as n = n0 + n2I, where n0 is the refraction index at the frequency ω0,
n2 is the Kerr coefficient, and I is the irradiance of the laser field. When the power of intra-cavity
fields is measured in watts, the relevant nonlinear parameter is γ =ω0n2/cAeff (in W−1 m−1). The
pump laser is characterized by its power PL and its angular frequency ωL, which are both the
main control parameters of the system.

Using the parameters defined above, the generalized LLE ruling the dynamics of the intra-
cavity field E(θ , t) can then be explicitly written as a function of time t and of the azimuthal angle
θ ∈ [−π ,π ] along the perimeter of the resonator, following:

∂E
∂t

= −κE + iσE + ivg

K∑
k=2

(iΩFSR)k βk

k!
∂kE
∂θk

+ ivgγ |E |2E +
√

2κext

TFSR

√
PL, (2.1)

where βk = −ζk/(−ΩFSR)kvg stands for the dispersion, and σ =ωL − ω0 for the detuning between
the laser and resonance frequencies. In the above equation, the group-velocity dynamics of the
intra-cavity field (proportional to β1∂θE) have been discarded, and the normalization is such that
|E |2 is in units of watts.

By restricting to the case with no higher-order dispersion, the above equation can be suitably
normalized as

∂ψ

∂τ
= −(1 + iα)ψ − i

β

2
∂2ψ

∂θ2 + i|ψ |2ψ + F, (2.2)

where ψ ≡ (γ vg/κ)1/2E is the total intra-cavity field, τ = κt is the dimensionless time, α= −σ/κ
is the cavity detuning, β = −ζ2/κ = β2vgΩ

2
FSR/κ is the GVD (defined as normal for β > 0 and

anomalous for β < 0), and finally, F2 = (2γ vg/TFSR)(κext/κ
3)PL is the dimensionless laser pump

power [16,18].
The dimensionless model of equation (2.2) is a powerful tool to analyse the nonlinear

dynamics of the optical dissipative patterns that can be sustained in the WGM cavity. It should
be emphasized that unlike many spatially extended systems, the spatial coordinate θ here is
genuinely periodic as it directly originates from the closed-path trajectory of the photons, which
relates to the modal structure of the resonator. In the following sections, classifications of the
stationary and non-stationary dissipative patterns that are solutions of the LLE are provided,
with emphasis on their condition of existence, stability and bifurcation behaviour.

3. Stationary dissipative structures
The stationary dissipative patterns are mainly characterized by their time-independence. The
simplest stationary solution is the equilibrium state ψe, which is obtained by setting all the
derivatives of the LLE to zero, following F2 = [1 + (ρ − α)2]ρ ≡ G(α, ρ), with ρ ≡ |ψe|2. This cubic
polynomial equation has one to three real-valued solutions in ρ depending on the parameters
α and F. It can be shown that in the α–F2 plane, the area corresponding to α >

√
3 and F2 ∈

]F2−(α), F2+(α)[ with

F2
±(α) = 2α ∓

√
α2 − 3

3

⎡
⎣1 +

(√
α2 − 3 ± α

3

)2
⎤
⎦ , (3.1)

is the region where the system has three solutions. As is usually the case for systems with cubic
nonlinearity, this area also corresponds to the one where hysterisis phenomena are observed, with
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Figure 1. Bifurcationdiagram for the anomalous dispersion regime (β < 0), as a function of the laser parametersα (frequency
detuning) and F2 (power). The inserts and pictograms have the samemeaning as in figure 2. Blue solid lines correspond to F2±,
while the red dashed line delineates ρ = 1. The blue area is the basin of attraction for bright solitons and soliton molecules.
The pink area is the basin of attraction of Turing rolls. Breather solitons are obtained in the orange area. Spatio-temporal chaos
is obtained in the green area. The buffer dark grey area between Turing rolls and spatio-temporal chaos is where secondary
combs are observed. (Online version in colour.)

the two extremal solutions being stable while the intermediate solution is unstable. Outside this
hysteresis area, there is only one equilibrium which is always asymptotically stable. The transition
between the single- and triple-solution areas precisely occurs on the curves F2±(α), where there
are two solutions. The solutions ψe are spatially uniform (θ-independent), and for that reason are
often referred to as flat states.

The existence and stability of the stationary dissipative structures (which are time-independent
but still θ -dependent) strongly depends on the spatial bifurcations from the flat states. The study
of these spatial bifurcations permits identification of critical bifurcation boundaries that define
the stability basins for the various patterns. This bifurcation study is performed by setting the
temporal derivative to zero in equation (2.2), which is subsequently rewritten under the form of
a four-dimensional spatial flow with the independent variables ψ , φ = ∂θψ , ψ∗ and φ∗ = ∂θψ

∗.
The Jacobian of that flow around the flat states ψe explicitly reads

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
2
β

(2|ψe|2 − α + i) 0
2
β
ψ2

e 0

0 0 0 1
2
β
ψ∗

e
2 0

2
β

(2|ψe|2 − α − i) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.2)

and the corresponding eigenvalues obey

λ4 − 4
β

(2ρ − α)λ2 + 4
β2 [1 − ρ2 + (2ρ − α)2] = 0. (3.3)
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Figure 2. Bifurcation diagram for the normal dispersion regime (β > 0) as a function of the tunable laser parameters α
(frequency detuning) and F2 (power). In each insert, the top figure is a Kerr comb (frequency domain) while the bottom figure
is the corresponding pattern (spatial domain θ ∈ [−π ,π ]). The pictograms permit to analyse the various spatial bifurcations
in the system. The blue solid lines correspond to F2±, and the red dashed line delineates ρ = 1. The blue area is the basin of
attraction for dark solitons, platicons and breathers. The pink area is the basin of attraction of Turing rolls. (Online version in
colour.)

The above equation is bi-quadratic and therefore yields for each equilibrium four eigenvalues
which are either pairwise opposite when real-valued, or pairwise conjugated when complex-
valued. Owing to the θ → −θ symmetry, the spatial bifurcations are reversible, and the bifurcations
have an eigenvalue structure that is reminiscent of Hamiltonian systems. Analyzing the exact
nature of these eigenvalues permits understanding of the topological changes of the intra-cavity
field as a function of the laser pump frequency α and power F2.

From the above analysis, it arises that the main bifurcation lines correspond to F2±(α) and to
F2 = G(α, 1) in the α–F2 parametric plane. Both curves are represented in figures 1 and 2. In order
to forecast a spatial bifurcation, the eigenvalue distribution has to be systematically evaluated
along each of these lines. As explained in table 1, it is found that the system can sustain four
types of bifurcations, namely quadruple-zero [or 04], Takens–Bogdanov [02], Takens–Bogdanov–
Hopf [02(iω)] and Hamiltonian–Hopf [(iω)2]. Some of these bifurcations are explicitly indicated in
figures 1 and 2, where the pictograms in black are those highlighted in table 1, while those in grey
correspond to the eigenvalue distributions that do not correspond to any spatial bifurcations.
Regardless of the dispersion, it is found that no pattern can be created for low pump powers
(F2 → 0), and the intra-cavity field remains a flat state in that case. However, there is always a
threshold power beyond which stationary patterns emerge. The dynamical properties of these
patterns appear to depend strongly on the dispersion regime.

In the anomalous dispersion case, dissipative patterns can always be generated above the
Hamiltonian–Hopf bifurcation line ρ = 1, as can be seen in figure 1. When α < 2, Turing rolls are
generally obtained, which emerge via the modulational instability of the flat state. Indeed, this
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Figure 3. Stationary dissipative patterns in the anomalous dispersion regime (β < 0). (a) Rolls, (b) bright soliton and (c)
soliton molecule. (Online version in colour.)
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Figure 4. Stationary dissipative patterns in the normal dispersion regime (β > 0). (a) Rolls, (b) dark soliton and (c) platicon
(or flaticon). (Online version in colour.)

Table 1. Pictograms for the various sets of eigenvalues. A set of four eigenvalues is attached to each equilibrium, and some
classified bifurcations are attached to certain configurations of eigenvalues. A dot stands for one (simple) eigenvalue, the cross
corresponds to a set of two degenerated eigenvalues and a circled cross stands for a set of four degenerated eigenvalues [18].

Eigenvalues and reversible spatial bifurcations in the Lugiato–Lefever model

Nomenclature Eigenvalues (λ1,2; λ3,4) Pictogram Bifurcation

Quadruple-zero (0; 0) 04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Takens–Bogdanov (±a; 0) 02
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Takens–Bogdanov–Hopf (0;±ib) 02(iω)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hamiltonian–Hopf (±ia;±ia) (iω)2


particular instability was first predicted by Alan Turing in his pioneering work on the chemical
basis of morphogenesis [20]—the reason why this bifurcation is sometimes referred to as a Turing
bifurcation. Roll patterns feature an integer number of maxima along the azimuthal direction,
and correspondingly, the spectra are characterized by spectral lines spaced by the same integer
number of FSRs. At threshold (ρ = 1), this number is the closest integer to [2(α − 2)/β]1/2. It was
shown by Lugiato & Lefever in [1] that these rolls are super-critical when α < 41

30 , and sub-critical
otherwise. The stationary sub-critical patterns are essentially bright cavity solitons and soliton
molecules, which correspond to bound solitons complexes. They should therefore not be confused
with states where isolated solitons coexist in the cavity without mutual interaction (distance much
greater than the soliton pulsewidth). The stationary patterns in the anomalous dispersion regime
are displayed in figure 3. At the experimental level, numerous demonstrations of roll patterns
(e.g. [21]) and solitons [22] have been reported in the literature.

In the normal dispersion case, dissipative patterns can only be generated in a very limited area
of the parameter space. In fact, Turing rolls only arise marginally here, in a very narrow band
just above the Hamiltonian–Hopf bifurcation when α is strongly detuned (� 1). As displayed
in figure 4, there is another narrow band in the hysteresis area where solitonic solutions are
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stable, and more precisely, dark solitons and platicons/flaticons [18,23]. These patterns have been
experimentally demonstrated in [24].

4. Non-stationary dissipative structures
Depending on the pumping conditions, the dissipative patterns can become non-stationary and
display an explicit time-dependence. Indeed, the temporal dynamics of the intra-cavity field
will have the timescale of the photon lifetime, and will therefore be slow. These non-stationary
patterns always arise after the stationary ones outlined in §3 lose their stability. They are therefore
essentially unstable rolls or solitonic patterns.

Understanding how this loss of stability occurs requires perturbation of the spatially
dependent solutions and monitoring of the asymptotic behaviour of the perturbation. A
convenient way to achieve this procedure is to start with a modal decomposition of the intra-
cavity field following ψ(θ , τ ) =∑

l Ψl(τ ) eilθ , where Ψl(τ ) is the time-varying amplitude of the
mode of azimuthal order l. By plugging this expansion into the LLE, the following set of ordinary
differential equations ruling the dynamics of each mode is obtained:

Ψ̇l =
[
−(1 + iα) + i

β

2
l2
]
Ψl + i

∑
m,n,p

δ(m − n + p − l)ΨmΨ
∗
nΨp + δ(l)F, (4.1)

where the overdot denotes the derivative relatively to the dimensionless time τ , while m, n,
p and l are azimuthal eigennumbers labelling the interacting modes following h̄ωm + h̄ωp →
h̄ωn + h̄ωl. Equation (4.1) corresponds to the modal expansion—or spectro-temporal—model that
was initially proposed to investigate Kerr comb generation, before the spatio-temporal LLE model
was demonstrated as equivalent [10,13,14].

The solutions corresponding to the stationary patterns are obtained by setting the temporal
derivatives of the oscillating modes to zero in equation (4.1), following Ψ̇l ≡ 0. If a Kerr comb
spanning from l = −N to l = N is considered, a set of (2N + 1) nonlinear, algebraic and coupled
equations is thereby obtained. The perturbations around these steady-state solutions are obtained
after differentiating equation (4.1) following:

δΨ̇l =
N∑

p=−N

RlpδΨp +
N∑

p=−N

SlpδΨ
∗
p , (4.2)

where the complex-valued parameters

Rlp =
[
−(1 + iα) + i

β

2
l2
]
δ(p − l) + 2i

∑
m,n

δ(m − n + p − l)ΨmΨ
∗
n (4.3)

and Slp = i
∑
m,n

δ(m + n − p − l)ΨmΨn, (4.4)

can be considered as the elements of the (2N + 1)th-order square matrices R and S. If the
(2N + 1)-dimensional perturbation vector δΨ (τ ) = [δΨ−N(τ ), . . . , δΨN(τ )] are introduced, then
equation (4.2) can be written under the form of a flow:[

δΨ̇

δΨ̇ ∗

]
= J

[
δΨ

δΨ ∗

]
, with J =

[
R S
S∗ R∗

]
(4.5)

being a composite (block matrix) Jacobian of order 2(2N + 1). Studying the asymptotic dynamics
of the flow of equation (4.5) permits analysis of the stability of the stationary patterns, which are
essentially rolls and cavity solitons. The result of this analysis is that the non-stationary dissipative
patterns have dynamical features that are strongly correlated to those of the precursor stationary
pattern.

On the one hand, localized stationary patterns such as cavity solitons generally undergo
a Hopf bifurcation to morph into soliton breathers, which oscillate periodically in time at a
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Figure 5. Spatio-temporal evolution of cavity soliton breathers, which are localized, non-stationary and periodic dissipative
patterns. (a) Bright soliton breather in the anomalous dispersion regime. (b) Dark soliton breather in the normal dispersion
regime. (Online version in colour.)

a

0
−a −a

0

a
0
3

(a) (b)

|y
|2 a

0

−a −a
0

a

0

20
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timescale comparable to the photon lifetime. As shown in figure 5, this behaviour is observed in
both the anomalous and normal dispersion cases, leading to bright and dark soliton breathers.
These oscillatory solitons have experimentally been evidenced in [25,26]. On the other hand,
extended stationary patterns such as rolls lose their stability via a bifurcation that leads them
to oscillate alternatively, as displayed in figure 6. In all cases, strong pumping leads to spatio-
temporal chaos, and even eventually to rogue waves [10,13,14,27].

5. Conclusion
In this article, the optical dissipative structures that can emerge in a Kerr-nonlinear whispering-
gallery mode resonator pumped with a resonant continuous-wave laser were briefly reviewed.
The Lugiato–Lefever equation was used to investigate analytically the nature, stability and
bifurcation behaviour of these patterns that could be localized or extended, stationary or non-
stationary, and in the latter case, periodic or aperiodic. Interestingly, it has to be emphasized that
the dynamical properties of the LLE are still under investigation from a purely mathematical point
of view [28–31], and are continuously providing new insights with regards to the relationship
between the LLE and other nonlinear PDEs [32]. Beyond the theoretical analysis, the dissipative
patterns of WGM resonators are also enabling technology in several areas of photonics technology
that would benefit from a better understanding of their properties [9,10,12–14,33–36]. The case
here was considered where the WGM resonator has a Kerr nonlinearity and second-order
dispersion. However, higher-order dispersion sometimes has to be accounted for and leads to
new families of patterns [10,14,37]. It is well known that these cavities can also feature dissipative
patterns induced by Raman [38,39] and Brillouin [40] nonlinearities, or even a combination of
many of these effects [41,42]. The study of dissipative pattern formation in these cases is still
embryonic, and will probably unveil new phenomenologies in the near future.

It is strongly believed that the dissipative patterns observed in nonlinear WGM resonators will
continue to provide noteworthy contributions in relation to Ilya Prigogine’s pioneering concepts
of dissipative structures in complex dynamical systems.

Data accessibility. Data corresponding to the numerical simulations are available upon reasonable request to
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