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6 GeorgiaTech-CNRS Joint International Laboratory [UMI 2958], Atlanta Mirror Lab,

School of Electrical and Computer Engineering, 777 Atlantic Dr NW, Atlanta, GA 30332-0250, USA

Received 27 February 2017 / Received in final form 10 May 2017
Published online 19 July 2017 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2017

Abstract. We use the generalized Lugiato-Lefever model to investigate the phenomenon of Kerr optical
frequency comb generation when group-velocity dispersion is null. In that case, the first dispersion term
that plays a leading role is third-order dispersion. We show that this term is sufficient to allow for the
existence of both bright and dark solitons. We identify the areas in the parameter space where both kind of
solitons can be excited inside the resonator. We also unveil a phenomenon of hysteretic switching between
these two types of solitons when the power of the pump laser is cyclically varied.

1 Introduction

The topic of Kerr optical frequency comb using ultra-high
Q whispering gallery mode resonators has been the focus
of extensive research in recent years [1,2]. These combs
are obtained after pumping these Kerr-nonlinear cavi-
ties with a resonant continuous-wave (CW) laser. Above
a certain threshold, the small volume of confinement,
high photon density and long photon lifetime contribute
to the excitation of the neighboring cavity eigenmodes
through four-wave mixing (FWM) interactions of the kind
�ωm + �ωp → �ωn + �ωq, where two input photons m and
p interact coherently via the Kerr nonlinearity to yield
two output photons n and q. This FWM induces a global
coupling between the modes, which potentially results in
the excitation of up to several hundred spectral lines.
This cascade of photonic interactions yields the so-called
Kerr optical frequency comb, which is a set of equidis-
tant spectral components in the Fourier domain. Many
features of the nonlinear and quantum properties of these
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combs have already been analyzed in depth in several re-
search works [3–12]. From the applications standpoint,
Kerr combs have been found to be of particular relevance
in many areas, including aerospace and telecommunica-
tion engineering, spectroscopy, and microwave/lightwave
frequency synthesis [13–25].

It is noteworthy that Kerr comb generation requires
the frequency shift generated by self-phase modulation
(SPM) to be compensated by both the laser frequency de-
tuning and the overall (chromatic and geometric) disper-
sion of the resonator. From this requirement, one can fore-
shadow the central role that dispersion plays in the Kerr
comb generation process. In general, studies in Kerr opti-
cal frequency comb generation only focus on the two dis-
tinct signs for the second-order dispersion parameter (also
known as group-velocity dispersion, or GVD), referred to
as normal (positive GVD) and anomalous (negative GVD)
dispersion regimes. Kerr comb generation in both regimes
has been the focus of a large amount of research work,
that has allowed to identify the various possible solu-
tions arising in each case, and which include rolls (also
referred to as Turing patterns), spatiotemporal chaos,
and solitons of various forms: bright/dark, breathers,
and molecules [11,26]. Bright solitons are usually found
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in the anomalous dispersion regime [11,21,26], in contrast
to dark solitons that are generally obtained in the normal
dispersion regime [11,27–33].

However, the case of zero GVD has not been analyzed
in depth, despite its relevance from a bifurcation analy-
sis point of view. On the one hand, it is well known that
very small GVD is desirable in order to obtain broadband
combs, and therefore it is important to analyze what oc-
curs when second-order dispersion is strictly null, as this
permits to understand how the system behaves asymp-
totically on each side of the zero-GVD limit [34]. On the
other hand, when the second-order dispersion term is null,
the higher orders of dispersion should be considered and
in this case the third-order dispersion (or TOD) plays
the leading role. In both cases, the spectro- and spatio-
temporal properties of the comb display some singular fea-
tures that are still to be investigated and understood in
depth.

By setting the pump exactly at the zero GVD, all ex-
cited comb lines fall in the normal (anomalous) if blue
(red)-shifted from the pump. Any soliton (bright or dark)
formed around the pump is strongly affected by the re-
coil effect, associated to the resonant radiation tail, which
helps locating the soliton core firmly in the normal or
anomalous GVD for bright or dark solitons, respectively
(see Ref. [34] for the case of a bright soliton in the anoma-
lous GVD and the pump under the normal GVD). There-
fore, under these conditions, the existence of both bright
and dark solitons is highly expected, and indeed possible.

In this article, we aim to address this problem, and
analyze the dynamical properties of soliton Kerr combs
when GVD is null. The structure of the article is therefore
the following. In the next section, we present the model
under investigation, which is a generalized Lugiato-Lefever
equation. Section 3 is devoted to the case of null overall
dispersion, where only flat states are allowed. We then
analyze in Section 4 the effect of third-order dispersion,
which is the first dispersion term to be accounted for when
GVD is null. The last section concludes the article.

2 Model

Kerr comb generation is usually investigated using the
mean-field Lugiato-Lefever equation (LLE), which was
first introduced in reference [35]. It was shown for the
first time in reference [36] that the LLE could be used
to study the dynamics of laser fields confined in dissipa-
tive and dispersive ring-cavities. Later on, the LLE was
used to provide an accurate insight into the intra-cavity
spatiotemporal dynamics of Kerr comb generators [5–7].
Explicitly, in a dimensionless form, the generalized LLE
for Kerr comb generation can be written as

∂ψ

∂t
= F − (1 + iα)ψ + i|ψ|2ψ + i

nmax∑

n=2

in
bn
n!
∂nψ

∂θn
, (1)

where the variable ψ(θ, t) stands for the complex slowly-
varying envelope of the total intracavity field. The di-
mensionless time t is scaled with regards to 2τph, where

τph = 1/Δωtot is the photon lifetime of the loaded cav-
ity and Δωtot is the total (or loaded) linewidth of the
pumped resonance. The variable θ ∈ [−π, π] stands for the
azimuthal angle along the circumference of the resonator.

The dimensionless LLE has periodic boundary condi-
tions in the angular variable and is characterized by the
parameters F (pump), α (frequency detuning), and bn
(dispersion parameters at the nth order, with 2 ≤ n ≤
nmax). More specifically, the dimensionless and real-valued
pump field F is related to the pump power P (in watts)
as F = [8g0Δωext/Δω

3
tot]

1
2 [P/�ωlas]

1
2 , where ωlas is the

laser angular frequency, g0 = n2c�ω
2
las/n

2
0V0 is the non-

linear gain with n0 and n2 being respectively the linear
and nonlinear refraction indices of the bulk material, V0

is the effective volume of the pumped mode, c is the ve-
locity of light in vacuum, � is the reduced Planck con-
stant, while Δωext is the external (or coupling) linewidth
of the pumped resonance. The detuning parameter is
α = −2σ/Δωtot, where σ = ωlas − ωres is the difference
between the pump laser and the cold-cavity resonance an-
gular frequencies. Finally, the nth order dispersion param-
eters can be expressed as bn = 2vgτphβnΩ

n
FSR

, where vg is
the group velocity in the bulk material at the pump laser
frequency, ΩFSR is the angular free-spectral range (FSR)
of the resonator, and βn is the nth order dispersion coeffi-
cient as usually defined in optical materials. It is also im-
portant to note that the intracavity power in watts can be
simply recovered as |E|2 = [�ωlas/2g0τphTFSR ]|ψ|2, where
TFSR = 2π/ΩFSR is the intracavity round-trip time. For
crystalline disk-resonators, the photon lifetime τph can be
longer than 1 μs (see Refs. [37–40]) while it is of the order
of few ns for integrated resonators. The GVD and TOD
respectively correspond to b2 and b3. By convention, the
anomalous GVD regime is defined by b2 < 0 while normal
GVD corresponds to b2 > 0.

It is known that the LLE can describe the dynamics
of the intracavity field with outstanding precision. For ex-
ample, in reference [9], the experimental spectra involved
more than 300 modes, and where shown to agree with the
theoretical one over a dynamical range greater than 80 dB.
We will investigate in the next sections these dispersion
parameters on the spatio-temporal dynamics of the intra-
cavity field.

3 Dynamics of the system with null overall
dispersion

The dynamics of the resonator when the overall disper-
sion is null is obtained by uniformly setting the dispersion
terms bn to zero in equation (1). The equilibria ψe are ob-
tained by setting the temporal derivative to zero as well,
and they are solutions of the following nonlinear algebraic
equation:

F 2 = ρ3 − 2αρ2 + (α2 + 1)ρ ≡ G(α, ρ), (2)

with ρ = |ψe|2 being the intracavity power at equilib-
rium. Because they are independent of time and space,
the equilibria ψe are homogenous steady state solutions
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which are represented by a single spectral line in the
Fourier domain. The extrema of the function G(α, ρ) are

F 2
± = G [α, ρ∓(α)]

=
2
27

[
α

(
α2 + 9

) ±
√

(α2 − 3)3
]

(3)

with ρ∓(α) = [2α∓√
α2 − 3]/3. For a given pump inten-

sity F 2, equation (2) shows that we have only one equi-
librium if α <

√
3, but up to three equilibria ρd < ρi < ρu

when α >
√

3, with the subscripts d, i and u standing for
down, intermediate and up, respectively. It is well known
that the down- and uppermost solutions are stable, while
the intermediate one is unstable (see, e.g., Refs. [11,41] for
a thorough analysis of the flat state solutions).

In order to analyze the stability of these equilibria, it is
convenient to explicitly split ψ into its real and imaginary
parts so that equation (1) can be rewritten under the form
of a two-dimensional flow with real variables. The eigen-
values of the corresponding Jacobian matrix around the
flat-states are given by:

λ± = −1 ±
√

1 − ∂G

∂ρ

= −1 ±
√

(3ρ− α)(α − ρ). (4)

The analysis of these eigenvalues reveals that no local bi-
furcation can occur in the system except when ρ = ρ±
since, as one of the eigenvalues is laying on the imaginary
axis (λ+ = 0) and the second has a negative real part
(λ− < 0). The equilibria are therefore non-hyperbolic in
this case.

For a pump field such that F 2
− < F 2 < F 2

+, the system
is driven in the hysteresis area. The asymptotic flat state
will emerge from a competition between ρd and ρu, which
are both stable attractors. In fact, the final state will crit-
ically depend on the value F 2 of the pump with regards
to the median pump power:

F 2
m =

1
2

(F 2
− + F 2

+) =
2α(α2 + 9)

27
. (5)

For a pump F < Fm, the amplitude of the flat state will
be ρd, while for F > Fm, the system will converge to ρu.
This phenomenology, which is described in Figure 1b, pre-
dicts that perturbations to the singular problem of null
dispersion will strongly depend on the value of the pump
F 2 with regards to the median power F 2

m.

In the next section, we will investigate the effect of
TOD when GVD is still null, and analyze the devia-
tion form of the singular manifolds in the spatiotemporal
domain.

(a) α <
√

3

F
2

(b) α >
√

3

ρ1 ρ− ρ+ ρ2

F2−

F2
m

F2
+

ρ

F
2

Fig. 1. Laser pump versus the stable equilibrium point of
the intra-cavity energy. The analytical values are plotted from
equation (2). For (a), α <

√
3: only one stable equilibrium. For

(b), α >
√

3: two stable (solid curve) and one unstable (dotted
curve) equilibrium points. The attractive curve ρd represents
all the values of ρ lower than ρ− whereas, the attractive curve
ρu represents all the values of ρ greater than ρ+. The solid parts
of the arrows is used to emphasize on the fact that one among
ρu and ρd can be more attractive than other (the solid part
is longer in the side of attractive line), becoming therefore the
final predominant amplitude of the flat state. The dash part of
an arrow emphasizes on the unstable equilibrium ρi. The axis
ticks have been removed for a general interpretation. But, in
(a), α = 1.5 while for (b) α = 3.5.

4 Bright and dark solitons in the presence
of third-order dispersion

We now consider equation (1) when all the dispersion co-
efficients are equal to zero, except the TOD coefficient b3.

The effect of TOD on dissipative structures has already
been analyzed in several research works. Some of these
investigations were focused on the reversibility breaking
in the system which is responsible for the soliton drift,
while other works analyzed specific solutions such as time-
varying solitons [34,42–47]. It is important to note that
owing to geometrical dispersion, the overall dispersion of a
resonator can in some cases be engineered via its shape to
yield a dispersion profile closely corresponding to arbitrary
configurations [48–53].

When TOD is accounted for, non-trivial states may
arise in the system close to, or inside the hysteresis area.
In particular, for a pump selected at a particular median
value Fm = 1.68 or just around it, the system preferably
converges towards a cavity soliton instead of flat states.
Bright and dark solitons yielding Kerr combs with single-
FSR spacing are obtained. The spatiotemporal profiles
and the corresponding spectra are displayed in Figure 2.
Despite the fact that the type of soliton (bright or dark)
depends on the initial condition, bright cavity solitons are
preferably obtained when the pump is below Fm, whereas
dark cavity solitons preferably emerge in the opposite case.
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Fig. 2. Soliton spatial waveforms (left column) and the corresponding frequency combs (right column) for the pump around
Fm = 1.68. As the pump is monitored from 1.72 ((a) and (b)) to 1.64 ((g) and (h)), the soliton waveform changes as well from
for both dark and bright cavity solitons. The frequency combs have a single-FSR spacing, but their amplitudes undergo some
changes ((b), (d), (f), (h)). For these plots, b3 = 4.08 × 10−5, α = 2.5, ((a) and (b)) F = 1.72, ((c) and (d)) F = 1.69, ((e) and
(f)) F = Fm and ((g) and (h)) F = 1.64.

For pump values far away from Fm, the system asymptot-
ically converges to a flat state.

Some spatial and spectral profiles of solitons are dis-
played in Figure 2. Previous works demonstrated that
large values of the TOD had the effect of stabilizing the
frequency combs [34,46,54] even in the presence of Raman
scattering [55].

In order to investigate the branches of stable solitons
that can emerge in the system, it is convenient to define a
norm that can unambiguously discriminate a soliton from
the trivial flat state. There are indeed various ways to
define such a norm, but one of the simplest is the following:

N ≡
∫ +π

−π

|ψs − ψe| dθ, (6)

where ψs(θ) is the soliton spatial profile along the res-
onator and ψe are the equilibria of equation (1). Figure 3
shows the variation of this soliton norm N as a function of
the pump field F , for bright and dark solitons with b3 > 0.

Figure 3 also indicates that the solitons can become
unstable via an hysteretic path. As a consequence, we can
excite the solitons of the same type (bright or dark) with
two different amplitudes depending on initial conditions.
It can also be seen that bright and dark solitons can be
excited with the same parameter values: for a given TOD
and conserving the same value of the parameters F and

(a)
Bright solitons

1.64 1.66 1.68
0.1

0.2

0.3

N
or

m

(b)
Dark solitons

1.66 1.68 1.70 1.72
0.2

0.3

0.4

F

N
or

m

Fig. 3. Soliton norm branches as a function of the pump field
for (a) bright and (b) dark solitons when the pump wave-
length is exactly set at the zero GVD value (b2 = 0). The
only higher-order dispersion term accounted for is TOD with
b3 = 4.08 × 10−5 and α = 2.5. Solid (dashed) curves indicate
stable (unstable) branches. The vertical dashed lines marks
F = Fm = 1.68. The plots are performed using the Newton-
Raphson method.
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Fig. 4. Soliton switching amongst various branches when the pump power is cyclically varied. The vertical axis of all figures is
time in units of round-trips (r.t.). (a) Variations of the pump field F . (b) Variations of the flat state ψe. (c) Variations of the
norm N. (d) Color-coded intracavity field intensity, showing the various soliton branches (once the drift Ωd is removed).

α, the cavity can display bright or dark soliton depend-
ing on the initial condition. For instance, at F = 1.68,
stable bright soliton can be recovered (Fig. 3a) as well
as stable dark soliton (Fig. 3b). As suggested in refer-
ences [31–33], the appropriate way to understand why
both bright and dark solitons can be excited consists in an-
alyzing the switching waves connecting the homogeneous
steady state solutions ρd and ρu, where ρd and ρu (with
ρ = |ψe|2) are the stable flat states. The existence of both
bright and dark solitons was already demonstrated in the
regime of normal GVD, and attributed to a joint contribu-
tion of the third-order dispersion and large detuning [33].

We note here that the existence of both stable bright
and dark solitons brings interesting dynamical features to
the system. This is illustrated in Figure 4a, where the
pump, F is changed with time. The initial state of the
resonator is given by the dark soliton at F = 1.68 and
norm �0.25 (see branch in Fig. 4b). As time goes on,
F is decreased and the initial dark soliton now follows
a path in a branch (a signature of this phenomenology
is the soliton velocity change with F ) until the pump
falls outside the existence limit defined by this branch.
At this point, because bright solitons do exist for when
dark solitons do not, the dark pulse bifurcates to a bright
soliton of norm �0.15. At this point, F is increased and
swept through the bright soliton branch until it crosses
the existence limit for bright solitons. Here again, because
dark solitons can still exist when bright ones do not, the
bright pulse bifurcates back to the dark soliton found for
F = 1.71 and norm �0.22. The pump is decreased until
the initial value of F = 1.68, thereby closing the loop.

At the dark-to-bright (bright-to-dark) soliton transi-
tions, the background field switches from the upper to
the lower (lower to upper) states of the WGM resonator
Figure 4b. As shown in Figure 4b, an interesting feature
of this effects is that background switching occurs within
a significantly narrower range for the pump powers, F ,
than that defining the bistability loop of the flat states.
Additionally, while the pump range to achieve switching
is small, the intensity difference between upper and lower
states is kept high, i.e., the bistability loop may be made
narrow in F but it comes at the price of diminishing the
contrast between upper and lower states. Figure 4c shows

•

1.5 1.6 1.7 1.8 1.9
0.5

1

1.5

F

|ψ
e
|

Fig. 5. Hysteretic cycle (in red) completed by |ψe| as F is peri-
odically ramped up and down. The temporal dynamics of both
variables is exactly the one displayed in Figures 4a and 4b. In
the figure, the cycle begins on the black dot and goes counter-
clockwise. The gray dashed line corresponds to the relationship
defined by equation (2) between the pump field and the flat
states.

how the norm changes with the cyclic pump variation,
while Figure 4d displays the intracavity field. The color-
coded representation of this field enables to identify unam-
biguously the various soliton branches that can be excited
in the system.

We can gain even better understanding of the phenom-
ena presented in Figure 4 by plotting the variation of the
background flat state |ψe| as a function of the cyclically
varying pump field F . This representation is displayed
in Figure 5, where the hysteretic cycle can be explicitly
identified.

5 Conclusion

In this work, we have investigated the dynamics of Kerr
optical frequency combs when the group-velocity disper-
sion is set to zero. We have demonstrated that third-order
dispersion is sufficient to lead to the emergence of both
bright and dark solitons. These solitons have been shown
to exist in a range around an optimal value of the pump
power that has been analytically defined. We have also
analyzed the hysteretic switching between both types of
solitons when the pump power is cyclically varied. Fu-
ture work will focus on the consideration of other ef-
fects such as Raman scattering, pulsed-pumping schemes
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or higher-order dispersion [41,56–62] when the system is
still very close or at zero group velocity dispersion. This
research will enable the community to understand better
how the Kerr comb span can be expanded to its maximum
extent with the smallest energy footprint possible.
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