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High- and ultrahigh-Q whispering-gallery mode resonators have the capability to trap
photons by total internal reflection for a duration ranging from nanoseconds to milli-
seconds. These exceptionally long photon lifetimes enhance the light–matter interactions
at all scales, namely at the electronic, molecular, and lattice levels. As a consequence,
nonlinear photon scattering can be triggered with very low threshold powers, down to a
few microwatts. The possibility to efficiently harness photon–photon interactions with a
system optimizing size, weight, power, and cost constraints has created a new, quickly
thriving research area in photonics science and technology. This topic is inherently
cross-disciplinary, as it stands at the intersection of nonlinear and quantum optics, crys-
tallography, optoelectronics, and microwave photonics. From a fundamental perspective,
high-Q whispering-gallery mode resonators have emerged as an ideal platform to inves-
tigate light–matter interactions in nonlinear bulk materials. From an applied viewpoint,
technological applications include time-metrology, aerospace engineering, coherent op-
tical fiber communications, or nonclassical light generation, among others. The aim of
this paper is to provide an overview of the most recent advances in this area, which is
increasingly gaining importance in contemporary photonics. © 2017 Optical Society of
America
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Nonlinear photonics with high-Q
whispering-gallery-mode
resonators
GUOPING LIN, AURÉLIEN COILLET, AND YANNE K. CHEMBO

1. INTRODUCTION

Photonics research has witnessed an ever increased amount of interest for monolithic
optical resonators in recent years. Originally, bulk optical cavities were predominantly
considered as host material to harness specific effects, such as lasing after extrinsic dop-
ing, for example. In this context, intra-cavity photon lifetimes of the order of a few pico-
seconds were most of the time sufficient for the targeted applications, such as, for
instance, in semiconductor lasers. However, it rapidly became evident that provided that
the photon lifetimes were increased significantly, bulk resonators had more to offer owing
to intrinsic nonlinear properties such as Pockels, Kerr, Raman, or Brillouin. Effectively in
the case of long photon lifetimes, the probability of mutual interactions between the pho-
tons via the nonlinear bulk cavity was increased accordingly, and permitted direct optical
frequency conversion with high efficiency. The nonlinearities of the bulk materials allow
for multi-scale photon interactions via the electronic cloud oscillations, molecular vibra-
tions, or lattice deformations. Therefore, reducing the intra-cavity losses and increasing
the photon lifetimes from the picosecond to the microsecond range opened new perspec-
tives from both the fundamental and applied viewpoints. In fact, it can be argued that this
process literally created a new field in photonic science and technology.

One of the most widespread types of bulk optical cavities is the whispering-gallery-
mode resonator (WGMR). The concept of whispering gallery arose in the late 19th
century, in the context of the propagation of sound waves confined in galleries. This
quite unconventional nomenclature stems from the fact that these specific acoustic
waves are known to propagate along the inner periphery of certain galleries, with
the most famous example being the dome of St. Paul’s cathedral in London.
It was a known fact that if someone whispered close to one point at the circular dome,
someone else placed at the diametrically opposed position (≃30 m) could hear him
distinctively. The first physical explanation for this phenomenon was proposed by
Lord Rayleigh, and it relied on an acoustic ray interpretation involving multiple in-
ternal reflections along the inner periphery of the gallery [1]. Later on, in 1910, he
improved his theory and proposed a more accurate formalism based on acoustic waves
[2,3]. A decade later, Raman and Sutherland experimentally demonstrated the modal
nature of the whispering-gallery wave in St. Paul’s cathedral [4], by evidencing both
circumferential and radial variations of intensity (resonance nodes).

The same phenomenology can be translated to the optical domain, where dielectric
WGMRs can trap photons by total internal reflection. The first in-depth theoretical
analysis of optical WGMRs based on Maxwell equations was proposed by Mie [5]
and Debye [6] at the turn of 1910, in the context of the diffusion of light waves by
spherical objects. Since then, remarkable contributions have been provided and con-
tributed to achieve a quasi-complete understanding of these resonators, at least in the
linear approximation (see [7,8] and references therein).

Nowadays, the size of WGMRs typically ranges from a few micrometers to a few
millimeters, and they can have a very wide variety of geometrical shapes, including
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spheres, disks, toroids, and even bubbles. The optical storage capacity of a resonator
can be measured by its photon lifetime τph for photons of angular frequency ω0, or
equivalently, by its quality (or Q) factor defined as Q � ω0τph. The Q-factor is also
generally defined as Q � ω0∕Δω, where Δω is the linewidth of the optical resonance
around ω0. To any given WGM resonator corresponds a unique eigenspectrum dis-
tribution, that is, a grid of narrow resonances distributed in a complex fashion in the
spectral domain. A resonator with infinite Q would therefore feature zero loss, zero
linewidth, and infinite photon lifetime in each of these resonances. By convention,
resonators with Q > 103 are labeled as high-Q, while ultrahigh-Q resonators
correspond to a quality factor better than 108.

The systematic investigation of the nonlinear properties of high-Q optical WGMRs
started about 30 years ago, essentially with microsphere cavities [9]. Combined with
very long photon lifetimes, the small mode volume inherent to these resonators led to a
significant enhancement of the effective nonlinearities. Therefore, photon frequency
conversion became possible by pumping these resonators with low-power continuous-
wave (CW) lasers (in the microwatt to milliwatt range), yielding optical frequency
combs overlapping the eigenspectrum distribution. Several bulk media of interest
coincidentally share common structural features with the fused silica of optical fibers,
and as a consequence, their transparency window overlaps the standard telecom wave-
length of 1550 nm, which corresponds to a mature technological segment. This is why
research on this topic directly benefited from the large inventory of off-the-shelf com-
ponents already available in optical communication engineering for the generation,
control, and monitoring of both light wave and microwave signals. Therefore,
WGMRs fabricated with these materials have the potential to play the role of all-
optical components via nonlinearity in telecommunication systems, thereby circum-
venting the bandwidth limitations of optoelectronic components. Beyond optical com-
munications, optical WGMRs proved to provide novel solutions for leapfrog
improvements in time-frequency metrology, sensing, and aerospace engineering,
among other areas. Comprehensive reviews on these applications are plentiful, and
include, for example, [10–16].

The purpose of the present paper is to provide insights into the contemporary
research led in the field of high-Q optical whispering-gallery mode resonators. We
also aim to highlight some of the most important results achieved in recent years,
and to discuss some of the main challenges that will have to be met in the years
to come.

The plan of the review is the following. In Section 2, we briefly present the linear
theory of optical WGMRs, with an emphasis on the most common types of resonators
used in nonlinear photonics. Section 3 will focus on second-order effects, such as
second-harmonic generation (SHG), optical parametric oscillators, and sum-
frequency generation (SFG). Section 4 will then review Kerr effects, such as
third-harmonic generation (THG) and Kerr optical frequency comb generation. An
overview of stimulated Raman scattering in WGMRs will be provided in
Section 5, while Section 6 will be devoted to stimulated Brillouin scattering. The
paper will end with a general conclusion.

2. HIGH- AND ULTRAHIGH-Q WHISPERING-GALLERY-MODE RESONATORS

The understanding of the nonlinear properties of high- and ultrahigh-Q WGMRs
requires prior knowledge of their linear properties. We discuss them hereafter,
and present as well the most widespread types of WGMRs for photonics
applications.
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2.1. Linear Properties of WGMRs
From a linear perspective, WGMRs are fully characterized by three main physical
elements: the eigenmodes, the eigenspectrum, and the losses [7,8,13].

2.1a. Eigenmodes and Spatial Field Distribution

The eigenmodes are solutions of the Maxwell equations with boundary conditions
corresponding to the interface between the bulk axi-symmetric resonator of main ra-
dius a and group velocity index ng, and its surrounding medium which is often (but
not always) air. The spatial distribution of the eigenmodes is mathematically defined
by a complex-valued and vectorial function ϒ μ�r�, where μ is a label that unambig-
uously defines each eigenmode, while r � �r; θ;ϕ� stands for the usual spherical
coordinates. The eigenmodes always have a torus-like geometrical form, and satisfy
the Helmholtz equation �Δ� �ωμ∕c�2ε�r��ϒ μ�r� � 0, where ωμ is the eigenfrequency
corresponding to the eigenmode ϒ μ�r�, and ε�r� is the spatially dependent
permittivity.

The Helmholtz problem can be solved exactly for some simple geometries, such as the
sphere. From a general point of view, the solutions with other axi-symmetric geom-
etries can be obtained with a numerical solver, and it is generally found that the
solutions are topologically quite similar to what is obtained with a sphere. Indeed,
the resolution of the Helmholtz equation demonstrates that the label μ is in fact a
quadruplet fl;m; n; pg. The parameter l is the azimuthal eigennumber. It is associated
with resonance condition 2πang � lλμ, which imposes that the optical path in a round
trip inside the cavity should be an integer multiple of the wavelength. The polar
eigennumber m is such that jmj ≤ l, and it rules the number of lobes
(≡l − jmj � 1) in the perpendicular direction relatively to the equatorial plane of
the torus. The radial eigennumber n corresponds to the number of lobes along the
radial direction. Finally, the eigenparameter p stands for the polarization, which
can be either TE or TM. It should be noted that by convention, a family of modes
is defined by a fixed n, m and p, but freely varying l values. In general, most of
the optical field is confined within the close vicinity of the resonator’s inner periphery,
while the outer periphery principally hosts an evanescent field, which typically van-
ishes within a few wavelengths from the resonator boundary. Figure 1(a) illustrates the
electric field distribution of a fundamental optical WGM for l � 30. The transverse
field distributions in the cross section of the resonator for different radial and polar
eigennumbers m and n are shown in Fig. 1(b), from which the fundamental and high-
order WGMs can be clearly distinguished.

Assuming that the eigenmode solutions are normalized as
R
∞∥ϒ μ�r�∥2dV � 1, the

effective volume of each eigenmode can be calculated as V eff;μ � �RV∥ϒ μ�r�∥4dV �−1,
where V is the volume of the bulk resonator. It is important to note that this
effective volume plays a key role for the nonlinear processes occurring in
WGMRs. The spatial distribution of the modes is also particularly relevant when non-
linear phenomena involve a coupling between different families of modes fm; n; pg
and fm0; n0; p0g, as the coupling strength is generally proportional to the overlap in-
tegral

R
V ϒ �

μ�r�ϒ μ0 �r�dV .

2.1b. Eigenspectrum and Dispersion Profile

The resolution of the Helmholtz equation permits to determine as well the eigenspec-
trum of the resonator, that is, the set of frequencies ωμ associated with each eigenmode
ϒ μ�r�. Even though approximate solutions exist for the spherical resonator, they are
generally not available for axi-symmetric resonators of arbitrary shape. However,
some general and useful properties can be outlined with regard to the physical
influence of the parameters l, m, n, and p.
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The eigennumber l is arguably the most important one because it is the leading
parameter associated with the eigenfrequency ωμ. The eigenfrequency can in first
approximation be expressed as ωμ ≃ lΩFSR, where ΩFSR � c∕nga is the free spectral
range (FSR) of the resonator. Hence, the order of magnitude of l depends on the size
of the resonator and the spectral range of interest. For example, around 1550 nm, a
silica resonator would be such that l ∼ 10000 (resp. l ∼ 100) for a radius of 5 mm
(resp. 50 μm). It is important to emphasize here on the physical interpretation of l.
From a classical point of view (geometrical optics approximation), this eigennumber
corresponds to the integer number of internal reflections that a photon undergoes to
perform a round trip inside the cavity. From a quantum optics standpoint, this
eigennumber stands for the quantized angular momentum of the photons (≃ℏl∕a).

The families of polar eigenmodes defined by m are in practice always quasi-degen-
erate in frequency, and perfect degeneracy is achieved in the case of the sphere.
Polarization families of modes are also quasi-degenerate in frequency, particularly
for very high l values [since Δωμ∕ωμ ∼O�l−1�]; indeed, perfect degeneracy is never
obtained, even for spherical resonators. The radial families of modes are always meas-
urably nondegenerate in frequency as n is increased [with Δωμ∕ωμ ∼O�l−2∕3�]. The
consequence of the nondegeneracy induced by m, n, and p is the presence of a very
large number of distinctive eigenmodes in the Fourier spectrum, particularly when the
resonator is in the millimeter range. In general, the unambiguous identification of the
modes under these conditions is experimentally very difficult, if not impossible. This
wide diversity of energy (frequency) and momentum possibilities for the intra-cavity
photons can be beneficial or detrimental depending on the targeted application, and
accordingly, a recurrent challenge while using WGMRs is to frustrate or emulate the
coupling between these nondegenerated families of modes.

Within a given family of modes (m, n, and p are fixed), the eigenspectrum features a
quasi-equidistant grid of modes spaced by the free spectral range ΩFSR. The residual
nonequidistance is referred to as dispersion, and it has two main contributions, namely
chromatic and geometric. Chromatic dispersion is a material property of the bulk

Figure 1

Illustration of the electric field amplitude distribution of optical WGMs in a spherical
dielectric resonator. (a) Left: a 3D representation for the mode with n � 1, l � 30,
and l − jmj � 0; Right: the corresponding 2D top view. (b) Examples of 2D trans-
verse field distributions for different radial and polar eigennumbers n and m. Note that
the evanescent field is not illustrated here.
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resonator, and can be empirically calculated using the Sellmeier expansion. On the
other hand, geometrical dispersion is exclusively defined by the shape of the resonator.
This latter contribution can be used to engineer the overall dispersion profile of
the resonator, since the bulk material dispersion cannot be directly tuned.
Dispersion is frequency dependent, and therefore should be defined with respect
to a given frequency ωμ0 ≡ ωl0

. From a mathematical perspective, the eigenfrequen-
cies ωl around ωl0 can be defined using the following Taylor expansion:
ωl � ωl0

�P�∞
k�1�ζk∕k!��l − l0�k , where ζ1 ≡ΩFSR while ζk stands for the k th-

order dispersion for k ≥ 2. The perfectly equidistant grid in the dispersionless limit
is therefore recovered by setting ζk ≡ 0 for k ≥ 2. Hence, the dominant dispersion term
is ζ2, and is sometimes referred to as group-velocity dispersion (GVD). By conven-
tion, GVD is considered normal when ζ2 < 0, and anomalous when ζ2 > 0. The
nature and magnitude of overall dispersion plays an important role for coherent
interactions where phase matching (PM) conditions have to be respected.

2.1c. Q-Factor: Intrinsic and Coupling Losses

As indicated in the general introduction, the characterization of losses in WGMRs is
generally performed in terms of quality factor, or “Q-factor.”

The intra-cavity losses are characterized by the intrinsic quality factor
Qin � ω0τph;in � ω0∕Δωin. The intrinsic Q-factor can be further decomposed as
Q−1

in � Q−1
vol � Q−1

surf � Q−1
rad, in order to account for the volumic, surface scattering,

and radiation losses, respectively. It is important to note that the radiative Q-factor
increases exponentially with l [13]: it is therefore quasi-infinite for l ≫ 1, which
corresponds to resonators much larger than the wavelength (a ≫ λ). Therefore, in
practice, the intrinsic Q-factor is limited by the surface roughness (Qsurf), and some-
times by intra-cavity volumic losses (Qvol). In general, the intrinsic Q-factor can vary
widely depending on the type of resonators. On the one hand, the typical Q-factor
for crystalline WGMRs is of the order of 109, which typically corresponds to an
intrinsic photon lifetime of ∼1 μs for a resonance at ∼1550 nm. On the other hand,
integrated WGM and ring resonators typically feature a quality factor of the order
of 106 at 1550 nm (τph;in ∼ 1 ns). It is also noteworthy that crystalline WGMRs gen-
erally have a millimeter size yielding a FSR in the range of a few gigahertz, while
integrated resonators typically have a sub-millimeter size and a FSR in the tera-
hertz range.

Beyond the intrinsic quality factor Qin of the resonators, it is important to
account as well for the coupling (or external) quality factor Qext. The external Q-factor
can itself have several contributions depending on the actual configuration of the
coupling, which can involve one or two coupling ports. The coupling is generally
performed using a tapered fiber (or waveguide), an angle-polished fiber tip, or a
prism.

The overall Q-factor is explicitly defined as Q−1
tot � Q−1

in � Q−1
ext, corresponding to an

overall photon lifetime and resonance linewidth Qtot � ω0τph � ω0∕Δωtot. The three
main regimes of coupling are under-coupling (Qin < Qext), over-coupling
(Qin > Qext), and critical coupling (Qin � Qext). All these contributions to the quality
factor can generally be determined using the cavity-ring down or other ringing tech-
niques [17], particularly when they are above a billion. The main motivation for
achieving ultrahigh Q-factors is that it allows to benefit from a very narrow filtering
in the optical domain, since the linewidth scales as Q−1 and can reach values well
below 1 MHz for modes around 1550 nm (∼200 THz). Such Q-factors also permit
to trigger nonlinear effects with smaller pump powers, because the threshold powers
generally scale as Q−n with n ≥ 1.
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2.2. Various Types of WGMRs
WGMRs used in nonlinear and quantum optics can generally be classified into several
categories, and the main ones are briefly outlined hereafter.

2.2a. Microsphere and Microbubble Resonators

Microspheres have an historically important place in WGM research because they
correspond to the very first configurations that were investigated theoretically.
When the ratio a∕λ is low (∼1), the radiative quality factor Qrad is low as well
and light can be radiatively coupled inside the resonator (the resonators are said
to be radiatively open). This situation, frequently encountered when light is scattered
by liquid droplets and aerosols, is typically investigated within the theoretical frame-
work of Mie scattering [18,19] and morphology-dependent resonances [20]. However,
solid-state resonators in that size range are scarce. On the other hand, microspheres
with a higher ratio a∕λ (∼10–100) can be obtained by melting amorphous media and
letting the surface tension create quasi-spherical droplets, which become solid-state
microresonators after cooling [21,22]. Such microspheres are already radiatively
closed (Qrad ∼�∞ for all practical purposes), and cannot be coupled directly with
incoming free-propagating radiations. Instead, waveguide or prism coupling has to
be implemented, as explained in Subsection 2.1c. The bulk material is generally fused
silica, and the intrinsic Q-factor for these microspheres can be very high, of the order
of a billion at 1550 nm. For being amorphous, microspheres can be doped and driven
in a regime of quasi-transparency, where the effective quality factor reaches record
high values (Q � 3 × 1012 and τph � 2.5 ms at 1530 nm; see [23]).

Another important family of microresonators are the so-called microbubbles [24–27].
They are generally fabricated using amorphous media like fused silica, and are char-
acterized by a hollow core. They can therefore only sustain lower radial order modes.
Microbubbles typically have a size of ∼100 μm and offer numerous advantages for
sensing and microfluidic applications. In particular, they feature absolute tunability
(that is, beyond a FSR), as the main radius of the resonator can be controllably varied
via piezo-electric or gas pression stress [28,29,30]. A heating wire can also be inserted
for broad range electrical thermo-optic tuning, which was demonstrated in a micro-
tube resonator [31]. WGMs in the terahertz domain are also explored with bubble-like
resonators [32].

2.2b. Mushroom Resonators

The so-called “mushroom”WGMRs are chip-scale resonators that are suspended on a
pedestal. This appellation is an obvious reference to their peculiar geometrical form.
They generally have either a toroidal, a disk, or a wedge shape.

Toroidal mushroom resonators have been introduced for the first time in [33]. They are
manufactured using a combination of lithography, dry etching, and selective reflow
process. They feature an intrinsic quality factor higher than 108 at 1550 nm, thereby
providing a significant improvement (>1000) with regard to existing technologies.
The small size of the resonator, combined with the very strong confinement provided
by the toroidal shape (see Fig. 2), yields a very small effective volume, and thereby
enhances the nonlinear interaction. This is one of the reasons why it has been the first
integrated platform where various kinds of nonlinear interactions have been observed
[34–36]. It should also be noted that beyond the enhancement of fundamental non-
linear interaction in the bulk material, toroidal resonators are also ideal for optome-
chanics research. This is due to the fact that the resonator can mechanically oscillate
on its pedestal with very low mechanical losses, thereby yielding mechanical modes
with high Q-factors, as reviewed in [37]. Wedge-resonators feature an inclined rim
[38–40], as displayed in Fig. 3. They have been shown to feature some of the highest
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intrinsic Q-factors for integrated resonators, of the order of a billion at telecom
wavelength [39].

2.2c. Ring Resonators

Strictly speaking, ring (or racetrack) resonators as shown in Fig. 4 are not WGMRs,
but this subtle distinction is more semantic than anything else in practice. The first
advantage of ring resonators is that the closed path of the ring does not need to be
circular with perimeter L � 2πa, with a being the eventual radius of the circle: instead,
these resonators can feature the same perimeter L on a surface that is smaller than πa2.
This allows to pack a much larger number of resonators into the same surface on a chip
and avoid stitching errors during the etching process [41]. A second advantage of the
ring resonators is that they permit very precise adjustment of the geometrical shape of
the resonator, thereby permitting a full control of its modal structure. It allows engi-
neering of the overall dispersion profile with great flexibility and precision. This is
how some resonators can be tuned to feature anomalous overall dispersion, while their
constituting bulk material has normal dispersion. A third advantage of racetrack res-
onators is that the coupling bus waveguide is integrated as well, allowing for quasi-
perfect mechanical stability of the coupling and very accurate design for the coupling
strength. And most importantly, chip-scale integration offered by ring resonators
virtually opens the way to scalability, mass production, cost-effectiveness, and ulti-
mately, ubiquitousness for mass-market applications requiring all-optical frequency
conversion. These advantages are significant enough to justify the strong interest
and research activity devoted to the development of ring resonators in recent years.

One of the most important benchmarks for integrated ring resonators is silicon nitride
(Si3N4). Common methods to fabricate integrated devices using silicon nitride involve
low-pressure chemical vapor deposition, reactive ion etching, and thermal annealing.
These processes are generally difficult to implement efficiently because of the
mechanical stress that induces cracks in the bulk material during the growth process,
thereby increasing the intra-cavity losses. However, several research groups have
overcome this technical difficulty and achieved a Q-factor which is typically of
the order of 106 for sub-millimeter resonators [41–45]. It is noteworthy that silicon
nitride has a much stronger nonlinear coefficient n2 compared to silica, typically 10
times higher. This property, along with low two-photon absorption and low linear

Figure 2

Figure of a toroidal mushroom WGM resonator, made with silica. The WGM is con-
fined within the toroidal protuberance at the peripheral edge of the resonator. The
quality factor is in excess of 108 at 1550 nm. Reprinted by permission from
Macmillan Publishers Ltd.: Armani et al., Nature, 421, 925–928 (2003) [33].
Copyright 2003.

836 Vol. 9, No. 4 / December 2017 / Advances in Optics and Photonics Review



losses at 1550 nm, justifies the popularity of this material for integrated nonlinear
platforms, as threshold power to trigger the nonlinear interactions is inversely propor-
tional to n2.

2.2d. Millimeter-Size Disk Resonators

Millimeter-size WGM disk resonators are optical cavities that are generally fabricated
individually using a grinding and polishing technique [46]. An example of a
millimeter-size WGMR coupled with a fiber taper is displayed in Fig. 5. It has been
shown that such resonators can be fabricated at a large scale using laser machining
techniques [47].

Millimeter-size WGMRs typically feature a nanometer surface roughness and very
low intra-cavity losses, which allow them to reach exceptionally high quality factors,
with the record value being set at 3 × 1011 at 1550 nm [48]. The most widespread bulk
materials for such resonators are fluoride crystals, such as calcium fluoride [49,50],
magnesium fluoride [51], barium fluoride [52,53], lithium fluoride [53,54], and stron-
tium fluoride [55]. Lithium niobate resonators are also frequently manufactured under
this geometrical shape [56,57]. It is important to note that these resonators can be
amorphous as well, as they can be manufactured with fused silica [58], or fused quartz
[59], for example. Millimeter-size resonators can also be integrated in ultracompact
devices [60], a feature of particular relevance for technological applications.

3. SECOND-ORDER NONLINEAR EFFECTS

The second-order optical nonlinearity results from the quadratic nonlinear polarization
response of material, in which the electron cloud distribution is distorted by external
electric fields at the optical frequency. It occurs in crystal materials with noncentro-
symmetric structures. The polarization response is expressed as P�2��t� � ε0χ

�2�E2�t�,
where ε0 and χ�2� are the permittivity and the second-order nonlinear susceptibilities of
the medium, while E�t� is the external electric field strength. Light interaction with
second-order nonlinear materials can enable the energy and momentum transfer be-
tween light waves at different frequencies. Such parametric processes are popular
ways for generating laser radiations at new frequencies. WGMRs featuring optical

Figure 3

Ultrahigh-Q wedge resonators on a silicon chip. The resonator has a quality factor of
the order of 109 at 1550 nm, a record value for an on-chip resonator. (a) Top view of
the 1-mm diameter wedge resonator. (b) Scanning electron micrograph showing the
side view of a resonator (insets are slightly magnified micrographs, and blue circles
indicate the approximate locations of the taper during measurements). (c) Calculated
fundamental-mode intensity profiles in resonators for various wedge angles and pump
wavelengths. Reprinted by permission from Macmillan Publishers Ltd.: Lee, et al.,
Nat. Photonics, 6, 369–373 (2012) [39]. Copyright 2012.
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modes with small mode volumes and very highQ-factors can therefore be explored for
resonance-enhanced second-order nonlinear processes. These nonlinear effects in-
clude second-harmonic generation, optical parametric oscillation, and sum-frequency
generation [61–63]. They have been used to generate various light sources including
nonclassical ones [15]. A recent report also shows that strong coupling between op-
tical modes of different colors can be realized in an on-chip nonlinear cavity [64].

3.1. Second-Harmonic Generation in WGMRs
Second-harmonic generation can be seen as a degenerate case of sum-frequency gen-
eration where two photons at pump frequency are converted into one photon at
doubled frequency. For efficient SHG with WGMRs, the three key factors to consider
are the material, phase matching, and mode overlap conditions.

First, as it is well known that χ�2� becomes null in materials with inversion symmetry,
the material investigation of WGMRs for SHG mainly focuses on noncentrosymmet-
ric crystalline materials. It should be also mentioned that several works have been
carried out on SHG with centrosymmetric materials. For instance, the χ�2� response
can be induced by breaking the bulk symmetry of a centrosymmetric material. SHG in
a microring resonator made of silicon nitride was demonstrated [65]. In addition, one
can also deposit a small number of molecules on the surface of a microsphere res-
onator for SHG investigation [66,61]. In this review, we will focus on the SHG with
noncentrosymmetric crystalline WGMRs.

The second key condition for efficient SHG in WGMRs is the fulfillment of PM,
which is required by the law of momentum conservation [61,62,67]. To clearly visu-
alize the origin of different phase matching techniques, we can first consider the case
of SHG in one-dimensional material under undepleted pump and slowly varying
envelope approximation. The growth of the harmonic field in this case can be
expressed by [68]

Figure 4

Integrated silicon nitride racetrack resonators. Folded trajectories allow achievement
of longer optical paths and therefore shorter FSRs in a small surface footprint. These
resonators feature a loaded quality factor Q ∼ 105 at 1550 nm and have a FSR of
(a) 80 GHz, (b) 40 GHz, and (c) 20 GHz. Figures (d)–(f) display the transmission
spectra where the corresponding WGM resonances can be observed. Adapted from
[41]. Copyright 2012 Optical Society of America.
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iΔkz; (1)

where E1;2 and ω1;2 are the electric field amplitudes and frequencies of light, the sub-
indices 1,2 represent the pump and harmonic fields, respectively, c is the speed of light
in vacuum, and Δkz � �k2 − 2k1�z is the phase difference between pump and
harmonic wavenumbers. Mathematically, one sees that the harmonic light can grow
coherently if the phase mismatch term Δk becomes zero. The corresponding tech-
niques to fulfill this condition are birefringent phase matching and modal phase
matching. On the other hand, in the case of a stationary phase mismatch, the harmonic
light would beat as it propagates in the medium. However, if one flips the sign of χ�2�

with a period Λ � 2πj∕Δk where j is an integer, then efficient SHG can also be pos-
sible. This method is referred to as quasi-phase matching. For doubly resonant
enhanced SHG in WGMRs, these phase matching approaches can be written in
the form of azimuthal mode numbers following m2 � 2m1 �M , where m1;2 are
the azimuthal mode numbers with the sub-indices representing the pump and har-
monic modes, respectively, andM is an integer [62]. For birefringent and modal phase
matching, M is equal to zero, while for quasi-phase matching, M is any nonzero
integer.

The third and last key condition for efficient SHG is to ensure a good mode overlap
between the pump and harmonic waves in both spectral and spatial regimes.

Table 1 shows the reported SHG in crystalline WGMRs under CW pump [56,69–78].
Different PM techniques have been explored, depending on the size and the material

Figure 5

Millimeter-size WGMR coupled with a green laser using a tapered fiber at the
FEMTO-ST Institute, France. The laser is in the upper left part of the picture and
cannot be seen, for being in the dark. The resonator, which is in the lower right part
of the picture, is held by a metallic stem. This resonator is made with MgF2 and fea-
tures an intrinsic quality factor in excess of 109 at 1550 nm. The optical fiber con-
necting the laser to the resonator is bare, and its spooled path can therefore be
identified owing to the scattering of the green laser light.
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of the resonators. Here, we consider WGMRs with diameters (D) of the order of a few
millimeters as large resonators, while WGMRs with few or a few tens of micrometers
are considered as small resonators. The impact of modal dispersion is present every-
where in WGMRs, but it is only dominant in small WGMRs. Additionally, it should
be noted that 4̄ quasi-phase matching corresponds to M � 	2. Thereby, it is only
dominant for small WGMRs that have optical modes with small m numbers. In large
uniaxial crystalline WGMRs where m is easily above a thousand, three types of phase
matching methods have been demonstrated, as illustrated in Figs. 6(a)–6(c). In
Table 1,D is the diameter of the resonator, λP is the pump wavelength, and ηm presents
the maximum observed conversion efficiency observed at the pump power of PP.
Saturation effects have been observed in LiNbO3 WGMRs [56,69], in which the con-
version efficiency per milliwatt pump power is not provided and thus is left empty in
the table.

3.1a. Quasi-Phase Matching

Quasi-phase matching as shown in Fig. 6(a) requires periodical inversion of the non-
linear susceptibility to compensate for a stationary phase mismatch between the pump
and harmonic fields. This phase matching method in crystalline WGMRs was first
proposed and theoretically investigated for optical parametric oscillation by
Ilchenko et al. in 2003 [79]. A year later, they succeeded to demonstrate efficient

Table 1. Summary of Reported CW SHG in Crystalline WGMRs

Phase Matching Crystal D (mm) λP ηm at PP(mW) η (mW−1) References

Quasi-PM LiNbO3 3.0 1550 50% at 25 [56]
1319 2% at 30

Natural PM LiNbO3 3.8 1064 9% at 0.03 [69]
Li2B4O7 2.3 490 2.2% at 5.9 0.37% [70]

cyclic PM BBO 1.8 1557 0.069% at 1.1 0.063% [71]
974 1.15% at 0.25 4.6%
870 1.57% at 0.87 1.8%
634 0.31% at 0.42 0.74%

LiNbO3 0.10 1540 1.1% at 10 0.11% [72]
4̄ Quasi-PM + Modal PM GaAs 5.2 × 10−3 1985 5 × 10−5 [73]

AlGaAs 3.8 × 10−3 1584 7 × 10−7 [74]
GaP 6.5 × 10−3 1545 3.8 × 10−4 [75]

Modal PM LiNbO3 28 × 10−3 1546 1.1 × 10−4 [76]
ZnSe 15 × 10−3 1550 8.8 × 10−7 [77]
GaN 8 × 10−3 1550 2 × 10−9 [78]

Figure 6

(a) (b) (c)

Schematic drawing of phase matching methods in large uniaxial crystalline WGMRs.
Red: pump light. Blue: second-harmonic light. (a) Quasi-phase matching. (b) Natural
phase matching. (c) Orientation-based birefringent cyclic phase matching. Note:
modal phase matching not shown here is a dominant method for SHG in microscale
WGMRs.
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CW SHG in a WGM made of lithium niobate (LiNbO3) crystals [56]. Figure 7(a)
shows the illustration and photography of the LiNbO3 WGMR. The photo presents
a disk resonator cut out from a commercially available Z-cut LiNbO3 wafer with a
linearly poling structure. In Fig. 7(b), one can clearly observe the WGM resonances
spectrum from the pump transmission as the pump lasers were scanned across several
WGMs around 1.55 μm. When phase matching and good mode overlap for pump and
harmonic waves are achieved, one obtains efficiently converted harmonic signal at
775 nm. The maximum conversion efficiency reached about 50% with only
25 mW pump power, as listed in Table 1. The conversion efficiency was found to
saturate at a pump power of 300 mW in Fig. 7(c).

If one unfolds the circulating light of a WGM into a straight line, it can be seen that the
light would experience a nonconstant poling period in one round trip. Although it would
not reach the best conversion efficiency compared with a radially poled structure, it has
an increased phase matching spectral bandwidth [67,79,80]. For example, cascaded har-
monic generation up to the fourth harmonic was demonstrated using a linearly poled
LiNbO3 disk [65]. We also show here SHG in a radially poled LiNbO3 disk for com-
parison, although the poling period was not optimized and the pump source was a
pulsed laser [81]. Currently, quasi-phase matching in WGMRs can be obtained by
periodical poling using lithography-based or calligraphic methods [62].

3.1b. Natural Phase Matching

Phase matching Δk � 0 can also be achieved by using the natural birefringence of
crystals in WGMRs by carefully adjusting the temperature, as illustrated in Fig. 8.

Figure 7

SHG in linearly poled LiNbO3 WGMRs: (a) Schematic of the poling pattern and an
image of the disk. (b) The transmitted pump (red) and second-harmonic (blue) signals
when the pump frequency scanning covers several WGM FSRs. (c) Conversion effi-
ciency as a function of the normalized pump power. Figures 1, 2, and 3 reprinted with
permission from Ilchenko, et al., Phys. Rev. Lett., 92, 043903 (2004) [56]. Copyright
2004 by the American Physical Society. SHG in radially poled LiNbO3 WGMRs:
(d) Schematic and image of the disk. (e) Photo of the coupling setup with visible
harmonic signals. (f) Spectra of harmonic signals. Reprinted with permission from
[81]. Copyright 2009 The Japan Society of Applied Physics.
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This natural phase matching method is also referred to as noncritical phase matching
(NCPM). In the case of a negative uniaxial crystal, one can set the pump as ordinary
polarized light and the harmonic field will be extraordinary polarized light. In Z-cut
WGMRs, they correspond to a TM-polarized mode at pump and TE-polarized mode at
harmonic, respectively. This method is functional at a specific spectral window and a
particular temperature range. In 2010, Fürst et al. demonstrated efficient SHG using
NCPM in a MgO-doped LiNbO3 disk resonator [69]. Figure 8(a) presents a typical
prism coupled WGMR setup. Tuning methods were achieved by adjusting the temper-
ature and bias voltage of the resonator. Efficient harmonic generation was found when
the temperature was tuned to a specific value in the range from 94°C to 122°C.
Although this method sometimes requires an operation temperature point far from
room temperature, it enables very high conversion efficiency at low pump power.
Maximum efficiency up to 9% was obtained at coupled pump power of only
30 μW, as shown in Fig. 8(b). Recently, NCPM-based SHG using WGMRs made
from lithium tetraborate (Li2B4O7 or LB4) was reported for efficient CW UV
harmonic light generation at 245 nm [70].

Besides the selection rule from the formerly mentioned phase matching condition of
m1 � 2m2 in WGMRs, additional conditions have to be imposed when considering
the 3D picture of light in WGMRs. To assure efficient three-wave coupling in the
resonator, one also has to consider the cross-section overlap between the resonant
pump and harmonic modes, especially in large resonators. In a spherical WGMR,
these rules have been derived as p2 ≤ 2p1, where p1;2 � 0; 1; 2… are the polar mode
numbers [69].

3.1c. Orientation-Based Cyclic Phase Matching

Although high conversion efficiency for CW SHG has been demonstrated with a low-
power pump laser using either quasi-PM or naturally PM in WGMRs, these methods
have specific requirements. For instance, quasi-PM requires ferroelectric nonlinear
materials. On the other hand, NCPM has a specified phase matching spectral range
determined by the material. Research efforts have then been devoted to asymmetric
crystalline resonators, such as angle-cut beta barium borate (BBO) WGMRs [82]. In
2013, Lin et al. demonstrated a crystal orientation-based birefringent cyclic phase
matching method in a WGMR made from BBO [71]. This method provides another
way for efficient SHG in large WGMRs, as illustrated in Fig. 6(c). The phase

Figure 8

Natural phase matching in SHG with MgO-doped LiNbO3 WGMRs. (a) Schematic of
experimental setup. (b) Conversion efficiency as a function of the pump power. Inset:
transmitted pump and harmonic signals as a function of the pump frequency. Figures 3
and 5 reprinted with permission from Fürst, et al., Phys. Rev. Lett., 104, 153901
(2010) [69]. Copyright 2010 by the American Physical Society.
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matching spectral range is broader but at the expense of reduced efficiency, as listed
in Table 1.

Such BBO WGMRs were cut out from an X-cut or XY-cut wafer so that the crystal
orientation breaks the symmetry of a WGMR. In this configuration, the optic axis lies
in the equatorial plane of the disk, as shown in Fig. 9(a). Similar to Z-cut uniaxial
crystalline WGMRs, the resonant modes still feature either TE or TM polarizations.
However, as light travels along the circumference, the TM mode encounters an
oscillating refractive index, which can be estimated as

1

n2TM�λ;φ�
� cos2�φ�

n2o�λ�
� sin2�φ�

n2e�λ�
: (2)

Considering TE modes for pump and TM modes for harmonic, discrete phase match-
ing positions can be formed due to the nature of TM modes whose refractive indices
oscillate from ordinary to extraordinary ones. An example is shown for the pump
around 1557 nm in Fig. 9(b). Within one round trip, there are four or two (in degen-
erate cases) locations where Δk�φi� � 0 occurs. In this case, Eq. (1) governs the
growth of the harmonic field and can be rewritten as follows [71]:
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Numerical simulations based on this equation reveals that the harmonic field can grow
constructively or destructively within the whole birefringent phase matching range of
the crystal [71]. These regimes depend on the wavelengths and can be tuned by choos-
ing high-order WGMs with different effective indices. Although the cyclic phase
matching feature comes at the price of a reduced efficiency when compared with
the two other methods, it provides a new approach for SHG using WGMRs and
has potential applications for generating vacuum UV lasers considering KBBF
crystals as the host material. Recently, SHG based on a cyclic phase matching method
in a LiNbO3 microdisk cavity was also reported [72].

Figure 9

(a) (b) (c)

Orientation-based cyclic birefringent phase matching in SHG with a X-cut or XY-cut
BBO WGM resonator. (a) Schematic of the BBO disk in the XY-cut geometry.
(b) Refractive indices along the circumference for the pump and harmonic waves.
(c) Photographs of second-harmonic light output on a sheet of paper with different
pump wavelengths in the same disk. Note that the visible second-harmonic at 317 nm
is due to its fluorescence on paper. Reprinted from [71], with the permission of AIP
Publishing.
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3.1d. Modal and 4-Bar Phase Matching

In small optical resonators, the radial mode order has a great impact on the effective
refractive index. The resulting modal dispersion can be large enough to compensate
for the bulk material dispersion between pump and harmonic waves. Recently, modal
phase-matched SHG has been successfully demonstrated based on chip-scale micro-
ring (racetrack) resonators made from GaN [83], Si3N4 [84], and AlN [85,86].
Similarly, it can also be used for small size WGMRs, such as microdisk or micro-
cylinders [76–78]. It should be noted that nonlinear thermal effects also appears
in such integrated microresonators, for instance, in LiNbO3 microdisks [87,88]. In
addition, a natural quasi-phase matching method can also be applied based on the
orientation of 4̄3m or 4̄2m crystals with respect to the disk symmetry. This method
referred to as 4̄ quasi-phase matching was first theoretically studied [89,90] and
experimentally demonstrated on a GaAs microdisk by Kuo et al. [73].

An example of a GaAs microdisk is shown in Fig. 10, left. The orientation of the
crystal is chosen such that the 4̄-axis is perpendicular to the disk plane (or 001-
cut). In this case, the light experiences an effective domain inversion period of 2 when
it travels along the circumference for one round trip. Such a quasi-phase matching
condition thereby corresponds to the case m2 � 2m1 	 2 (that is, M � 	2). For a
small microdisk, the large modal dispersion can lead to a small phase mismatch
or a small value ofΔm � m2 − 2m1, which can then be compensated by 4̄ quasi-phase
matching. For the GaAs microdisk with a diameter of 5.2 μm and a thickness of
160 nm, a TE WGM with q � 1;m � 13 at the pump wavelength of 1985 nm
and a TM WGM with q � 2;m � 24 at the harmonic wavelength were found [73].
Figures 10(a) and 10(b) give the corresponding calculated WGM field distribution for
the pump and second-harmonic waves using finite-difference time-domain (FDTD)
methods, showing the employment of modal dispersion. Subsequently, harmonic gen-
eration was observed with efficiency curve as a function of the fundamental pump
power, shown in Fig. 10(c). Recently, 4̄ quasi-phase matched SHG has also been dem-
onstrated on other crystalline microdisks made from AlGaAs and GaP [74,75].
Theoretically, an antiphase domain tailoring method was also proposed for SHG using
a GaP microdisk [91].

Figure 10

Modal phase matching and 4̄ quasi-phase matching in a small GaAs microdisk. Left:
schematic and SEM image of the microdisk. Top right: calculated WGM field am-
plitude distribution for the pump and SH waves. Top bottom: conversion efficiency
as a function of the pump power. Reprinted by permission from Macmillan Publishers
Ltd.: Kuo et al., Nat. Commun., 5, 3109 (2014) [73]. Copyright 2014.
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3.1e. Tuning Methods for Phase-Matched CW SHG in WGMRs

We have reviewed different phase matching methods for SHG with both pump and
harmonic fields resonant in WGMRs. Compared to nonresonant or singly resonant
SHG, the doubly resonant condition can greatly enhance SHG in high-Q WGMRs
with very low pump power. However, high conversion efficiency comes at the price
of limited tunability. In WGMRs, optical modes can be tuned in several ways through
electro-optic effect, thermal- or stress-induced size, and refractive index changes [11].
Precise control on the size of the microdisks or the coupling gap between the coupler
and resonator can also change the resonant conditions [78]. Theoretical investigations
of the dependence of SHG efficiency on the coupling strength regarding to the ratio of
coupling to intrinsic Q-factors or to the temperature change have also been carried
out [92,93].

Due to noncoordinate optical frequency shifts at pump and harmonic modes, the sin-
gle tuning method usually leads to a limited continuous tuning bandwidth. To tune the
harmonic signal continuously and widely, combined tuning methods can be used. For
instance, both temperature and stress tuning methods have been applied simultane-
ously for a 317 nm UV laser generated from a BBOWGMR [94]. Figure 11(a) shows
the tuning spectra of SHG in such a resonator with a piezo applied for stress tuning.
The top curves show the resonance shift spectra of the pump mode, while the bottom
curves are the corresponding harmonic output signals. A 3 dB bandwidth of 1 GHz at
the pump was then shown, corresponding to an applied voltage tuning on a piezo of
6 V. The maximum conversion efficiency is obtained when the spectral mismatch
ΔλWGM equals 0. For temperature tuning, a similar 3 dB tuning range of 0.2°C
was reported. If one combines both tuning methods, the spectral mismatch during
the tuning can be self-compensated, leading to a mode-hop-free tuning situation,
as shown in Fig. 11(b), with at least 35 times larger tuning range.

3.2. Optical Parametric Oscillations
Optical parametric oscillations (OPOs) based on second-order nonlinearity is another
interesting three-wave mixing parametric process, where one pump photon is con-
verted into one signal and one idler photons. The corresponding energy and momen-
tum conservation laws are expressed as ωp � ωs � ωi and kp � ks � ki, where the
sub-indices p, s, and i represent the pump, signal, and idler waves. In contrast to SHG,
this process is a parametric downconversion (PDC) that generates optical photons with

Figure 11

Continuous mode-hop-free tuning of harmonic light at 317 nm with a BBO WGM
disk. (a) Tuning spectra with increasing voltage applied on the piezo. (b) Tuning spec-
tra with simultaneously increasing the temperature (ΔT is 0.2°C) and piezo voltage
(ΔU is about 6 V). Reprinted from [94]. Copyright 2014 Optical Society of America.
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longer wavelengths. It can be applied for mid-IR coherent light generation and
broadband spectroscopy.

With high-Q WGMRs, the triply resonant condition can greatly enhance such
processes. The key condition to enable efficient OPO lies on the phase matching con-
dition. Similar to doubly resonant SHG in WGMRs, the phase matching condition
can be written in the forms of azimuthal mode numbers of WGMs following
mp � ms � mi � j, where j is an harmonic integer [62]. For naturally phase matching,
j becomes 0. For quasi-phase matching, j is then a nonzero integer. Additional
conditions required by mode overlap should also be satisfied [95]. In spheroidal
WGMRs, they are expressed by the polar mode orders p as pp ≤ pi � ps and
pp � ps � pi � 0; 2; 4…. The threshold power for phase-matched OPO can then
be estimated as [96]

Pth �
ωpε0n
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where d is the effective nonlinear coefficient, np;s;i are the refractive indices, V psi is the
mode overlap volume, V p;s;i are the mode volumes, Qp;s;i are intrinsic Q-factors, and
rp;s;i are the ratios between the coupling coefficient and the round-trip losses.

Until now, high-Q WGMR-based OPO experiments have been demonstrated with
millimeter-size nonlinear crystalline resonators [95–103]. CW threshold power as
low as 6 μW was demonstrated using the naturally phase matching method [95]
in 2010. Figure 12(a) shows the observation of the pump and OPO signals with
the pump frequency scanned across a WGM in such experiments. Due to the efficient
conversion of the pump into the OPO signals, the resulting depletion of pump alters its
Lorentzian resonance. In this figure, it can be found that the threshold and coupling
efficiency depend on the coupling gap, as expected from the theoretical analysis [92].
Thereby, balances have to be found depending on the different applications.
Conversion efficiency larger than 55% was recently observed with a threshold power
of 2 mW, achieved in an over-coupled resonator [101]. Tunable OPO has also been
demonstrated with quasi-phase matching in a radially poled LiNbO3 resonator, as
shown in Fig. 12(b). Depending on the pump wavelengths (from visible to infrared
light), OPO signals from 571 nm to 2600 nm have been generated [62]. The advan-
tages of quasi-phase matching include the fact that larger effective nonlinear coeffi-
cients can be exploited and its versatile tunability based on the modes involved
(different polarization or mode numbers) [102]. Recently, WGMR-based OPO has
been applied for broadband spectroscopy [99]. Below threshold, it can also generate
bright heralded single photons [104]. The subsequent application with the coupling of
such photon pairs to alkali dipole transitions was also demonstrated [100].

3.3. Sum-Frequency Generation
As the reverse process of OPO, nondegenerate SFG based on the second-order non-
linearity also requires a triply resonant condition in WGMRs. Similarly, the phase
matching condition in the form of WGM mode numbers is expressed as
m1 � m2 � j � m3, where m1;2;3 represent the azimuthal mode numbers, j is 0 for
natural phase matching and a nonzero integer for quasi-phase matching. However,
with two pump lasers at different frequencies which should be simultaneously reso-
nant, such experiments are more difficult to design and carry out. SFG in high-Q
WGMRs were experimentally observed in cascaded nonlinear processes where only
one pump laser is used. It has been observed in third-harmonic generation resulting
from the cascading of SHG and SFG in radially poled and linearly poled disks [65,81].
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SFG has also been reported in OPO experiments where the PDC and pump photons in
infrared are summed into visible photons [98]. In 2014, Strekalov et al. demonstrated
SFG in a LiNbO3 resonator using the natural phase matching method, with two pump
lasers at 1560 nm and 780 nm [105]. It should be noted that SFG based on the
third-order nonlinearity has also been observed.

4. KERR EFFECTS

In a centrosymmetric material, the nonlinear motion of the electron clouds under the
influence of an electromagnetic wave cannot result in an even-order nonlinear polari-
zation. The first higher-order term in the Taylor expansion of the polarization is there-
fore the third, and the material polarization can be expressed as P�3��t� � ε0χ

�3�E3�t�,
where χ�3� is the third-order nonlinear susceptibility of the medium. The susceptibility
χ�3� is usually negligible compared to χ�2�, such that third-order effects are hardly
visible in noncentrosymmetric materials. The tensor nature of the nonlinear suscep-
tibility implies a threefold interaction between the different components of the electric
field. This additional complexity compared to the second-order nonlinearity can give
rise to various nonlinear effects.

4.1. Third-Harmonic Generation
Third-order sum-frequency generation and its degenerate version, THG, is one of the
nonlinear effects stemming from the third-order susceptibility. It consists of three

Figure 12

Experimentally demonstrated WGMR-based OPO using (a) natural phase matching
and (b) quasi-phase matching: (a) Left: pump and OPO signals as a function of pump
frequency detuning. Right: OPO output as a function of in-coupled pump power for
critically coupled (inset) and under-coupled condition. Figures 4 and 5 reprinted with
permission from Fürst et al., Phys. Rev. Lett., 105, 263904 (2010) [95]. Copyright
2010 by the American Physical Society. (b) Left: schematic of experimental setup
using an off-center radially poled LiNbO3 disk resonator. Right: experimentally ob-
served signal and idler wavelengths (open and closed dots) as a function of temper-
ature. Solid lines are the calculated tuning curves for j � 350; 351; 352. Figures 3 and
5 reprinted with permission from Beckmann et al., Phys. Rev. Lett., 106, 143903
(2011) [98]. Copyright 2011 by the American Physical Society.
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photons interacting in the dielectric material to produce a single photon with different
frequency. Similarly to the second-harmonic generation in noncentrosymmetric
material, the energy conservation law has to be verified: ωt � ω1 � ω2 � ω3, where
ωt is the frequency of the output photon and ω1;2;3 are the frequencies of the input
photons. For this third frequency generation to be efficient, the pump and generated
frequency should be phase matched so as to preserve the total momentum. This
translates as having all the interacting electromagnetic waves propagating at the
same speed, that is the effective indices of each wave should be equal:
neff1 � neff2 � neff3 � nefft . In whispering-gallery mode resonators, an additional re-
quirement imposes that the pump and created light have to resonate in the
WGMR. When this condition is fulfilled, the interaction is enhanced by the high qual-
ity factor of the resonator. These three conditions are quite difficult to fulfill simulta-
neously, and a solution has recently been proposed, making use of the different spatial
modes of a WGMR. Using the intermodal dispersion of higher-order modes in silica
microspheres and microtoroids, efficient frequency conversions based on the third-
order susceptibility was experimentally demonstrated [106–108]. Third-harmonic
generation can also be observed in conjunction with other χ�2� and χ�3� interactions,
namely second-harmonic generation [109], Raman scattering [110], four-wave
mixing (FWM), and frequency combs [111–113].

4.2. Kerr Optical Frequency Combs

4.2a. Four-Wave Mixing in WGMRs

In the presence of Kerr nonlinearity, the refractive index of the material can be written
as n�I� � n0 � n2I , where n0 is the linear index of the material, obtained when the
optical power remains low, n2 � 3χ�3�∕�2n20ε0� is the nonlinear index of this material,
and I is the intensity (irradiance) of the electromagnetic wave [68]. This effect is often
referred to as the Kerr effect, and leads to a variety of nonlinear processes where the
newly generated frequencies can remain close to the pump frequency, especially self-
phase modulation and FWM. Provided the material and geometric dispersions remain
small, the conservation of the momentum condition is naturally fulfilled, and the sys-
tem can fully take advantage of the resonant nature of the WGMRs to efficiently gen-
erate new frequencies. This same resonant nature of the WGMR also imposes that the
newly created frequencies are discrete, and one can expect the formation of a
frequency comb.

A Kerr optical frequency comb is a set of equidistant spectral lines generated in a high-
Q dielectric WGMR via its Kerr nonlinearity. In a typical Kerr comb generation setup
such as the one shown in Fig. 13(a), the light from a continuous-wave laser is coupled
in the WGMR close to a resonance of azimuthal order l0. In the simplest and most
widespread case, Kerr combs only involve azimuthal modes belonging to the same
family. As a consequence, all the interacting modes can be unambiguously labeled by
their azimuthal eigennumber l. It is convenient in that case to introduce the reduced
eigennumber l ≡ l − l0, such that the pumped mode is l � 0 while the side modes
symmetrically expand as 	1;	2;…. When the resonator is pumped above a given
threshold, the resonant enhancement of the pump light triggers nonlinear effects, such
as, for example, degenerate four-wave mixing, which leads to the generation of two
first comb lines following 2ω0 � ω−l � ωl, where ω0 is the eigenfrequency of the
pumped mode, and ωl;−l are those of the excited side modes. In this context, it is
common to label ω−l as the idler, and ωl as the signal. Since only resonant modes
can be excited within the WGMR, the whole process leads to the frequency conversion
from the pump to two symmetrical modes of the WGMR, separated from the pump by
the same integer number of FSRs. From here, a complex set of interactions between
the different modes of the WGMR arises through four-wave mixing in the dielectric
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material. As per usual, the energy has to be preserved, which translates to the non-
degenerate FWM interactions ωm � ωp � ωn � ωq, where ωm;p;n;q are the different
interacting comb lines (note that here,m, n, and p are reduced azimuthal eigennumber,
unlike in Subsection 2.1b). By cascading this process, one can eventually obtain a
whole frequency comb with hundreds or thousands of comb lines spanning an entire
octave. This intuitive explanation of Kerr comb generation is summarized in
Fig. 13(b).

In 2004, pioneering experiments reported the generation of optical hyperparametric
oscillations in silica microtoroids and CaF2 WGMRs [34,49], revealed by the exci-
tation of a couple mode on each side of the pump mode. This corresponds to the
phenomena involved in degenerate four-wave mixing, with three modes correspond-
ing to pump, signal, and idler waves. Interestingly, WGMRs only needed power levels
in the milliwatt range to exhibit substantial four-wave mixing owing to their high-Q
resonances.

Three years after these first contributions, a decisive breakthrough was achieved
owing to a seminal experiment that demonstrated massively cascaded hyperparametric
interactions, yielding a broadband Kerr comb with several tens of sidebands for the
first time [36]. This foundational work was an important milestone because it provided
unambiguous proof that the topic of Kerr optical frequency combs could be bridged to
time-frequency metrology. Subsequently, Kerr combs have been reported in various
WGMR geometries, various materials, with comb line spacings ranging from a few
gigahertz to several terahertz, with central wavelengths going from the visible [114]
to the mid-infrared [115,116], and spanning as wide as an octave [117,118]. The
choice of material is mainly guided by its intrinsic loss and ability to be shaped into
a WGMR with very high quality factors. Fused silica is therefore frequently used
[34,36,47,119,120], its amorphous nature allowing the formation of various resona-
tors while keeping a very small surface-tension controlled roughness. Silica WGMRs
are limited to Q-factors in the 108 range due to hydroxyl bonds on their surfaces. The
intrinsic transmission range of SiO2 also stops at around 2.8 μmmaking it not suitable
for comb generation in the mid-infrared region. For higher quality factors and ex-
tended transmission in the infrared, fluoride crystals have been the materials of choice
for Kerr comb generation [46,49,50,55,121,122]. CaF2, MgF2, and SrF2 all feature
transmission windows from about 100 nm in the UV to 10 μm in the IR, and can
be shaped and polished into WGMRs with quality factors up to 1011. Such high
Qs reduce the threshold for comb generation to power levels easily obtainable in

Figure 13

(a) (b)

(a) Typical experimental setup for the generation of a Kerr frequency comb in a
WGMR. A continuous-wave laser is used to pump a resonance of the WGMR,
and the newly generated frequencies can be observed, analyzed, and used for ulterior
purposes. (b) Intuitive explanation of the processes leading to the generation of a Kerr
frequency comb, with degenerate and nondegenerate four-wave mixing that leads to
the formation of equidistant spectral lines.
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the lab. Kerr frequency combs have also been generated in on-chip ring resonators in
high-index silica glass [123], silicon on insulator [116,124], diamond [125], alumi-
num gallium arsenide on insulator [126], aluminum nitride [127,128], or silicon
nitride [41–43,117,129,130], this latter material benefiting from very low absorption
losses at the telecom wavelength. In these cases, the lower Q-factors compared to bulk
resonators (in the 106 range) are compensated by smaller mode volumes, higher field
confinement, and larger nonlinearity, allowing for comb generation at reasonably low
pump power.

4.2b. Theoretical Description

The numerous experimental results reported in the literature show that Kerr combs can
be generated in different materials, with resonators of different shapes, suggesting that
a global description of the processes at stake is possible. Furthermore, the combs come
in all sort of shapes and frequency spans, hinting at very rich and diverse dynamics
(see [131] and references therein).

The earliest theoretical models for the description of Kerr comb generation were based
on the so-called modal-expansion formalism, where the dynamics of each mode is
described by an ordinary differential equation. This approach allowed explanation
of hyperparametric optical oscillations via the excitation of few modes around the
pump [34,49,132]. The generalization of the modal expansion approach for an arbi-
trary number of modes followed shortly after [133–135], and permitted for the first
time simulation of the dynamics of wide-span combs including several hundreds of
modes. The modal model considers the evolution of the slowly varying complex
amplitude (or envelope) of each mode in interaction with all the others through
four-wave mixing, and can be explicitly written as

dE l

dt
� − 1

2
ΔωtotEl � iσEl − i

�XK
k�2

ζk
k!

lk
�
El � δ�l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δωext∕TFSR

p ffiffiffiffiffiffi
PL

p

� ivgγ
X
m;n;p

δ�m − n� p − l�EmE�
nEp; (5)

where El�t� is the field envelope of the mode of azimuthal order l, normalized such that
jElj2 is the corresponding power in watts. The Kronecker function δ�x� equals 1 for
x � 0 and 0 elsewhere. The parameters for the linear part of this equation are the
frequency detuning σ � ωL − ω0 between the laser and the resonance frequency
of the pumped mode, the total and external (in-coupling) bandwidths Δωtot �
ω0∕Qtot and Δωext � ω0∕Qext, the intra-cavity round-trip time TFSR � 2π∕ΩFSR,
the k-th order dispersion parameters ζk introduced in Subsection 2.1b, and the laser
pump power PL. The FWM term induces a global coupling and is weighted by the
nonlinear parameter γ � n2ωL∕cAeff, where n2 is the Kerr nonlinearity (proportional
to χ�3�), and Aeff � V eff∕L is the effective mode area inside the resonator, with L being
its perimeter. The parameter vg � c∕ng stands for group velocity in the resonator at the
pump frequency. This modal expansion model was originally written in terms of the
variables Al �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TFSR∕ℏωL

p
E l, which are such that the square modulus jAlj2 stands

for the intra-cavity photon number in the mode l. In that case, the relevant nonlinear
coefficient is g0 � n2cℏωL∕n20V eff , which stands for the Kerr phase shift induced by
one photon, n0 being the refraction index at ω0. Evaluating the intra-cavity field in
terms of photons becomes useful at the time to investigate the quantum properties of
Kerr combs [136,137]. It is important to note that the above model assumes spatial
degeneracy of the azimuthal modes, and assumes as well that their losses are the same.
These assumptions are valid as long as the spectral extension of the comb is not too
large (≪ ω0).
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This modal approach is especially convenient to determine the threshold value of the
intra-cavity: for critical coupling and under the simplifying assumptions that the
Q-factor does not depend on the mode number, the absolute minimum pump power
required to generate a comb is given by [34,132,134,138]

Pth �
ωLn

2
0V eff

4cn2Q
2

∝
1

n2

V eff

Q2
; (6)

where Q is the loaded quality factor. This threshold is a minimum requirement under
which no comb is generated, no matter what are the values of the other parameters
such as the detuning and the dispersion. The threshold power is inversely proportional
to the nonlinear index and to the square of the quality factor, confirming the exper-
imental choice of low-loss material as opposed to highly nonlinear ones. Another
noteworthy feature is that small volume resonators will generate comb at lower input
powers, as it could be expected. It should be noted as well that pumping the WGMR
above the absolute minimal threshold defined by Eq. (6) is a necessary but not
sufficient condition to trigger Kerr comb generation [134,139].

Another approach has been developed that considers the nonlinear propagation of the
whispering-gallery modes in the time domain, in a similar fashion to what is done in
optical fibers with the nonlinear Schrödinger equation (NLSE) [119]. These models
require the numerical simulation of millions of round trips to account for the
extremely highQ of the WGMR; however, the time-domain description can be refined
and simplified using the valid approximation that the electromagnetic field envelop is
only slightly modified from one round trip to the other (slowly varying envelope
approximation). Under this assumption, the description of the system can be brought
down to the following partial differential equation [131,140–142], which is generally
referred to as the generalized Lugiato–Lefever equation (LLE):

∂E
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p
; (7)

where E�θ; t� � P
lEl�t�eilθ is the envelope of the total intra-cavity field, which de-

pends on the azimuthal angle along the closed-path circumference of the resonator θ ∈
�−π; π� and on the time variable t. In this equation, the dispersion coefficients are now
expressed in terms of βk � −ζk∕�−ΩFSR�kvg, which can be related to the Taylor series
expansion of the propagation constant β�ω�. It can be shown that Eq. (7) is strictly
equivalent to the modal description of Eq. (5) by means of a simple Fourier
transform [141].

The LLE is a variant of the NLSE with periodic boundary conditions, and efficient
algorithms such as the split-step Fourier algorithm are particularly suitable for its
numerical simulation.

When dispersion is limited to the second order, this equation mathematically corre-
sponds to the one that was originally derived by Lugiato and Lefever in the context of
spatial dissipative structures in cavity optics [143]. The LLE was later reintroduced for
the study of dispersive ring cavities by Haelterman, Trillo, and Wabnitz [144]. It is
interesting to note that the stability analysis of the LLE was first performed in the
context of mathematical physics [145,146], and then in the context of Kerr combs
[139,147]. It allowed us to understand the complex interactions leading to the
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generation of Kerr combs, and the identification of various spatiotemporal structures
within the WGMR.

4.2c. Regimes of Kerr Frequency Combs

The various types of combs that have been experimentally observed so far generally
correspond to Turing rolls, (multi-)solitons, breathers, or spatiotemporal domain, as
displayed in Figs. 14 and 15.

The first experimental combs reported were most of the time corresponding to
Turing rolls (patterns). They are very often labeled by various different names
[36,49,119,121,134], such as optical parametric oscillations, primary combs, modu-
lation instability, etc. The line spacing of these combs consist of an integer number of
FSRs [148,149], as shown in Fig. 16, and that translates into a series of equidistant
rolls (pulses) distributed within the WGMR. These Turing rolls can be connected to
the cnoidal waves that arise as asymptotic solutions of the LLE in the lossless cavity
limit [150]. It was found that they could be generated in both normal and anomalous
regimes of dispersion [139,151]. As shown in Figs. 14 and 15, their bifurcation struc-
ture was analyzed and found to lead to chaotic regimes in the anomalous regime and
numerical simulations were able to predict their behavior with a very good accuracy
[152], as displayed in Fig. 17.

The analysis of the LLE predicts that localized structures such as cavity solitons can
be stationary solutions given appropriate parameters [141,153]. Later on, experiments
confirmed this theoretical prediction: its optical spectrum [154], dependency on the
pump power [155], and detuning or time duration [154–156] have been characterized
and successfully compared to numerical simulations or analytical approximations, as

Figure 14

Bifurcation diagram of the Lugiato–Lefever equation in the anomalous dispersion
case β2 < 0. The normalized detuning α � −2�ωL − ω0�∕Δωtot and the normalized
pump power F2 � �8g0Δωext∕Δω3

tot��PL∕ℏωL� are the two parameters available dur-
ing an experiment and therefore make up the axis of the diagram. In the white region at
low pump powers, only the steady-state solution is stable. Turing patterns (green area)
are generated above the threshold (red dashed line) and evolve into chaos at even
higher excitation (red region). The soliton solutions appear for larger positive detun-
ings α, in the blue region. At higher excitation, they evolve to nonstationary breathing
solutions. Adapted with permission from [139]. Copyright 2014 by the by the
American Physical Society.
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shown in Fig. 18. The spectrum of the soliton presents a smooth hyperbolic secant
shape [157], making this comb particularly useful for potential applications. Kerr
soliton generation is, however, challenging for various reasons. First, the soliton
can only appear when the pump frequency is smaller than the pumped resonance
(i.e., on the red side of the resonance,Ω0 < ωl0

). This proves difficult because thermal
nonlinearities render this side of the resonance unstable. Second, the soliton emerges
in a multi-stability area, where the absence of comb is a stable solution of the LLE, and
solutions with several solitons (provided they do not interact with each other) are also
stable [139]. For these reasons, in the simple case where the pump wavelength is
swept across the resonance, the system evolving from Turing patterns to chaos, multi-
ple solitons states and, finally, to a single soliton [158], can almost never be achieved.
More advanced schemes have been proposed and demonstrated experimentally: fast
wavelength tuning to circumvent thermal instability [154,159], slow wavelength tun-
ing combined with careful pump power modifications [160], fast pump power changes
coupled with wavelength locking techniques [161], phase or amplitude modulation of
the pump [162], and backward wavelength tuning [163]. If multiple solitons are
present in the cavity, they can strongly interact due to mode-coupling, and self-
organize to form soliton crystals [164–166], leading to rich and complex dynamics
and a wide variety of phase-locked frequency combs. Experiments and theoretical
studies have shown that the generation of the soliton can be facilitated by an appro-
priate dispersion including higher-order dispersion terms [167,168], and more impor-
tantly, by avoiding crossings with other spatial mode families [154,169]. It should also
be noted that research remains very active for the understanding of the Kerr soliton
dynamical properties, as well as for their control in view of technological applications
in photonics [170–174].

In the normal dispersion regime, localized structures can also be generated in the form
of dark pulses [139,175] resulting from the stabilization of two switching waves [176]:
switching waves connect the upper and lower continuous-wave solutions of the LLE,
and can undergo stabilizing interactions to form one or several localized dips.

Figure 15

Bifurcation diagram of the Lugiato–Lefever equation in the normal dispersion case
β2 > 0. In this case, Turing patterns with multi-FSR spacings can spontaneously arise
from noise above the red dashed line when the detuning is large. Dark pulses and dark
breathers can be excited in the red region. Adapted with permission from [139].
Copyright 2014 by the American Physical Society.
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The theoretical conditions required for the generation of such structures are quite dif-
ficult to match: the region of the parameter space where they are stable is quite re-
stricted (see Fig. 15), and similarly to the case of the bright soliton, it needs a seed to
grow from, since the continuous-wave background is also a stable solution in this
region [139,176]. As these dark structures come from the subtle interaction and sta-
bilization of two switching waves, the seed needs to be particularly well chosen.
Despite all these difficulties, dark localized structures have been recently observed
in WGMR [177–181], as shown in Fig. 19. The spectrum of such structures is very
distinctive, as shown in Fig. 19, and numerical simulations of the LLE accurately
reproduce the experimental results [178,180]. In these experiments, modulation insta-
bility and mode coupling are likely responsible for the seeding and stabilization of the

Figure 16

(a) (b)

(a) First experimental generation of a Kerr frequency comb corresponding to an op-
tical parametric oscillation. Figure 3 reprinted with permission fromKippenberg et al.,
Phys. Rev. Lett., 93, 083904 (2004) [34]. Copyright 2004 by the American Physical
Society. (b) Experimental spectra of two Turing patterns with different line spacings
corresponding to different integer numbers of FSR. Both combs were generated using
the same resonator and pumping at different detunings. Figure 2 reprinted with per-
mission from Savchenkov et al., Phys. Rev. Lett., 101, 093902 (2008) [148].
Copyright 2008 by the American Physical Society.

Figure 17

(a) (b) (c)

(d) (e) (f)

Comparison between (a)–(c) experimental combs generated in a MgF2 WGMR and
(d)–(f) numerical simulations of the Lugiato–Lefever equation [152]. In both cases,
the pump power is kept constant (F2 � 12) and the laser wavelength is increased
(α is increased). Reprinted from [152] with the permission of AIP Publishing.
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combs [175,182]. Since then, new schemes have been proposed to reliably excite nor-
mal dispersion dark pulses using parametric seeding [183,184]. A common character-
istic of these localized structures is that they can evolve into breathing solutions if the
pump power is increased. Indeed, when they become unstable, intra-cavity dark pulse
and bright solitons see their peak intensity oscillate [139,185–187]. Bright soliton
breathers have recently been experimentally observed and characterized [188].

Finally, at very high pump powers, Kerr frequency combs can exhibit different chaotic
regimes where the intensity and phase of each individual optical mode evolves with
time in an irregular fashion [152,189]. Contrary to the previous regimes, the beat note
frequency detected by a fast photodiode of this chaotic comb produces a noisy micro-
wave frequency whose spectral width far exceeds the natural resonance linewidth.
Numerical simulations of such combs have shown that extremely intense and sudden
optical pulses can occur in the system. These pulses qualify as rogue waves, and can
be explained as a collision of several breathing solitons [190].

It should be noted that the overall dispersion of the resonator tailors the spectral
characteristics of the comb [191–197], and can induce various dynamical features
such as dispersive wave mode crossing [179,198], among others.

4.2d. Experimental Characterization Of Kerr Combs

The generalized LLE has been shown to accurately describe the generation of Kerr
frequency combs in a variety of materials and WGMR shapes, predicting several
regimes that were later confirmed in experiments.

The experimental study of Kerr frequency combs in WGMRs is particularly challeng-
ing for various reasons. A first one is that the pulse trains repetition rates are often
higher than the bandwidth of available electronics. High-Q resonators also have line-
widths in the mehahertz range, requiring ultrastable pump lasers. Another important
challenge is the control of thermal effects, which might be beneficial or detrimental
depending on the relative signs of the thermo-optic and thermo-elastic coefficients:

Figure 18

(a) Spectrum corresponding to a single intra-cavity soliton observed in a crystalline
MgF2 resonator and (b) spectrum of two solitons in the same cavity. Reprinted by
permission from Macmillan Publishers Ltd.: Herr et al., Nat. Photonics, 8, 145–
152 (2014) [154]. Copyright 2014. (c) Spectrum of a soliton generated in a silica
wedge disk resonator. Reprinted with permission from [155]. Copyright 2015
Optical Society of America. (d) Spectrum of a soliton generated in a silicon nitride
on-chip resonator. A dispersive wave is visible at the short frequency side, due to the
presence of a close-by zero-dispersion wavelength. From Brasch et al., Science, 351,
357–360 (2016) [156]. Reprinted with permission from AAAS.

Review Vol. 9, No. 4 / December 2017 / Advances in Optics and Photonics 855



for example, it is already well known that thermal instabilities can impede efficient
stabilization of the coupled WGM resonator [149,199,200].

Several measurement techniques have therefore been developed to provide the tools
needed for better understanding Kerr frequency comb generation. While the optical
spectrum of Kerr combs is straightforward to obtain, it is not the case for the phase
information. A first method makes two adjacent comb lines interfere using an electro-
optic modulator driven by a radio-frequency signal at half the repetition rate [201].
Another method consists of manipulating the phase and amplitude of each comb line
separately in a waveshaper in order to obtain a Fourier-limit pulse [164,165]. For that
purpose, an optimization routine is used to maximize the autocorrelation trace of the
transformed pulse.

The measurement of the comb line position with respect to the WGMR resonances is a
critical piece of information, and microwave-photonics techniques have been developed
for that purpose. These methods probe the resonances using either another CW laser [165]
or an electro-optic modulation of the pump [163]. Instead of measuring the detuning, one
can lock the pumpwavelength on the pumped resonance, by adapting the Pound–Drever–
Hall (PDH) [148,154] and self-injection locking [202] techniques to Kerr combs, or by
having a simple feedback on the comb power onto the pump laser [161].

Many applications of Kerr frequency combs require the comb to be stable and coher-
ent from one end to the other. The radio-frequency beat note of the comb gives us hints
about the comb’s coherence [44,59], and optical heterodyne measurements [122] or
spectral pulse shaping [43] can provide more detailed results. Spectral interference
techniques usually used in the context of supercontinuum generation have also been
adapted to Kerr combs to reveal how the coherence varies across the comb bandwidth
[203]. All these methods conclude that the degree of coherence of the comb is highly
dependent on the comb regime [203,204], in good agreement with numerical simu-
lations of the LLE [205–207]. It should also be noted that closed-loop pumping [208]

Figure 19

(a) (b)

(a)

(b)

(a) Spectrum corresponding to a dark pulse generated in a crystalline MgF2 resonator
with normal dispersion at 795 nm. Reprinted with permission from [178]. Copyright
2014 Optical Society of America. (b) Generation of various regimes of dark pulses in
the normal dispersion regime in a silicon nitride ring resonator. Reprinted by permis-
sion from Macmillan Publishers Ltd.: Xue et al., Nat. Photonics, 9, 594–600 (2015)
[180]. Copyright 2015.
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or parametric seeding [209,210] can be implemented to excite certain Kerr combs with
particular spectral characteristics.

4.2e. Applications of Kerr Frequency Combs

Optical Kerr frequency combs mainly find applications in ultrapure microwave
generation, spectroscopy, and coherent optical communications [131,211].

Using Kerr combs for radio-frequency synthesis has been an early technological drive
in this area. This trend was motivated by the pioneering works of Theodor Hänsh and
John Hall, for which they were awarded the Nobel Prize of Physics in 2005, where
they demonstrated the potential of optical frequency combs for high-precision met-
rology. The microwaves are obtained by direct demodulation of the comb via a fast
photodiode, and it can be shown that up to half the power of the incoming optical
comb can be converted into a microwave signal [212]. The best phase noise perfor-
mances achieved so far typically range from −100 to −120 dBc∕Hz at 10 kHz from
carrier at 5–50 GHz [40,59,202,213–215]. Kerr combs can be stabilized [216,217] and
become suitable for high-precision clocks [218] with residual one-second instability
of 10−15. Octave spanning combs have already been experimentally demonstrated
[111,117,118], and as required by most time-frequency metrology applications, been
self-referenced as well [219,220]. It should be noted that WGMRs are also used for
metrological applications in the linear regime, where they perform ultranarrow filter-
ing in optoelectronic microwave oscillators [58,60,221–225]. Metrological applica-
tions of WGMRs also require them to be isolated from external vibrations [226].

Kerr combs are straightforwardly appealing as coherent multi-wavelength sources for
optical fiber communications [204,207,227–230]. Early experiments reported 10
Gbit/s transmissions using an on-off keying modulation scheme [204,227]. Later
on, the coherence properties of the comb were used to implement 16-quadrature
amplitude modulation (16QAM) and transmit data at 432 Gbit/s using a crystalline
resonator [207]. The performance of 1.44 Tbit/s has been achieved using quadrature
phase shift keying on a Kerr comb originating from an integrated ring resonator [228].
The use of Kerr solitons has recently permitted an impressive leapfrog improvement
toward a 50Tbit/s performance [230].

Spectroscopy also expects to gain multiple benefits from Kerr comb technology. This
is due to the fact that these combs can cover various spectral ranges, typically from
near- to mid-infrared. The 3–10 μm range is, however, one of the most interesting
because it overlaps the spectroscopic signature of several molecules that are
particularly relevant in several areas [115,116,122].

Finally, it should be noted that beyond optical frequency comb generation, Kerr-
nonlinear WGM resonators are investigated as well for other applications, such as
optical isolation, for example [231].

5. STIMULATED RAMAN SCATTERING

Stimulated Raman scattering (SRS) is an inelastic scattering process where photons
interact with optical phonons. Unlike the Kerr effect, which results from the optical-
field-induced electron-cloud distortion, the mechanism of SRS is attributed to the
molecular motion of material. The nonlinear polarization response time to the input
electric field is thereby delayed. SRS can be regarded as a third-order nonlinear optical
process. It exists in all dielectric materials including crystals with all symmetries and
glasses. Early investigation of SRS in WGMRs was carried out in liquid droplets
[232]. The use of solid-state ultrahigh-Q WGMRs has further facilitated the investi-
gation of SRS with very low pump power in the CW regime [233,234]. It should be
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noted that CW SRS has also been studied in other resonator structures, such as
racetrack types [235,236].

Figure 20 illustrates the cavity-enhanced Stokes SRS with WGMRs. The energy level
diagram shows that one pump photon can be converted to one Stokes photon with an
optical phonon. The energy conservation writes as ωp � ωS � ΩR, where p,S desig-
nate the pump and Stokes signals and ΩR is the Raman frequency shift. It should be
noted that ΩR∕2π is usually very large (∼10 THz), while the bandwidth ΔΩR∕2π of
the Raman gain can be much narrower in crystals (typically <1 THz). Compared with
Kerr frequency comb generation, SRS has no strict phase matching conditions as it is
automatically fulfilled. If the Raman gain provided by the pump laser overcomes the
cavity mode losses, single- or multi-mode Raman lasing can be realized in WGMRs in
both clockwise and counterclockwise directions. In the following, we will review
recent SRS results in high-Q WGMRs.

5.1. Stimulated Raman Scattering in WGMRs
Considering the fact that the Raman gain bandwidth usually covers multiple FSRs of
WGMRs with diameters above tens of micrometers, the doubly resonant condition for
both pump and Stokes fields is usually fulfilled. In their simplest form (and in par-
ticular, neglecting frequency detunings from resonance), the SRS process in WGMRs
can thereby be modeled by the coupled mode equations:

dEp

dt
� − 1

2
Δωtot;pEp − ωp

ωR

gRvg
2Aeff

jEsj2ER �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δωext∕TFSR

p ffiffiffiffiffiffi
PL

p
; (8)

dER

dt
� − 1

2
Δωtot;RER � gRvg

2Aeff

jEpj2ER; (9)

where the sub-indices p;R indicate the pump and Raman Stokes fields, Aeff �
V eff∕vgTFSR with V eff �

R jEpj2dV
R jERj2dV∕

R jEpj2jERj2dV is the effective area
for the interaction, gR is the bulk Raman gain in m/W, PL is the laser pump power,
while Ep;R, ωp;R, and Δωtot;p;R represent the slowly varying amplitudes (with jEp;Rj2 in
W), the resonant frequencies, and total resonance linewidths at these frequencies,
respectively.

Using high-Q WGMRs as versatile platforms to study Raman lasing can greatly re-
duce the corresponding threshold pump power. Indeed, the threshold power of Raman
lasers can be expressed as [233]

Figure 20

Optical
phonon

Pump Stokes

SRS in WGMR

Raman
gain
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S P Pump

Stokes Stokes

Illustration of resonant SRS in WGMRs. (a) Dashed curve (olive): Raman gain. Gray
curves: WGMs. Vertical lines: pump laser (red), Raman Stokes (olive). (b) Energy
level diagram with virtual excitation states. (c) SRS in WGMRs showing the nature
of bi-directional Raman lasing.
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Pth �
π2n2

ξgR

V eff

QRQpλRλp
∝

1

gR

V eff

Q2
; (10)

where n is the refractive index, ξ is determined by the spatial mode overlap and
coupling condition, gR is the bulk Raman gain coefficient, V eff is the effective volume
for the interaction,Qp;R are cavity quality factors for pump and Stokes modes, and λp;R
are the corresponding wavelengths. Interestingly, compared with the threshold power
for Kerr comb generation in Eq. (6), the Raman lasing threshold is proportional to the
effective volume, and inversely proportional to both the nonlinearity and the square
Q-factor.

Deeper understanding of SRS in WGMRs can be gained by using a spatiotemporal
formalism, which simultaneously accounts for the interaction between Kerr, Raman,
and all-order dispersion effects [237]. This latter aspect is usually very important be-
cause the Raman shift ΩR is relatively far away from the pump. This spatiotemporal
model explicitly reads

∂E
∂t

� − 1

2
ΔωtotE � iσE � ivg

XK
k�2

�iΩFSR�k
βk
k!

∂kE
∂θk

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δωext∕TFSR

p ffiffiffiffiffiffi
PL

p

� ivgγ

�
E�θ; t�

Z
π

−π
R�θ0∕ΩFSR�jE�θ − θ0; t�j2dθ0

�
; (11)

where R�t� � �1 − f R�δ�t� � f RhR�t� is the impulse response ruling the time-domain
behavior of the nonlinear host material. The first term of R�t� stands for the quasi-
instantaneous electronic response of the Kerr effect, while the second term accounts
for the delayed molecular response of the Raman effect. If we model the Raman gain
g�Ω� as a Lorentzian function of peak value gR, center frequency ΩR, and linewidth
ΔΩR, the fractional impulse response can be expressed as

hR�t� � H�t� τ
2
1 � τ22
τ1τ

2
2

et∕τ2 sin�t∕τ1�; (12)

where τ1 � 1∕ΩR, τ2 � 2∕ΔΩR, H�t� is the Heaviside step function, and the frac-
tional coefficient is calculated as

f R � c

πωLn2�ωL�
Z �∞

0

dt

Z �∞

0

dΩg�Ω� sin�Ωt�: (13)

It is important to note that this model is only valid in the approximation ΩFSR ≪ ΩR

[237,238], and that by setting f R ≡ 0, we fold back the Lugiato–Lefever Eq. (7).

To date, Raman lasing has been demonstrated in high-Q WGMRs made of both
amorphous and crystalline host materials. Concerning amorphous materials, CO2

laser machined ultrahigh-Q fused glassy WGMRs have been investigated
[35,233,234,239–255]. The first CW Raman laser based on solid-state high-Q
WGMR was demonstrated with a fused silica microsphere resonator by Spillane et al.
in 2002 [233]. Figure 21(a) shows the typical single-mode Raman lasing spectrum in a
40 μm diameter silica microsphere at room temperature. The inset shows a measured
CW threshold power as low as 86 μW. Cascaded Raman lasing behavior has also been
demonstrated, as shown in Fig. 21(b) where a picture of the fiber taper coupled micro-
sphere is presented [239]. Additionally, the surface coating method has also been
applied to study Raman lasers with different materials on the resonator surface
[245,256]. For instance, a polydimethylsiloxane-based Raman laser with a large
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frequency shift of 2900 cm−1 was demonstrated using an on-chip silica host micro-
sphere resonator [256]. Recently, WGMR-based Raman lasers have also been realized
with chalcogenide glass (As2S3) using a 1550 nm pump laser [244,250]. Compared
with silica, this material has a 100 times larger Raman gain coefficient and can extend
the spectral window into the mid-IR. It should be noted that anti-Stokes SRS has also
been reported in silica WGMRs [246].

Crystalline optical materials can feature a very wide transparent spectral window
ranging from the UV to the mid-IR, as well as versatile nonlinear properties.
They have also become interesting host materials for investigating SRS in
WGMRs. Indeed, Raman lasing was, for instance, reported in WGMRs made of
CaF2 [237,257,258], BaF2 [238,259], LiNbO3 [260–262], SrF2 [238], and MgF2
[237]. Multi-photon and hyper-Raman scattering phenomena have been observed
in LiNbO3 [260,261]. Strong forward-backward asymmetry resulting from the
polaritonic effect was also investigated in a LiNbO3 resonator [262]. Figures 21(c)
and 21(d) presents an ultralow-threshold Raman lasing in a CaF2 disk resonator
[257]. A threshold power as low as 3 μW was observed in a cavity with a Q-factor
of 5 × 1010. Up to eight Raman Stokes were obtained at only 1 mW of the
pump power.

Figure 21

Raman lasing spectra in WGMRs. (a) Single-mode Raman lasing in a silica micro-
sphere with Q of the order of 108. Inset: Raman laser power versus pump power.
Reprinted by permission from Macmillan Publishers Ltd.: Spillane et al., Nature,
415, 621–623 (2002) [233]. Copyright 2002. (b) Cascaded Raman lasing spectrum
in a silica microsphere. Inset: the picture of the WGMR coupled with a fiber taper.
Reprinted with permission from [239]. Copyright 2003 Optical Society of America.
(c) Raman laser power versus pump power for first and second Stokes in a CaF2
WGMR with Q of the order of 1010. (d) Cascaded Raman lasing spectrum in the
crystalline resonator. Reprinted with permission from [257]. Copyright 2007
Optical Society of America.
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5.2. Phase-Locked Raman Combs
Reported Raman lasers in WGMRs have shown various features, which include
single-frequency lasing, multi-mode lasing involving one or multiple transverse mode
families, anti-Stokes and multi-Stokes lasing. Among these features, the Kerr effect
can be involved simultaneously with SRS and leads to the formation of interesting
Kerr-Raman combs, despite that they usually compete with each other [237]. The
dynamics of this complex interplay can be investigated using the spatiotemporal
model of Eq. (11). Although simultaneous observation of Raman lasing with
FWM was previously reported in silica and crystalline WGMRs [233,238], phase
locking of Raman combs only occurs in a special regime. It depends on the dispersion
profile, coupling condition, and the pump power.

Recently, phase-locked Raman comb generation has been investigated in the normal
dispersion regime [258,259]. Figure 22(a) presents the schematic experimental setup
and the optical spectrum of the coherent comb obtained in a CaF2 resonator [258]. The
pump laser was self-injection locked to a cavity mode, and the Raman lasing signal
was out-coupled through a second prism into a fast photodetector. The resulting RF
beat signal featured a linewidth of less than 100 Hz and a low phase noise profile.
These phase-locked Raman combs were found with single FSR frequency spacings
and without noticeable FWM-mediated sidebands around the pump. Another experi-
ment in a BaF2 WGMR shows that such phase-locked Raman combs can be generated
with multiple FSR frequency spacing [259]. Figure 22(b) presents a Raman comb with
triple-FSR frequency spacing. The pump frequency was locked to the mode using the

Figure 22

(a)

(b)

Passively mode-locked Raman comb with single and triple-FSR frequency spacing in
crystalline WGMRs. (a) Left: schematic of experimental setup for a dual-prism
coupled CaF2 resonator. Right: optical spectrum of Raman comb with single FSR
spacing. Figures 1 and 2 reprinted with permission from Liang et al., Phys. Rev.
Lett., 105, 143903 (2010) [258]. Copyright 2010 by the American Physical
Society. (b) Left: 3-FSR spaced Raman comb spectrum covering both pump and
Stokes wavelengths. Right: the corresponding RF signal generated with a fast photo-
diode. Reprinted with permission from [259]. Copyright 2016 Optical Society of
America.
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PDH locking technique [263]. Also shown in this figure was the corresponding RF
beat signal at 16.4 GHz obtained on an electrical spectrum analyzer. Its 3 dB linewidth
is less than 50 Hz confirming the phase-locked comb state. Interestingly, a discon-
tinuous step in the detected pump signal was also found, which coincided with the
transition from single-frequency lasing to phase-locked Raman comb generation. This
behavior is similar to the observed transition in the transmission of pump signal when
soliton Kerr comb generation occurs [154].

Another phase-locked Raman comb has been recently demonstrated in on-chip silica
wedge resonators, which is referred to as Stokes soliton [264]. These devices are
operated in the anomalous dispersion regime at the pump wavelength. Unlike
Raman-induced frequency shift in dissipative Kerr solitons [159], Stokes solitons in-
volve two transverse family modes of the WGMR. A soliton Kerr comb is first
generated around the pump frequency involving the primary mode family. The in-
duced Raman amplification seeks another mode family that has the same FSR with
the primary soliton within its gain bandwidth. The effective potential well generated
by the primary soliton is then shared to counteract the dispersion for Stokes waves.
Above a threshold of the primary soliton power under good spatial and temporal over-
lap between two pulse waves, the complex interaction leads to the formation of a
Stokes soliton. Both theoretical models and experimental data have been obtained
to understand this process [264]. Figure 23(a) provides the measured and simulated
cavity FSR versus wavelength for mode families of Stokes solitons in three WGMRs.
Also presented is the measured primary soliton FSR as horizontal vertical lines to

Figure 23

Stokes soliton Raman combs generated in three on-chip silica wedge resonators.
(a) Measured and simulated FSR data as a function of wavelength for the Stokes-
soliton-forming WGMs. (b) Optical spectra of primary and Stokes solitons. Vertical
dashed arrows highlight the agreement with graphical prediction in (a). Reprinted by
permission from Macmillan Publishers Ltd.: Yang et al., Nat. Phys. 13, 53–57 (2016)
[264]. Copyright 2016.
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predict the location of Stokes solitons. The spectra of Stokes solitons as shown in
Fig. 23(b) clearly confirm the prediction.

5.3. Applications
Raman gain is dependent on the pump wavelength and the molecular structure of the
host material. It is not limited to the transition between energy levels at specific wave-
length windows. By changing the pump wavelength, low-threshold Raman lasers
based on WGMRs can be used to produce coherent light waves in new frequencies.
Moreover, phase-locked Raman comb generation also shows a path to the applications
in the field metrology and microwave photonics. Besides the previously reviewed
Raman lasers and combs, SRS in WGMRs has also been used to investigate funda-
mental questions on gain and loss [249,254]. For instance, Raman gain can be used to
adjust the coupling regimes of WGMs without mechanically changing the gap
between the resonator and the coupler [254]. It has also been used in studying a
non-Hermitian system composed of two coupled microtoroid resonators for its lasing
behavior in the vicinity of an exceptional point [249].

Raman lasing in WGMRs for highly sensitive label-free detection of nanoparticles has
been demonstrated recently [247,248]. The mechanism is based on the detection of
mode splitting caused by the surface nanoparticle scatterers. Raman gain is used to
compensate the loss and improve the sensitivity, since the sensitivity limit of WGM
sensors is fundamentally determined by the ratio of Q∕V [14]. When operating above
the threshold, the binding event of nanoparticles on the cavity surface can be detected
and counted by monitoring the self-heterodyne beat note frequency shift of Raman
laser signals. However, this beat frequency shift depends on both the particle size and
its location. Statistical analysis is needed to extract the size of detected nanoparticles,
as shown in Fig. 24 [248]. Figure 24(a) shows that large nanoparticles increase the
probability of detecting larger beat note frequency change. The ratio of rms of the
frequency changes and a threshold (δ∕Δth) as a function of the threshold (Δth) for
NaCl particles with radii of 15, 20, and 25 nm is plotted in Fig. 24(b), showing clear
extraction of size information.

Figure 24

Self-heterodyne detection of nanoparticles using scatterer-induced mode splitting in a
silica microtoroid Raman laser. (a) Distribution of beat note frequency changes for
small and large nanoparticles (top and bottom). (b) The ratio Δth∕δ versus beat note
frequency change threshold Δth for NaCl particles with radii 15, 20, and 25 nm.
Adapted from [248].
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6. STIMULATED BRILLOUIN SCATTERING

Similar to stimulated Raman scattering, stimulated Brillouin scattering (SBS) is also
an inelastic scattering. Instead of optical phonons, acoustic phonons take part in the
interaction with photons. The macroscopic acoustic part of nonlinear polarization re-
sponse thus makes it a delayed nonlinear optical process, slower than SRS. Until now,
strong light confining structures such as fibers and on-chip waveguides have been
exploited for investigating SBS [265,266]. In Stokes SBS, the creation of acoustic
phonons is induced by the external pump laser via electrostriction. Radiation pressure
can also contribute to it in nanoscale devices [267]. The generated traveling density
wave acts as a refractive index grating and scatters the pump laser in a preferable
direction. In turn, the pump and Doppler-shifted light (Stokes) waves also interfere
in a way that strengthens the acoustic field. This stimulated process involving the
creation of a Stokes photon and an acoustic photon is illustrated via a three-level
energy diagram shown in Fig. 25(a). A reverse process also exists as anti-Stokes.

Resonance-enhanced SBS can further reduce its threshold power. An illustration is
shown in Fig. 25(a) where pump and Stokes waves are both resonant. For
WGMRs with ultrahigh Q-factors, the CW SBS threshold power at room temperature
can be as low as a few microwatts [268]. Depending on the phonon lifetime and its
cavity round-trip time, high Q-factor mechanical modes can also be formed in such
resonators, especially in microscale sizes. A simplified model for the dynamics of the
pump (forward) and Brillouin Stokes (backward) signals Ep and EB can be explicitly
written as [54]

dEp

dt
� − 1

2
ΔωtotEp − gBvg

2Aeff

jEBj2Ep �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δωext∕TFSR

p ffiffiffiffiffiffi
PL

p
; (14)

dEB

dt
� − 1

2
ΔωtotEB � gBvg

2Aeff

jEpj2EB; (15)

where gB is the bulk Brillouin gain (in m/W). This model is indeed quite analogous to
the Raman model presented in Eqs. (8) and (9). The threshold power for SBS can be
calculated using [269]

Figure 25
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(a) Top: schematic of resonant enhanced SBS, with pump at ωP (red) and Stokes at ωS

(green) resonant with cavity modes (black Lorentzian lines). Dashed line: Brillouin
gain. Bottom: simplified energy diagram. (b),(c) Top: illustration of circulating optical
and acoustic waves in WGMRs. Bottom: wave vector conservation law for backward
and forward SBS, respectively.
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PSBS
th � π2n2V eff

BgBλpλSQpQS

1

1� Qmλm∕2πr
∝

1

gB

V eff

Q2
; (16)

where B is the mode overlap, λp;S;m and Qp;S;m are the wavelengths and quality factors
for the pump, Stokes, and mechanical modes, respectively. For millimeter-size
crystalline resonators where the mechanical acoustic resonances are not excited,
the second part on the right side of this threshold equation becomes unity. Once again,
as in Eq. (6) for the Kerr case and in Eq. (10) for the Raman case, the threshold power
is inversely proportional to nonlinearity and scales as V eff∕Q2.

Although SBS is believed to feature the largest gain among all the third-order non-
linear optical processes, its narrow gain bandwidth imposes a challenge in fulfilling
the multi-resonant condition in an optical cavity. Nonetheless, high-Q WGMRs can
feature rich mode structures (see Subsection 2.1b), thus becoming advantageous in
this regard. To date, WGMR-based SBS has been experimentally demonstrated using
different host materials and geometries, including glassy microspheres [269–271],
wedge-microdisks [39,272,273], microrods [274,275], microbottles and microbubbles
[276,277], and crystalline disks [54,238,268,278]. Theoretical investigations of res-
onant SBS have also been carried out [54,279,280]. Both backward and forward SBS
are realized with WGMRs, as illustrated in Figs. 25(b) and 25(c). Also shown in this
figure is the corresponding momentum conservation laws (or phase matching condi-
tion) kp � kA � kS. Together with the energy conservation law ωp � ΩA � ΩS, the
Brillouin shift ΩB matching the acoustic frequency ΩA can then be determined de-
pending on the pump frequency, the acoustic velocity, and resonance modes. For
backward SBS, this value is usually of the order of a few gigahertz for the pump
in the infrared. But the magnitude of the Brillouin shift can be much smaller for
the forward SBS process [265,266]. Recently, interesting cavity-enhanced
Brillouin scattering of photons from magnons has been reported in YIG spherical
WGMRs [281–283]. It should be noted that SBS is also extensively investigated using
on-chip racetrack resonators [266,284]. In the following, we will summarize
WGMR-based SBS and its applications in detail.

6.1. Backward Stimulated Brillouin Scattering
The observation of SBS with high- and ultrahigh-QWGMRs was first reported in the
backward direction in calcium fluoride disk resonators [268] and a silica microsphere
[269] in 2009. For backward SBS, the phase matching condition determines the
Brillouin shift according to ΩB∕2π � 2neffVA∕λp, where neff and λp are the effective
refractive index and the wavelength of the pump light, and VA is the longitudinal
acoustic wave speed. For crystalline materials, VA can be calculated based on the
elastic constants and crystal orientations [68].

Figure 26(a) presents the side view of a CaF2 WGMR with a diameter of 5.5 mm. Its
surface was finely polished and was able to support an intrinsic optical Q-factor in the
order of 1010 for the pump laser at 1064 nm. The WGM field location is highlighted
with white brackets. A continuous-wave threshold power around 3 μW was reported
[268]. The bottom of Fig. 26(a) shows a typical two-Stokes SBS spectrum in the back-
ward direction, featuring Brillouin shift of 17.5 GHz with a pump at 1064 nm. For
crystalline WGMRs, SBS has also been reported in barium fluoride [238,278,285],
lithium fluoride [54], and strontium fluoride [238].

For small WGMRs where the lifetime of an acoustic wave is longer than the round-trip
time, mechanical modes at the acoustic frequency ωA can be formed in such cavities.
The threshold of SBS can be further reduced according to Eq. (16). Figure 26(b)
shows the calculated stress and electric field distributions of the typical mechanical
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and optical modes for a silica mircosphere resonator with a diameter of 100 μm [269].
Different mechanical modes are experimentally probed via the beat note measure-
ments of Brillouin shift, as shown in Fig. 26(c). The corresponding acoustic mode
field distributions are also calculated in this figure.

Traditionally, SBS competes with other nonlinear processes, such as Kerr and Raman
effects. Nevertheless, it was shown that four-wave mixing can enhance SBS and lead
to a comb-like cascaded SBS with anti-Stokes [238,276,285]. A theoretical investi-
gation was also carried out on cavity-enhanced cascaded SBS with FWM [280].
Recently, the simultaneous interaction of photons with traveling acoustic phonons
(Brillouin) and optical phonons (Raman) has been demonstrated with millimeter-size
crystalline WGMRs (including BaF2 and SrF2). Together with FWM, this “triple”
third-order nonlinear effect is referred to as universal nonlinear scattering (UNS)
[238]. Figure 27 shows the UNS spectrum obtained from a BaF2 disk, while in
the SrF2 resonator, the FWM process that couples together Raman and Brillouin
Stokes was experimentally observed, as shown in Fig. 28. Comb lines with one
FSR spacing of 6.1 GHz were observed around the pump in the forward direction
and around both SBS Stokes and anti-Stokes in the backward direction. As these comb
lines appeared together only with SRS, they were believed to be FWM results from
Raman Stokes with the pump and with SBS Stokes, respectively. This interesting scat-
tering led to the generation of a “triple comb” involving both acoustic and optical
phonons. Note that the Raman Stokes at 1619.7 nm corresponding to a Raman shift
of 283 cm−1 was out of the spectral range of the high-resolution optical spectrum
analyzer (OSA) but was observed with another OSA.

Figure 26

Observation of backward SBS in a CaF2 disk and a silica microsphere. (a) Top: a side-
view picture of CaF2 disk. Bottom: optical spectrum in the backward direction show-
ing two SBS Stokes. Figures 2 and 4 reprinted with permission from Grudinin et al.,
Phys. Rev. Lett., 102, 043902 (2009) [268]. Copyright 2009 by the American Physical
Society. (b) Top left: calculated cross field stress and electric field distributions for the
mechanical and optical modes in a silica microsphere. Top right: illustrated experi-
mental setup with a fiber taper. Bottom: optical spectrum showing one Brillouin
Stokes. (c) Top: experimental observed different SBS shifts in a single resonator.
Bottom: corresponding calculated mechanical modes. Figures 1 and 3 reprinted with
permission from Tomes and Carmon, Phys. Rev. Lett., 102, 113601 (200) [269].
Copyright 2009 by the American Physical Society.
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6.2. Forward Stimulated Brillouin Scattering
Compared with backward SBS, forward SBS enables the interaction between photons
and low-frequency propagating phonons. As shown in Fig. 25(c), the momentum con-
servation requires that kp � kA � kS. Subsequently, it permits the coupling of light
waves with low-frequency acoustic waves in the co-propagating direction. Acoustic
waves with frequency ranging from tens of megahertz up to 1.4 GHz have been
observed with forward SBS in micro-WGMRs [270,277]. Due to the long lifetime
of such phonons typically in the tens of microseconds, surface acoustic resonant
modes can be formed and leads to a triply resonant condition in WGMRs. The
resulting phase matching condition can then be expressed by mp � mS � mA, where

Figure 27

(a)

(b) (c)

Observation of universal scattering in a BaF2 disk resonator. Note: a high-resolution
(5 MHz) APEX spectrum analyzer was used. Reprinted with permission from [238].
Copyright 2016 Optical Society of America.

Figure 28

(a)

(b)

Observation of a “triple comb” generation involving backward SBS, Raman, and
FWM in a SrF2 disk resonator. Note: a high-resolution APEX (5 MHz) spectrum ana-
lyzer is used. Reprinted with permission from [238]. Copyright 2016 Optical Society
of America.

Review Vol. 9, No. 4 / December 2017 / Advances in Optics and Photonics 867



mp;s;A represent the azimuthal mode numbers of both optical and acoustical modes.
For optomechanics with radially breathing acoustic modes,mA is equal to 0 [37]. Such
phase matching conditions put a limit on resonant enhanced SBS. Fortunately,
WGMRs can feature rich multi-mode spectra due to high-order modes [286], which
can help to fulfill the multi-resonant condition.

Figure 29 shows the beat spectrum of the pump and forward SBS Stokes signals in a
fast photodetector. It reveals various excited acoustic modes with different frequen-
cies. The WGMR platform is a silica microsphere with a diameter of 320 μm and
Q-factor of 4 × 108 coupled by a fiber taper. The CW threshold power for observing
forward SBS is as low as 22.5 μW. With the pump laser frequency slowly scanned
from 1520–1570 nm, different low-frequency acoustic modes were detected. Through
finite-element simulation, the corresponding stress distribution of mechanical modes
at different frequencies were calculated. Forward SBS was also demonstrated in a
fused silica resonator with a microfluidic channel that can enable optomechanical in-
vestigation with liquids [277]. Recently, ultrasensitive gas detection has been reported
using graphene-enhanced Brillouin optomechanical modes in a bottle-shaped capil-
lary WGMR [287]. As we will discuss later, such forward SBS can also be used for
applications such as cooling, slow and fast light applications [288–290].

6.3. Applications

6.3a. Spontaneous Brillouin Cooling

Phonons are created in Stokes Brillouin scattering. A reverse process called
anti-Stokes scattering is based on the annihilation of already existing phonons.

Figure 29

Experimentally observed mechanical modes ranging from 58 MHz–1.4 GHz in for-
ward SBS with the pump swept from 1520–1570 nm. Bottom: the observed acoustic
wave frequencies via the beating of the pump and Stokes in a fast detector. Top: the
corresponding numerically calculated mechanical modes in a silica microsphere res-
onator. Reprinted by permission from Macmillan Publishers Ltd.: Bahl et al., Nat.
Commun. 2, 403 (2011) [270]. Copyright 2011.
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It is expected that the anti-Stokes process can be useful for cooling applications.
In fact, the cooling of mechanical motions has been demonstrated in WGMR-based
optomechanical systems [37,291]. In these experiments, the resolved-sideband
method is usually implemented for cooling the radial breathing mechanical modes.
As previously mentioned, forward Brillouin scattering enables interaction between
photons and low-frequency phonons, which have longer lifetimes than gigahertz
photons in backward Brillouin processes. It can form highQ-factor traveling mechani-
cal modes in the surface of WGMR. The cooling of such modes was demonstrated
by Bahl et al. in 2012 [288].

Figure 30 provides the experimental observation of cooling and heating of an acoustic
mode around 95 MHz using forward Brillouin scattering in a silica microsphere cav-
ity. Two optical modes with frequency separation matching the acoustic mode fre-
quency (where phase matching also occurs) were confirmed by forward SBS. The
lack of phase matching with neighboring modes confined Brillouin scattering among
them. When a lower-frequency mode was excited as the pump, cavity-enhanced spon-
taneous scattering of photons into an anti-Stokes optical mode annihilated the
mechanical mode. This process was confirmed with the observation of linewidth
broadening with the increased pump power, as shown in Fig. 30(a). Also shown
in this figure is the heating process when the higher-frequency mode was chosen
as the pump mode instead. Effective acoustic mode temperatures calculated from
the linewidth data are also presented in Fig. 30(b). It shows the convergence of both
heating and cooling processes at low pump power, giving the acoustic linewidth of
7.7 kHz at room temperature [288].

Figure 30

Observation of Brillouin cooling and heating of a 95 MHz acoustic mode in the silica
microsphere system. (a) Spectra of power reflectance measured through the beat note
as a function of input laser power for the cooling (top) and heating (bottom) experi-
ments. (b) The corresponding calculated effective acoustical mode temperatures.
Reprinted by permission from Macmillan Publishers Ltd.: Bahl et al., Nat. Phys.
8, 203–207 (2012) [288]. Copyright 2012.
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6.3b. Low-Noise Microwave Synthesis, Lasers, and Gyroscopes

Due to larger damping rate of acoustic fields when compared with optical fields in
backward SBS, a Stokes laser can feature a strongly reduced frequency noise as com-
pared to the pump laser. Combined with ultrahigh Q-factors or long photon storage
times in WGMRs, experiments for generating low-phase-noise microwave sources
and lasers have been carried out [272,273,275]. In 2013, Li et al. succeeded to
synthesize low-phase-noise microwave signals using cascaded backward SBS with
an on-chip wedge resonator (∼6 mm in diameter), as shown in Fig. 31 [272]. The
microwave signal was generated by photomixing Stokes laser lines in a fast detector.
By choosing the first and third Stokes lines, which share the same optical path,
common noises can be greatly suppressed. For a silica WGMR, the generated micro-
wave frequency equals 21.7 GHz, which is twice of the corresponding Brillouin shift.
It should be noted that additional closed-loop control is needed to suppress the limited

Figure 31

SBS-based microwave synthesizer. (a) Top: optical spectrum of the first and third
Brillouin Stokes. Bottom: RF spectrum of a Brillouin microwave source at
21.7 GHz. A reference oscillator at 678 MHz is used for closed-loop phase compari-
son through frequency division. (b) Phase noise performances of RF frequencies by
frequency division from the closed-loop Brillouin microwave oscillator. (c) Allan
deviation measurements for the Brillouin oscillator normalized to 21.7 GHz with re-
spect to different low-frequency references. In-loop: the microwave oscillator is
phase-locked to an ultralow-noise oven controlled reference oscillator at
400 MHz. Reproduced from [272] under the terms of the Creative Commons
Attribution 4.0 License. http://creativecommons.org/licenses/by/4.0/.
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phase noise of the microwave synthesizer at low-offset frequency. The synthesizer was
thus stabilized to a low-frequency oscillator via frequency division. Figure 31(a)
shows the optical spectrum of cascaded SBS (top) and the closed-loop beat note (bot-
tom). The phase noise performance of RF frequencies down to 11 MHz by frequency
division based on such a Brillouin microwave oscillator is also shown in Fig. 31(b). Its
white phase noise floor can be as low as −160 dBc∕Hz. Allan deviation measure-
ments normalized to 21.7 GHz with respect to different reference oscillators are also
given in Fig. 31(c). Together with Kerr-comb-based microwave oscillators [202],
Brillouin lasing in WGMRs provides a promising way for compact and low-phase-
noise microwave generation.

Concerning low-frequency noise laser applications, important research efforts have
been made recently using ultrahigh-Q (108) silica WGMRs [272,273,275,292].
High coherent Brillouin lasers using millimeter-scale on-chip silica wedge resonators
were demonstrated [272,292]. A low-noise dual-cavity laser at 1550 nm with the com-
bination of SBS on a wedge microdisk and a microrod resonator reference for active
stabilization was developed, featuring a fractional frequency noise of 7.8 ×
10−14 Hz−1∕2 at 10 Hz offset [273]. A single microrod resonator-based Brillouin laser
with an 240 Hz absolute linewidth and a white-frequency noise floor of 0.1 Hz2 Hz−1
was reported [275]. In these experiments, thermal noises from the pump laser via
thermo-optic and thermal expansion effects limited the performance of Brillouin lasers
at low offset frequency. Besides using larger-scale resonators, active stabilization
including relative intensity noise reduction was generally used [275].

WGM resonators can also be useful for compact optical gyroscopes, using counter-
propagating (clockwise and counterclockwise) intra-cavity fields to measure rotation
via Sagnac-induced frequency shifts. Recent research developments have shown that
both Brillouin scattering [293] and Rayleigh backscattering [294] can be used to
achieve remarkably high levels of stability.

Figure 32

(a) Experimentally observed BSIT scattering induced transparency in a silica micro-
sphere. Top: experimental setup. Bottom: spectrum with an analog of EIT’s three-level
lambda system in the inset. Reprinted by permission from Macmillan Publishers Ltd.:
Kim et al., Nat. Phys. 11, 275–280 (2015) [290]. Copyright 2015. (b) Nonreciprocal
light storage based on BSIT. Top: experimental setup. Bottom: measured intra-cavity
signal power during the writing and readout processes. Inset: the pulses sequences
with control signal in red and CW/CCW probe signal in black/blue. Reproduced from
[289] under the terms of the Creative Commons Attribution 4.0 License. http://
creativecommons.org/licenses/by/4.0/.

Review Vol. 9, No. 4 / December 2017 / Advances in Optics and Photonics 871

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


6.3c. Brillouin Scattering Induced Transparency

A recent application of SBS with high-Q WGMRs lies in the field of nonreciprocal
Brillouin scattering induced transparency (BSIT), as demonstrated in 2015 by Kim
et al. [290] and Dong et al. [289]. In WGMRs, optomechanically induced transpar-
ency, analogous to electromagnetically induced transparency (EIT), was reported in
2010 in a silica microtoroid oscillator by Weis et al. [295]. In such systems, the stand-
ing vibration mode features a longer lifetime than the optical mode and meets the
requirement of a long-lived nonradiation coherence. In comparison, traveling acoustic
modes in forward SBS also feature a long lifetime. Nonetheless, the conversion laws
of energy and momentum in WGMRs for forward SBS require the use of two optical
modes instead of one optical mode for BSIT.

Figure 32(a) shows the reported BSIT in a 150 μm diameter silica microsphere [290].
The experimental setup mainly consisted of a tunable control laser, a tunable probe
laser by phase modulating the control laser, and the fiber taper coupled microsphere
resonator. BSIT can be described by the three-level scheme shown in the inset. Two
optical modes that satisfy the requirement of forward SBS were first located. A strong
control laser was then used to excite the low-frequency optical mode representing the
j2i → jei transition. The weak probe laser detuned around the high-frequency optical
mode probed the j1i → jei transition. Due to the forward SBS process, the anti-Stokes
signal interfered destructively with the probe laser and resulted in a sharp transparency
window in the transmission spectrum of the probe optical mode, as shown in Fig. 32
(bottom). Both BSIT and Brillouin scattering induced opacity (slow and fast light)
were demonstrated [290]. Meanwhile, the BSIT and subsequent nonreciprocal light
storage were also reported in a silica microsphere resonator [289], as shown in Fig. 32,
where two acousto-optic modulators were used to produce the control and signal
sources with frequency separation matching the acoustic mode frequency ωA. The
mechanism of light storage lies in the transfer of signal pulse to the acoustic waves
in BSIT. Similar to an optomechanical WGMR [296], the storage time is thereby
determined by the lifetime of the acoustic wave. Nonreciprocity resulting from phase
matching requirement was also verified.

7. CONCLUSION

In this paper, we have presented a broad overview of the latest advances in the area of
nonlinear phenomena in WGM resonators with high and ultrahigh Q-factors.

We have first briefly introduced the concept of WGMRs, with an emphasis on their
eigenmode and eigenspectrum properties, as well as their performances in terms of
Q-factor. The second section focused on second-order nonlinearities like second-
harmonic generation, optical parametric oscillations, and sum-frequency generation.
Then, in the third section, we reviewed Kerr effects such as third-harmonic generation
and Kerr optical frequency combs. Stimulated Raman and Brillouin scattering were
then discussed in the two subsequent sections, respectively.

The topic of nonlinear phenomena in WGMRs high-Q still experiences a very fast
growth, as indicated by the increasing number of published articles every year,
and by the wide scope of the corresponding research. The general consensus is that
the challenges to be met are of both fundamental and technological nature.

On the fundamental side, the quest for a better understanding of light–matter
interactions is by essence an always on-going process. Since WGMRs offer an ideal
platform to understand how long-lifetime and confined photons interact with matter,
research along that line is expected to unveil unexpected phenomena. In the
semiclassical realm, light–matter interactions are ruled by nonlinear partial differential
equations with properties that are mathematically not completely understood.
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The very high level of control achieved in recent years for these nonlinear processes
allows us to design experiments where these interactions could be monitored at the
few- or even single-photon level, paving the way for compact quantum photonic sys-
tems at room temperature.

From the technological side, the main challenge is twofold: leapfrog performance
improvement comparatively to existing technologies, and scalability for mass produc-
tion. Indeed, WGMRs have already demonstrated outstanding achievements in several
areas ranging from telecommunications to sensing, but a very important last step is to
achieve compatibility with industrial norms and constraints in terms of energy
consumption, robustness, and interoperability with surrounding systems.

Research on the topic of nonlinear WGMRs is genuinely cross-disciplinary, and ben-
efits from the contribution of scientists coming from a wide variety of different back-
grounds. It can be expected that this shared interest will ensure many more fruitful
scientific outcomes for WGMR research in the years to come.
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