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This Letter proposes an optoelectronic oscillator architec-
ture for narrowband microwave chaos generation. In the
time domain, the microwave signal features a slowly varying
envelope with amplitude and phase chaos while, in the fre-
quency domain, it is quasi-indistinguishable from a band-
limited white noise. A full theoretical analysis is performed
to investigate the stability properties and route to chaos
for the microwave oscillations. We experimentally generate
the narrowband microwave chaos with a central frequency
of 3 GHz and a bandwidth of only 16 MHz, and we
discuss the applications for radar engineering and radio-
communication scrambling. © 2017 Optical Society of
America
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The persistent trend of using chaotic signals for technological
purposes has been significantly consolidated in recent years.
The first application has been chaos cryptography, where a
chaotic carrier is used to mask an information bearing signal,
which is later decrypted using the chaos-pass filtering properties
of synchronization [1–4]. If such an encryption scheme has
been thoroughly investigated within the frame of optical fiber
communication networks, the issue of applying the same
method to radio-frequency (RF) networks becomes a pertinent
topic (see Refs. [5,6]). On the one hand, these networks are
extremely vulnerable to eavesdropper attacks, as they are essen-
tially open-space networks, where virtually anyone has access to
the carrier; hence, microwave chaos cryptography may enable
safe communication safely in these kinds of open-access net-
works. On the other hand, chaotic carriers may be used to
scramble the RF traffic in a limited frequency band and in a
limited area, while giving at the same time to an authorized
receiver the possibility to still have a transparent network
through a synchronization-based unscrambling scheme. In

both cases, the microwave carrier should ideally have a central
frequency laying ultra-high (UHF) and super-high (SHF) fre-
quency bands (ranging from 0.3 to 30 GHz), and a relatively
narrow bandwidth (few tens of megahertz, upper limit) in order
to respect spectrum management requirements impeding the
use of broadband microwave signals in open-space, shared net-
works. Narrowband chaos can also be useful in optical commu-
nications, as it can serve to encrypt only one or a few channels
in a wavelength-division multiplexed optical carrier containing
many more channels that do not need to be encrypted.

Chaotic microwaves have also recently emerged as interest-
ing probe references in random signal radars [7–12]. In this
case, the emitting antenna sends a chaotic microwave with
an echo that is unambiguously recognizable from any other
through the unique spectral and temporal signature of deter-
ministic chaos. Along the same line, time slots of a chaotic time
series are orthogonal (that is, uncorrelated if separated by a
time-lag greater than the inverse of the smallest Lyapunov
exponent) so that they do not interfere and, thereby, allow
for multi-user, multi-task architectures.

In this Letter, we propose a versatile microwave chaos gen-
erator, potentially able to provide a microwave signal of any
central frequency in the UHF and SHF bands, with a band-
width that can be set to virtually any value. Our aim is to pro-
vide a system able to fulfill the aforementioned requirements
for radar and scrambling applications, as well as for other
microwave photonics applications.

Our experimental system belongs to the family of optoelec-
tronic oscillators [3,13]. A schematic representation of the sys-
tem under study is displayed in Fig. 1, and it consists of the
following elements: (1) a continuous-wave semiconductor laser
of power P and wavelength λ � 1550 nm; (2) a wideband in-
tegrated optics LiNbO3 Mach–Zehnder (MZ) modulator,
seeded by the laser (this modulator is characterized by its
half-wave voltages V πDC

� 5.3 V and V πRF � 4.2 V; (3) a
few-meter- long fiber delay line; (4) a fast amplified photodiode
with a conversion factor S; (5) a narrowband microwave RF
filter of central frequency F 0 � Ω0∕2π � 3 GHz and
−3 dB bandwidth ΔF � ΔΩ∕2π � 16 MHz, intended to
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select the frequency range of interest for the chaotic microwave
signal; and (6) microwave amplifiers to close the loop back to
the modulator. In order to obtain sufficiently high gain values,
we have cascaded two RF amplifiers, which are driven close to
saturation and, therefore, operate nonlinearly. The whole opto-
electronic delay line yields an overall delay time T � 15 ns. All
optical and electrical losses are gathered in a single attenuation
factor κ. The data acquisition and processing involve numerical
filtering to isolate the microwave frequency of interest.

This kind of narrowband optoelectronic oscillator has been
extensively studied in the context of ultra-stable microwave
generation [14–20]. It should also be noted that this architec-
ture is characterized by a very high degree of synchronizability
[21–24], a feature that is particularly important for our targeted
applications. The variable of interest here is the microwave
voltage signal V �t� at the input of the MZ modulator.
It has yet been demonstrated that its dimensionless counterpart
x�t� � πV �t�∕2V πRF obeys an Ikeda-like equation (see
Ref. [25–27]) that has the particularity to feature an integro-
differential term [28–31], following

x � τ
dx
dt

� 1

θ

Z
t

t0
x�ξ�dξ � β cos2�x�t − T � � ϕ�; (1)

with τ � 1∕ΔΩ and θ � ΔΩ∕Ω2
0. The parameter β �

πκSGP∕2V πRF is the normalized feedback gain (G being
the amplifier gain in the linear approximation), while ϕ �
πV B∕2V πDC

is the MZ offset phase. The dynamics of this
equation critically depend on the values of its various param-
eters [32–35]. In the present case, owing to the narrowband
nature of the filter, we can represent the solution x�t� under
the form of a carrier of frequency Ω0, slowly modulated by
a complex amplitude A�t�, following [31]

x�t� � 1

2
A�t�eiΩ0t � 1

2
A��t�e−iΩ0t ; (2)

with A � Aeiψ . Therefore, the slowly varying amplitude obeys
the equation [31]

dA
d t

� −μeiϑA − 2γμeiϑJc1�2jAT j�e−iσAT ; (3)

where we have adopted the notation AT ≡A�t − T �. The
above equation allows the study of the deterministic dynamics
of the system, with all stochastic effects being overlooked. The
parameters of this equation are the round-trip phase shift of the
microwave signal σ � Ω0T , and the effective gain of the feed-
back loop γ � β sin 2ϕ. The Bessel-cardinal function Jc1,

defined as Jc1�x� � J1�x�∕x, with Jc1�0� � 1
2 by continuity

is the nonlinear transfer function of the feedback loop for
the microwave signal. The filter parameters are μ �
�ΔΩ∕2�f1� �1∕�2Q��2g−1∕2 and ϑ � arctan�1∕2Q �, with
Q � Ω0∕ΔΩ ∼ 200 being the quality factor of the RF filter.
Since the Q-factor of the filter is generally high, we may simply
consider that μ ≃ ΔΩ∕2 and ϑ ≃ 1∕�2Q� → 0 in the most
simple approximation [31,36]. It is important to note that
the free spectral range (FSR) of the oscillating loop is equal
to FSR � 1∕T � 66.67 MHz, which is significantly larger
than its RF bandwidth ΔF � 16 MHz. Therefore, there
can be only one oscillating mode, which is precisely the ring
cavity mode whose order n is the closest integer to the ratio
F 0∕FSR (here equal to 45; see Fig. 2).

The microwave envelope variable is complex and, therefore,
enables the simultaneous study of the amplitude and the phase
dynamics. The complexity of this dynamics principally depends
on the value of the gain γ, which corresponds to the ratio be-
tween the input power (laser power, gain amplification) and the
various power losses. It can be straightforwardly demonstrated
that the trivial fixed point A0 ≡ 0 is stable when jγj < 1, that
is, when the input power is still inferior to the overall power
losses in the feedback loop [31]. However, when jγj > 1,
the system starts to oscillate. As the system crosses the oscilla-
tion threshold γth � 1, the system undergoes a bifurcation
from the trivial fixed point to the stationary solution
A0 � A0ei�ω0t�ψ0�, where ω0 is a fixed detuning frequency
from the central frequency Ω0 of the RF filter, and ψ0 is a
constant phase that can be set to any arbitrary value.

From Eq. (3), it can be deduced that the detuning frequency
obeys the nonlinear algebraic equation

ω0 � −μ sin ϑ� μ cos ϑ tan�ϑ − σ − ω0T �; (4)

while the amplitude reads

A0 �
1

2
Jc−11

�
−
1

2γ

cos ϑ

cos�ϑ − σ − ω0T �

�
; (5)

where Jc−11 is the inverse Bessel-cardinal function, which
only exists for γ ≥ 1, and is single-valued for realistic gain
values.

The stability of this stationary solution can be investigated
using the standard techniques used for of delay-differential sys-
tems [37,38], based on the eigenvalue analysis of linearized per-
turbations. The asymptotic behavior of the amplitude and

Fig. 1. Experimental setup for the narrowband microwave chaos
generator optoelectronic oscillator. PC, polarization controller;
VOA, variable optical attenuator; MZM, Mach–Zehnder modulator;
DL, delay line; PD, photodiode; Filter, narrowband bandpass filter;
Amp, RF amplification; MC, microwave coupler.

Fig. 2. Modal structure of the microwave generator. The ring cavity
modes induced by the time delay are spaced by a free spectral range,
FSR ≃ 66.7 MHz, which is larger than the bandwidth ΔF �
16 MHz of the narrowband filter. Therefore, only one mode can
oscillate, and the chaotic dynamics are not induced by multimode
interactions.
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phase perturbation variables δA and δψ are governed by the
following flow:

d
d t

�
δA
δψ

�
� −μ cos ϑ�J�

�
δA
δψ

�
− γμ�K�

�
δAT
δψT

�
; (6)

with

�J� �
�

1 −A0 tan φ
1
A0

tan φ 1

�
; (7)

�K� �
�
2J 01�2A0� cos φ −J1�2A0� sin φ
2
A0
J 01�2A0� sin φ 1

A0
J1�2A0� cos φ

�
; (8)

where φ � ϑ − σ − ω0T . It appears that the perturbation for the
amplitude and the phase are generally coupled. For the sake of
exemplification, we are going to consider the particular case when
the matrices �J� and �K� are almost diagonal, leading to uncoupled
perturbations; this corresponds to the case σ � π mod[2π] and
ω0T ∼ ϑ ∼ 0 mod[2π], yielding sin φ ≃ tan φ ≃ 0. In that
limit case, the phase is neutrally stable, while the real and
imaginary parts λa and ωa of the eigenvalue associated to the
perturbation δA � δA0e�λa�iωa�t obey the equations

λa � −μ� 2μγJ 01�2A0�e−λaT cos ωaT ; (9)

ωa � −2μγJ 01�2A0�e−λaT sin ωaT : (10)
The parameter α � 2γJ 01�2Aosc� rules the dynamical behav-

ior close to the Hopf bifurcation of frequency ωa that occurs
exactly when λa � 0, that is, when α cos ωaT � 1. It can be
shown that the bifurcation has an eigenfrequency

ωa �
1

T
tanc−1

�
−

1

μT

�
; (11)

with tanc−1 being the inverse of the tangent cardinal function
restricted to its domain of definition. Numerically, it is found
that ωa ≃ 0.31 × 2π∕T . On the other hand, using Eq. (5) and
the equality J 01�x� � J0�x� − Jc1�x�, it can be deduced that the
corresponding critical value γcr obeys the nonlinear algebraic
equation

Jc−11

�
1

2γcr

�
� J−10

�
1

2γcr

�
1� 1

cos ωaT

��
; (12)

where J−10 is the inverse of the Bessel function J0 in the single-
valued range. The real part of the eigenvalue is such that λa < 0
for jγj < γcr, and λa > 0 for jγj > γcr, so that the single-mode
oscillation is stable below the critical value and unstable above:
solving this equation yields the critical value γcr ≃ 4.0.

This bifurcation behavior is presented in the diagram
displayed in Fig. 3, which is obtained through the numerical
simulation of Eq. (3). It can be seen that after the oscillation
threshold at γ � 1, the amplitude grows and bifurcates around
γ ≃ 4.0, as predicted analytically. Further increase of the gain
leads to multi-periodic oscillations, and later to fully developed
chaos. One should note that chaos arises here for significantly
high values of the normalized gain (jγj ∼ 8), and it is induced
by the modulator nonlinearity (regardless of the eventual sat-
uration of the RF amplification). In comparison, chaos is ob-
tained for jγj ∼ 3 in the usual configurations of optoelectronic
oscillators featuring narrowband (∼10 MHz) with long delay
(∼20 μs), or broadband (∼10 GHz) with short delay

(∼20 ns) (see, for example, review article [3]). The time-domain
chaotic dynamics of the microwave signal envelope is displayed
in Fig. 4. One can note that the amplitude of the signal is cha-
otically modulated in a timescale of a few tenths of microseconds,
in accordance with the bandwidth of 16 MHz, and with a quite
large modulation index (∼1). The phase undergoes random
phase jumps of	π, thereby indicating that the microwave signal
remains highly coherent, and that the effect of chaos is mostly an
amplitude modulation with phase-flip modulation.

An experimental chaotic time trace of the microwave signal
variable V �t� is presented in Fig. 5. As predicted theoretically,

Fig. 3. Bifurcation diagram for the normalized amplitude A of the
microwave signal as a function of the gain γ.

Fig. 4. Numerical simulation of Eq. (3) when the effective gain is
set to γ � 10. (a) Amplitude dynamics. (b) Phase dynamics.

Fig. 5. Experimental time trace of the chaotically modulated micro-
wave signal V �t� of frequency ∼3 GHz when the laser power is set at
0.2 mW, and V B is biased such that ϕ ≃ π∕4. This microwave signal
has been normalized such that its maximal value is equal to 1. The
right panel displays the PDF of the chaotic microwave signal (continu-
ous blue), which can be compared with that of a pure sinusoidal micro-
wave signal with the same maximal amplitude (dotted red; note that
this PDF is discontinuous at V � 	1, where it theoretically diverges).
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reaching the chaotic regime requires very high gain (γ > 8; see
Fig. 3), and this is why two cascaded RF amplifiers have been
used in the electronic branch of the oscillator. The large chaotic
amplitude modulation leads to a bell-shaped probability den-
sity function (PDF), which significantly differs from the convex
and discontinuous PDF of the normalized sine wave of ampli-
tude 1, which is f �x� � �π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
�−1. Indeed, in a pure sine

wave, the PDF diverges at the extrema: however, in our cha-
otically modulated microwave signal, the waveform remains
quasi-sinusoidal on a fast scale (∼1∕F 0), but extrema are
pseudo randomly distributed in the slow scale (∼1∕ΔF ).
Therefore, the change of convexity induced by the chaotic
modulation indicates that the full signal (and not just its
envelope) features high entropy, despite its narrow bandwidth.

In conclusion, we have demonstrated a simple optoelec-
tronic system that is able to generate narrowband microwave
chaotic signals, that is, a microwave signal whose envelope is
chaotic, while its fast-scale dynamics remains periodic. Our
theoretical analysis consisted of a detailed analytical study, con-
firmed by numerical simulations. Experimental evidence of this
microwave envelope chaos has also been provided. The flexi-
bility of this system allows, in principle, the generation of these
microwave signals around any frequency for which optoelec-
tronic components are available (up to a few tens of gigahertz
today). We anticipate that these kinds of signals should find
applications in microwave chaos communications, as well as
in the emergent field of broadband radar systems. Further in-
vestigations are in progress along these lines. Future research
will also focus on deepening our understanding of the synchro-
nization of such systems [22–24,39–41] and the exploration of
the system’s behavior when seeded with nonclassical light [42].
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