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We propose a chaos communication scheme based on a chaotic optical phase carrier generated

with an optoelectronic oscillator with nonlinear time-delay feedback. The system includes a dedi-

cated non-local nonlinearity, which is a customized three-wave imbalanced interferometer. This

particular feature increases the complexity of the chaotic waveform and thus the security of the

transmitted information, as these interferometers are characterized by four independent parameters

which are part of the secret key for the chaos encryption scheme. We first analyze the route to

chaos in the system, and evidence a sequence of period doubling bifurcations from the steady-state

to fully developed chaos. Then, in the chaotic regime, we study the synchronization between

the emitter and the receiver, and achieve chaotic carrier cancellation with a signal-to-noise ratio up

to 20 dB. We finally demonstrate error-free chaos communications at a data rate of 3 Gbit/s.

Published by AIP Publishing. https://doi.org/10.1063/1.5007867

The purpose of optical chaos communications is to secure

optical fiber networks at the physical layer level using cha-

otic laser carriers. This analog communication scheme is

based on the synchronization of two chaotic laser beams,

and security in this case is ensured at the physical layer of

the broadband chaos generator architecture. The basic

principle of operation is that an information-bearing signal

which is encrypted within the noise-like output of a large

amplitude chaotic emitter, while a synchronous receiver

recognizes the deterministic chaotic component and cancels

it to reveal the initially encrypted signal. Several optical

chaos cryptosystems have been demonstrated so far, either

based on semiconductor lasers with optical feedback or on

time-delayed optoelectronic oscillators.1,2 In this article, we

propose a new architecture for optical chaos communica-

tions belonging to the latter category, and for which the

key element is a customized three-wave fiber interferome-

ter. We show that this system outputs a broadband optical

phase chaos that can be accurately synchronized with neg-

ligible residual noise, and allows for successful multi-Gbit/s

optical chaos communications.

I. INTRODUCTION

The pioneering work of Ikeda about 40 years ago evi-

denced the possibility to obtain optical chaos using a delayed

system with local nonlinearity.3–5 The proof-of-concept

experiments of Neyer and Voges6 have permitted to imple-

ment Ikeda-like systems using off-the-shelf telecom devices,

and have thereby facilitated the study of many fundamental

phenomena related to nonlinear time-delay dynamics in pho-

tonics (see for example Refs. 7–25). Beyond the fundamental

analysis of this system as a paradigm for delayed dynamics,26,27

numerous applications have benefited from this research, which

include ultra-pure microwave generation,28–42 photonic reser-

voir computing (see Refs. 43–49 and references therein), or

optical chaos communications,50–55 among others.1,56

In the area of optical chaos communications, Ikeda-like

systems have been shown to be particularly suitable and ver-

satile. Effectively, several architectures have been proposed

with the chaotic variable being the wavelength, the intensity

of the phase of the laser carrier signal.1 The robustness of

this technology has been tested in two key field experiments.

In the first one, a 3 Gbit/s transmission over 120 km has been

achieved in the metropolitan optical fiber network of Athens,

Greece, using the optical intensity chaos50 with 10�7 bit-

error rate (BER). In the second experiment, a record 10 Gbit/

s transmission over 22 km was achieved in the Lumière opti-

cal fiber network of Besançon, France, using optical phase

chaos.51 This work has also enabled to emphasize on the spe-

cific advantages of optical phase encryption with regards to

conventional amplitude encryption.

In general, the nonlinear function ruling the chaotic

dynamics is characterized by a single free parameter.

However, it is known that the security of the transmission

increases with the dimensionality for the physical crypto-

graphic key, which is the set of free parameters ruling the

encrypting chaos dynamics. Therefore, from that perspec-

tive, increasing the dimensionality of the nonlinearity

strengthens the security of the cryptosystem, because chaos

synchronization requires the identification and matching of

additional parameters. A first result along that line was

achieved in Ref. 57, where the generation of optical intensity

chaos was demonstrated using an integrated four-wave opti-

cal interferometer—the so-called quadrature phase-shift-key-

ing (QPSK) electro-optic modulator. The two independenta)Electronic mail: yanne.chembo@femto-st.fr
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electro-optic modulation inputs corresponded to a two-

dimensional nonlinearity which permitted to enhanced chaos

complexity over a bandwidth spanning from �0 to 13 GHz.

Research in optical chaos cryptography has shown that

record-high data rates and high security are more likely to be

obtained via optical phase encryption schemes.51 The corre-

sponding emitter-receiver systems are broadband optoelectronic

oscillators featuring conventional two-wave interferometers

(differential phase shift keying—DPSK-demodulator) in the

delayed feedback loop. However, this commercially available

two-wave interferometer yields a low dimensional encryption

key space for the definition of the nonlinear function required

to generate chaos. In this article, we propose to extend the con-

cept to a priori much higher dimensional encryption key space

involving a multiple wave imbalanced interferometer, whose

physical parameters are determined at the fabrication stage of

customized devices. This results in a hardware-based security,

without the physical availability of which the real-time decod-

ing difficulty is expected to be strongly enhanced. The expected

outcome is to increase chaos complexity, and strengthen the

security of the transmitted messages. An experimental demon-

stration of the concept is obtained with a customized matched

pair three-wave interferometer involving two different time

imbalancing, and two different relative static phase shifts

between the interferometer arm.

The outline of the article is as follows: in Sec. II, we

will first present our custom three-wave interferometer.

Then, we will present the optical phase chaos generator in

Sec. III, along with the model describing its dynamics.

Section IV will be devoted to the synchronization of the

emitter-receiver system, and to the study of multi-Gbit/s

chaos communications. Section V will conclude the article.

II. THE IMBALANCED THREE-WAVE
INTERFEROMETER

Two-wave interferometers are generally used in photon-

ics to implement nonlinear transfer functions fNL for the

intensity of laser beams, following Pout ¼ Pin fNL½a�, where a
is a control parameter (generally a phase shift), while Pin;out

are input and output powers, respectively.

The most widespread example is the integrated

Mach–Zehnder (MZ) modulator, which is generally based on

a two-wave balanced interferometer. In that case, an optical

signal is split into two equal sub-signals which follow two

distinct optical paths before being recombined. A voltage-

dependent phase difference / between both paths enables to

control the output power via the sinusoidal modulation func-

tion fNL � cos2ð/Þ, thereby providing a mechanism to control

the output light intensity with a voltage V (time-dependent of

not). Several chaos generators based on two-wave interferom-

eters have been proposed so far using integrated MZ electro-

optic modulators. As indicated earlier, broadband hyperchaos

has also been demonstrated with an integrated four-wave

interferometer, implemented with a quadrature phase-shift-

keying (QPSK) electro-optic modulator.

On the other hand, architectures for broadband

phase (instead of intensity) chaos generation have been intro-

duced through the use of imbalanced passive two-wave

interferometers, where the difference of optical paths is

induced by e.g., a propagation length difference in two short

patches of optical fiber. Electro-optic phase modulation is

provided externally, and time imbalance in the interferome-

ter is required here in order to dynamically and nonlinearly

convert the phase modulation into strong intensity modula-

tion, as long as the optical phase can be modulated faster

than the time imbalance. So far, only two-wave interferome-

ters have been considered in experimental implementa-

tions,51,52 since they correspond to commercially available

devices known as DPSK demodulators. In this work, we con-

sider a customized three-wave interferometers instead,

whose simplified architecture is displayed in Fig. 1. These

interferometers have been custom-designed by the photonics

company Kylia in matched pairs, and they are characterized

by four parameters: the fixed time-delays DT1 and DT2

inducing the two arm imbalance with regards to a third (ref-

erence) one; and the two tunable phase shifts /1 and /2

which are controlled by local thermal tuning (heating).

These three-wave interferometers can be characterized by

their spectral filtering response in the Fourier domain

fNLð/1;/2Þ ¼
1

16
3þ 2 cos /1 þ 2pDT1 d�½ �
�

þ2 cos /2 þ 2pDT2 d�½ �
þ2 cos ð/1 � /2Þ þ 2pðDT1 � DT2Þ d�½ �g ;

(1)

where d� is the optical frequency deviation from a reference

optical frequency. In contrast with a two-wave interferome-

ter which yields a 2D contribution to the encryption key

space for the nonlinearity (controlled by a single phase shift

/, and a time imbalance DT), the nonlinear phase-to-inten-

sity modulation transfer function of a three-wave interferom-

eter can be considered as a 4D contribution, as there are two

free control parameters /1 and /2 and two relative time

imbalance DT1 and DT2.

The values of the imbalanced delays in our three-wave

interferometer are DT1 ’ 180 ps, DT2 ’ 300 ps, while /1

and /2 have an accordability range of approximately 16p.

The ratio between these delays is DT1=DT2 ¼ 3=5, and we

deduce that the free-spectral range of the interferometer is

FSR ¼ 3=DT1 ¼ 5=DT2 ¼ 16:67 GHz. From the experimen-

tal viewpoint, the spectral characteristic transfer function of

the interferometer can be obtained by performing a fre-

quency scan which reveals the filtering profile ruled by the

passive device. Figure 2 shows how this multiperiodic trans-

fer function can be recovered analytically by adjusting the

control parameters /1 and /2. The very good agreement

FIG. 1. Simplified equivalent model for the three-wave interferometer. The

double-digit labels identify the possible input/output ports. The static phases

/1 and /2 can be tuned using a controlled thermal heating system.
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between experimental and theoretical results indicates that the

characteristic features of the three-wave imbalanced interfer-

ometers are well controlled and can be tuned with a high

degree of precision (of the order of 1%), which is a prerequi-

site to obtain synchronized chaotic phase dynamics. It is

worth mentioning here that the multiple wave interferometer

is characterized as a linear optical filter for the electromag-

netic field amplitude, it is however involved as a nonlinear

dynamical element considering the optical phase modulation

as an input signal of this filter, and the light intensity (aver-

aged by a photodiode) output of the filter.

III. THE OPTICAL PHASE CHAOS OSCILLATOR

Optical phase chaos is generated using a broadband opto-

electronic oscillator (Fig. 3). In this oscillator, a continuous-

wave (CW) laser with wavelength around 1550 nm and phase

U0 seeds a phase modulator for the message encryption, which

outputs an optical laser beam with a modulated phase UMðtÞ.
The phase modulated laser beam is fed into a second phase

modulator which outputs an optical signal with phase UTðtÞ. A

50/50 coupler permits to extract a half of the signal to an out-

put port, while the second half is launched into a delay line of

length L ¼ vgT, where T is the time-delay and vg is the group

velocity in the optical fiber. The delayed optical signal is then

inserted in a three-wave interferometer, which performs a non-

linear phase-to-intensity transformation and acts like a non-

local nonlinearity in time (due to the two time imbalance). The

output optical intensity signal is detected by a fast photodiode

to result in an electrical signal, which is amplified, and con-

nected back to the radio-frequency (RF) input of the second

phase modulator to close the feedback loop. Overall, the signal

in the feedback loop, therefore undergoes three slightly differ-

ent delays, namely T, T þ DT1 and T þ DT2 and some of their

differences through the interference process.

The optoelectronic elements of the loop (in particular

the RF amplifier and the photodiode) are frequency-

selective, and as a consequence the feedback loop features

band-pass filtering properties. The RF amplifier (DR-DG-20-

HO) has a gain of 32 dB and a bandwidth ranging from

�100 kHz to �23 GHz, and the photodiodes have a

bandwidth>10 GHz. However, the low-pass filtering is per-

formed in the feedback loops by introducing low-pass filters

with a cut-off frequency of 7.73 GHz. For the sake of sim-

plicity, one can consider that this band-pass filter corre-

sponds to cascaded first-order high-pass and low-pass filters

of cut-off frequencies fH and fL, respectively. The variable of

interest in this dynamical system is the phase UðtÞ of the

optical field at the input of the phase modulator PMM. This

variable is transduced to an optical intensity by the three-

wave fiber interferometer, and subsequently, to an electrical

fluctuation after fast photodetection. It can be demonstrated

that the variable xðtÞ ¼ UðtÞ=2 obeys the following multiple

delay integro-differential equation

xþ s
dx

dt
þ 1

h

ðt

t0

xðnÞ dn ¼ b FNL xT ; xTþDT1
; xTþDT2f g ; (2)

where b is the normalized feedback loop gain, s ¼ 1=2pfL

and h ¼ 1=2pfH correspond to the low- and high-pass filters

cut-off times, respectively, while

FNL xT ; xTþDT1
; xTþDT2f g

¼ 1

9
3þ 2 cos xT � xTþDT1

þ /1½ �
�

þ 2 cos xT � xTþDT2
þ /2½ �

þ 2 cos xTþDT1
� xTþDT2

þ ð/1 � /2Þ
� �

g (3)

with xT � xðt� TÞ by definition.

The dynamics of this system can be understood from the

numerical bifurcation diagram of Fig. 4. Indeed, below a

FIG. 2. Multi-periodic transfer function of the three-wave interferometer, as a function of the detuning frequency d�. The tunable (free) parameters are /1 and

/2. Left: theoretical curve adjusted to measurements; right: experimental curve.

FIG. 3. Architecture of the optical phase chaos generator. PM: phase modu-

lator and PD: photodiode.

FIG. 4. Numerical bifurcation diagram, obtained after the numerical simula-

tion of Eq. (2). It evidences a period-doubling route to chaos.
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certain critical bifurcation value bcr, the system remains at

the trivial fixed point x0 � 0. Then, as the system is driven

beyond bcr, a first Hopf bifurcation leads the system to a

limit-cycle. Further increase of b leads to a sequence of

period-doubling bifurcations, and ultimately, to fully devel-

oped hyperchaos, a regime of obvious interest for our chaos

communication purpose.

Our experimental measurements confirm this scenario,

and unveil the rich dynamical nature of this time-delayed

system as well. In Fig. 5, the experimental timetraces

obtained for various values of the laser pump power Pin are

displayed. Since the parameter b is proportional to Pin, this

is equivalent to exploring the dynamics of the system for

different values of the feedback gain. It can be observed that

as the gain is increased, the system is first in the trivial

stationary state, and then bifurcates to periodic, multiperi-

odic, and finally chaotic states. This behavior is recovered

when Pin is scanned continuously, thereby leading to the

experimental bifurcation diagram of Fig. 6. We note that this

experimental bifurcation diagram actually appears more

complex than the numerical one. This is an indication that

the complexity of the experimental system is higher than the

one predicted by the model.

IV. SYNCHRONIZATION AND OPTICAL CHAOS
COMMUNICATIONS

Chaos communications rely on synchronization: there-

fore, a receiver matching the emitter architecture has to be

implemented in order to retrieve successfully the chaotic car-

rier, the latter being subtracted from the received encoded sig-

nal to retrieve the initial clear information. As shown in

Fig. 7, our receiver is identical to the emitter, with three key

differences. First, the receiver has an open-loop architecture,

as the output of the phase modulator is injected into the three-

wave interferometer. Second, the amplifier is also an inverting

one, so that the chaotic modulation is anti-synchronized to the

one of the emitter; this feature enables us to cancel out the

chaotic part of the incoming phase modulated optical signal,

as required by chaos communication protocols. Finally, the

optical output (with a canceled chaotic carrier) is connected to

a differential-phase shift keying (DPSK) demodulator and to a

fast photodetector in order to recover in the electrical domain

the resulting phase demodulated information. In the absence

of any phase information modulation (message free transmis-

sion), the output of the photodetector is a residual noise

referred to as synchronization error.
The physical parameters characterizing the emitter

and receiver (photodiodes, three-wave interferometers, RF

FIG. 5. Experimental timetraces for the optical phase chaos generator. (a)

Pin ¼ 4:5 dBm: stationary regime; (b) Pin ¼ 5:4 dBm: periodic regime; (c)

Pin ¼ 7:1 dBm: multiperiodic regime; and (d) Pin ¼ 9:0 dBm: chaotic

regime.

FIG. 6. Experimental bifurcation diagram showing the route to chaos. The

vertical lines (a)–(d) correspond to the timetraces of Fig. 5.

FIG. 7. Architecture of the emitter-

receiver system for optical phase chaos

communications.

FIG. 8. Experimental spectra of the chaotic carrier (green) and synchroniza-

tion error (blue) signals. Chaos cancellation ranges from 15 to 20 dB in a

10 GHz bandwidth around the optical carrier.
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amplifiers, phase modulators, etc.) are ideally expected to be

identical. In that case, synchronization is perfect and the syn-

chronization error is exactly null.58–60 However, there are

unavoidable sources of noise and parameter mismatch

between the emitter and receiver, resulting in a synchroniza-

tion error.7,61,62 The free parameters of the system are s, h,

b, T, DT1; DT2, /1 and /2. In our experimental system, they

are matched within 1% accuracy. In particular, the photonics

company Kylia has provided us a matched pair of two three-

wave interferometers with intrinsic parameters DT1 and DT2

finely adjusted within 0.1%. Figure 8 shows the spectra of

both the chaotic carrier and the synchronization error. It can

be seen that chaos cancellation is achieved with a perfor-

mance ranging from 15 to 20 dB, over a spectral range of

20 GHz around the carrier.

Broadband chaos cancellation indicates that chaos com-

munications can be performed at high rate with a satisfying

BER. The value of the normalized feedback gain was fixed to

b¼ 3 and we have matched the values of the phase offsets /1

and /2 for both interferometers. Indeed, as shown in Fig. 9,

we have successfully achieved encryption and decryption of

binary data at 3 Gbit/s, with a bit-error rate better than 10�12

(the error detection threshold of our equipment).

V. CONCLUSION

In this article, we have presented a broadband optoelec-

tronic oscillator which outputs optical phase chaos. We have

studied the bifurcation structure of this oscillator, and inves-

tigated as well an emitter-receiver architecture for chaos syn-

chronization. The good chaos cancellation ratio permits to

perform error-free chaos communications at a data rate of 3

Gbits/s. Our results have demonstrated the efficiency of opti-

cal phase chaos communication approaches, and their imple-

mentation through customized devices offering a hardware

encryption key.

Future research will be devoted to the optimization of

this communication scheme, and to a deeper understanding

of the nonlinear dynamics of the chaos generator. The three-

wave interferometer device has been operated without the

need for any active control of the different internal parame-

ters (offset phase differences, essentially), contrarily to the

previous experiments on phase chaos generation and syn-

chronization which have used the fiber-based two-wave

interferometer. Our three-wave interferometer was indeed

designed with free space interferometer arms, thus providing

negligible drifts in the internal optical paths. When consider-

ing waveguide structures which brings with it the potential

for photonic chip device,63 micro-nano-fabrication (e.g.,

Silicon photonic devices), one might however require to

address high-dimensional control of the various internal opti-

cal paths. This represents an interesting control challenge,

making use of the backward propagation as already done for

the imbalanced two-wave interferometer setup.
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