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The dynamical behavior of Kerr optical frequency combs is very well understood today from the perspective of
the semiclassical approximation. These combs are obtained by pumping an ultrahigh-Q whispering-gallery mode
resonator with a continuous-wave laser. The long-lifetime photons are trapped within the toruslike eigenmodes
of the resonator, where they interact nonlinearly via the Kerr effect. In this article, we use quantum Langevin
equations to provide a theoretical understanding of the nonclassical behavior of these combs when pumped
below and above threshold. In the configuration where the system is under threshold, the pump field is the
unique oscillating mode inside the resonator, and it triggers the phenomenon of spontaneous four-wave mixing,
where two photons from the pump are symmetrically up- and down-converted in the Fourier domain. This
phenomenon, also referred to as parametric fluorescence, can only be understood and analyzed from a fully
quantum perspective as a consequence of the coupling between the field of the central (pumped) mode and the
vacuum fluctuations of the various side modes. We analytically calculate the power spectra of the spontaneous
emission noise, and we show that these spectra can be either single- or double-peaked depending on the value of
the laser frequency, chromatic dispersion, pump power, and spectral distance between the central mode and the
side mode of interest. We also calculate as well the overall spontaneous noise power per side mode and propose
simplified analytical expressions for some particular cases. In the configuration where the system is pumped above
threshold, we investigate the phenomena of quantum correlations and multimode squeezed states of light that can
occur in the Kerr frequency combs originating from stimulated four-wave mixing. We show that for all stationary
spatiotemporal patterns, the side modes that are symmetrical relative to the pumped mode in the frequency
domain display quantum correlations that can lead to squeezed states of light under some optimal conditions that
are analytically determined. These quantum correlations can persist regardless the dynamical state of the system
(rolls or solitons), regardless of the spectral extension of the comb (number side modes) and regardless of the
dispersion regime (normal or anomalous). We also explicitly determine the phase quadratures leading to photon
entanglement and analytically calculate their quantum-noise spectra. For both the below- and above-threshold
cases, we study with particular emphasis the two principal architectures for Kerr comb generation, namely the
add-through and add-drop configurations. It is found that regardless of the configuration, an essential parameter
is the ratio between out-coupling and total losses, which plays a key role as it directly determines the efficiency
of the detected fluorescence or squeezing spectra. We finally discuss the relevance of Kerr combs for quantum
information systems at optical telecommunication wavelengths below and above threshold.
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I. INTRODUCTION

Kerr optical frequency combs are sets of equidistant spectral
lines that are generated after pumping a whispering-gallery
mode (WGM) or ring resonator with a continuous-wave (cw)
laser [1–3]. When the bulk resonator has both an ultrahigh
quality factor and a Kerr nonlinearity, it can at the same
time trap the pump photons for a significantly long time
in the toruslike eigenmodes of the resonator and host the
nonlinear interactions among them. From the semiclassical
viewpoint, the deterministic behavior of these combs is very
well understood today. When the pump power is sufficiently
low, the intracavity photons remain in a single cavity mode
and their frequency essentially remains the same as the
one of the pump laser. However, above a certain threshold,
these confined and long-lifetime pump photons are steadily
transferred through four-wave mixing (FWM) to neighboring
cavity modes, provided that phase-matching, energy, and
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momentum-conservation conditions are fulfilled. This process
can be further cascaded and yield a frequency comb with
all-to-all coupling and involving up to several hundred modes
over several THz. In comparison to optical frequency comb
generators based on femtosecond mode-locked lasers, Kerr
comb generators are fairly simple, compact, robust, and
energy efficient: They are expected to be core photonic
systems for many applications, such as integrated photon-
ics, metrology, aerospace, and communication engineering
[4–15].

Beyond these potential applications, which have been a very
powerful drive, Kerr combs also actually represent an ideal
test-bench systems for fundamental physics, particularly for
quantum optics. In fact, understanding Kerr comb generation
is strikingly simple when one considers the photon picture
and describes the process as the photonic interaction �ωm +
�ωp → �ωn + �ωq , where two input photons labeled m and p

interact coherently via the Kerr nonlinearity to yield two output
photons n and q. Without further analysis, this interpretation
already suggests that purely quantum phenomena based on the
nonclassical nature of light can eventually arise in Kerr combs.
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From a theoretical point of view, it is well known today that
in the semiclassical limit, Kerr combs can be described using
either a set of coupled ordinary differential equations (one
equation per mode [16–18]) or a single partial differential
equation (one equation for the sum of the modes [19–21]).
It is also well known that both formalisms are, in fact,
perfectly equivalent [20], with the first one emphasizing the
spectrotemporal dynamics of the system, while the second
emphasizes the spatiotemporal dynamics. It is important to
note here that these Kerr comb models are singularly accurate:
The comparison between the numerical power spectra obtained
using the models and the experimental ones is excellent across
a dynamical range that can be as large as 80 dB [16,22–24].

The spatiotemporal formalism is generally known as the
Lugiato-Lefever equation (LLE) and was introduced for the
first time by Lugiato and Lefever in the context of ring res-
onators where the semiclassical cavity fields were subjected to
Kerr nonlinearity and diffraction [25]. In the approximation of
one-dimensional (1D) diffraction, some of the key dynamical
properties of this optical system had also been derived in the
same article, such as, for example, the super- and subcritical
Turing instability leading to roll patterns. The LLE used to
model Kerr combs has an essential dissimilarity with the one
initially introduced by Lugiato and Lefever: Diffraction is
replaced with dispersion. This difference is of no importance
from the mathematical point of view. However, from the
physical standpoint, the difference is significant. On the one
hand, Kerr comb generation is genuinely 1D, originates from
a small bulk cavity (from μm to mm size), and involves
guided fields: The system is experimentally compact, simple,
low-power, versatile, controllable, and its behavior can be
described by the LLE with high accuracy as emphasized
above despite its high dimensionality (from three to up to
several hundred modes). On the other hand, in the initial
system, the approximation of 1D diffraction is rather poor (the
2D approximation is much better), the fields are propagating
freely, and the cavity is set up with mirrors: The system is
experimentally very complex and the LLE is a rather simplistic
model, even though the number of interacting modes is always
very limited (rarely more than ten).

In the scientific literature, several researchers have explored
the quantum properties of optical resonators with Kerr nonlin-
earity when pumped under or above threshold.

In the case of a resonator pumped below threshold, the
classical viewpoint assumes that the pump field is the unique
oscillating mode inside the resonator, while all the side modes
have zero power (hence, there is technically no comb in this
case). From a quantum standpoint, the pump field is actually
at the origin of spontaneous four-wave mixing where two
pump photons are symmetrically up- and down-converted
in the Fourier domain, thereby leading to the simultaneous
and spontaneous generation of signal and idler photons,
respectively. This phenomenology corresponds to the photonic
interaction 2�ωp → �ωi + �ωs, where ωp, ωi, and ωs are the
pump, idler, and signal angular frequencies, respectively. The
phenomenon of spontaneous FWM (which is also sometimes
referred to as parametric fluorescence) can only be understood
and analyzed from a fully quantum perspective, because
it results from the coupling between the intracavity pump
photons and the vacuum fluctuations of the various side

modes. This topic is the focus of a very large body of
literature, particularly related to the generation of correlated
pairs of entangled photons with chip-scale and integrated ring
resonators (see, for example, Refs. [26–40] and references
therein).

When the system is pumped above threshold, the photonic
interaction 2�ωp → �ωi + �ωs becomes steadily sustained:
From a classical perspective, the signal and idler side modes
are correlated twin beams in the frequency domain, yielding a
roll pattern in the spatial domain. By analogy to laser theory, it
is considered that this phenomenon corresponds to stimulated
four-wave mixing [41]. In Ref. [42], Lugiato and Castelli have
pioneered investigations on the quantum properties of the
paradigmatic system described in [25] when pumped above
threshold in the approximation of 1D diffraction. In that work,
they have demonstrated that the intensity difference between
the signal and the idler exhibits fluctuations below the standard
quantum-noise limit (QNL). This important result, which for
the first time predicted squeezing in optical systems ruled
by the LLE, was obtained in the three-mode approximation
(central pumped mode and two side modes) and therefore was
only valid close to the threshold leading to the rolls in the
supercritical case. Zambrini et al. numerically showed later on
that the squeezing behavior when certain additional degrees of
freedom are accounted for is still consistent with the one of
the reduced three-mode truncation [43]. Further research on
the quantum properties of optical systems ruled by the LLE
was performed with the more realistic case of 2D diffraction.
However, in that case, the roll pattern is unstable and, instead,
the simplest nontrivial solution is a hexagonal structure which
emerges through a subcritical bifurcation. As a consequence,
the number of modes involved in the dynamics increases
significantly because of the hexagonal structure itself (the
smallest order truncation now involves seven modes, instead of
three for the roll pattern) and because of its subcritical nature
(the higher-order side modes cannot be legitimately discarded
anymore, even close to threshold, so that even the seven-mode
truncation is not very accurate). However, using that lowest-
order truncation, Grynberg and Lugiato had shown very early
that these hexagons can display fourfold mode squeezing
in a lossless cavity close to threshold [44], while Gatti and
Mancini have extended the results and shown that squeezing
and multimode entanglement persists even in the presence of
losses and even far above threshold as long as the seven-mode
truncation remains a good approximation [45]. In view of
these preceding results, it could therefore be foreshadowed
that Kerr combs, which can be described with great accuracy
by the LLE in the semiclassical limit, can display a nonclassical
behavior as well. In this regard, an elegant demonstration of
the theoretical prediction of Lugiato and Castelli has been
achieved recently: In the research work reported in Ref. [46],
squeezing in a Kerr comb is experimentally demonstrated
between the two side modes of a 15th-order roll pattern.

From a purely technical point of view, other important
parameters to consider are the central frequency of the comb,
its spectral span, and the frequency separation between the
comb lines. Even though some works have shown that the
combs can be obtained with a pump close to the lower and
upper limits of the near-infrared range (∼800 nm [47] and
∼2500 nm [48]), the overwhelming majority of Kerr combs are
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generated today with laser pumps around 1550 nm. Since this
wavelength corresponds to the well-known telecom spectral
window, there is a plethora of commercial off-the-shelf optical
components (lasers, photodiodes, narrow filters, amplifiers,
phase shifters, etc.) that are available for the manipulation of
the photons around that wavelength, even at the single-photon
level. It is also noteworthy that many nonlinear amorphous
and crystalline materials have low dispersion and losses in
that wavelength window, and these are two features that are of
extreme importance in Kerr comb generation.

Moreover, Kerr combs originate from stimulated FWM
which is a hyperparametric process: Hence, the frequency
separation between the spectral lines generally ranges from
∼1 GHz to ∼1 THz for the Kerr combs of interest, instead of
∼100 THz for parametric processes. Hence, in Kerr combs,
the photodetected signals fall into the microwave range where
there is a very wide variety of technological solutions for the
careful handling of low-noise signals.

For the above reasons, Kerr combs have many singular
advantages for quantum optics experiments, powered by the
possibility to manipulate the photons in the optical frequency
domain, and measure their slowly varying attributes (ampli-
tude and phase) in the microwave frequency domain. They also
have the potential to play a major role in compact or integrated
quantum-information systems at optical telecommunication
wavelengths [49–51].

Despite the aforementioned theoretical works in the context
of quantum phenomena of LLE-based systems, and despite the
promising technological opportunities highlighted above, sev-
eral critical problems remain wide open for the understanding
of the quantum properties of spontaneous and stimulated FWM
combs in WGM resonators.

The first topic of interest is the analysis of the spontaneous
FWM comb spectra when the system is pumped below thresh-
old. Many groups have investigated experimentally the main
characteristics of this phenomenon, but a coherent theoretical
basis explaining the influence of the various parameters of the
system (dispersion, frequency detuning, etc.) on the output
spectra is still lacking.

A second challenge is that, in the literature, the available
research results to this date only consider minimally truncated
expansions, whose validity is automatically restricted to a
parameter range close to threshold. However, Kerr combs are
generally operated far above threshold and can be very large,
up to several hundreds of modes. They can also correspond
to different kinds of spatiotemporal patterns such as rolls
(super- and subcritical) or solitons (bright and dark), for
example. It is therefore important to investigate in detail
the quantum correlations in the case of Kerr combs where
spectrum amplitude, size, and span restrictions do not apply.

A third issue is related to the sources of quantum noise in
the system. Previous theoretical works on LLE-based systems
focused on gedanken experiments where the unique source
of losses was the semireflecting mirror used to couple the
light in and outside the cavity (the intrinsic losses were null).
The corresponding quantum equations therefore included only
one vacuum fluctuation term. However, in the case or Kerr
combs, the resonators are bulk and then necessarily lossy.
This introduces an extra term related to vacuum fluctuations
induced by these intrinsic losses. Actually, the in- and out-

coupling processes might also be distinct (like in the add-drop
configuration, for example) so that, overall, we might have
up to three vacuum fluctuation terms instead of just one. In
order to remain close to the experimental reality, it is therefore
necessary to understand the effect of all these intrinsic and
extrinsic vacuum fluctuations at the quantum level.

The fourth open point is the explicit determination of the
quadratures that can potentially lead to multimode squeezing.
The conjugate variable of the photon number operator is the
phase operator [52], so that when the squeezing occurs for
a linear combination of modal intensities, there is necessar-
ily a corresponding linear combination of correlated phase
quadratures in the system. In Kerr combs, the large number
of modes and the complexity of the all-to-all coupling among
them allows for a large variety of phase-locking patterns in
the semiclassical limit: The determination of the equivalent
quantum correlations in terms of phase quadratures is therefore
of particular relevance.

Our objective is to provide answers to the four open points
highlighted above, and the article is therefore organized as
follows. In the next section, we present a brief overview of the
mean-field models used to model the dynamics of Kerr combs
in the semiclassical limit. Important physical considerations
such as orders of magnitudes and system architecture are
discussed in detail. In Sec. III, we build the quantum models
for Kerr combs, using both the canonical quantization and
the Hamiltonian formalism. Particular emphasis is laid on the
various sources of quantum noise that have to be accounted
for depending on the in- and out-coupling configuration. The
dynamics of the system below threshold is investigated in
Sec. IV, where the spontaneous FWM spectra are explicitly
calculated as a function of the system’s parameters. Quan-
tum correlations and squeezing for the photon numbers is
investigated in Sec. V, where we explain why the squeezing
properties of the comb are degraded as the size of the comb
increases. Section VI is devoted to the study of the quantum
correlations and squeezing behavior in both the amplitude
and the phase quadratures, after the explicit derivation of
the relevant quantum Langevin equations. Particular emphasis
is laid on the analysis of squeezing in rolls and solitons
(bright and dark), which are the most prevalent spatiotemporal
patterns in Kerr comb generation, and their squeezing spectra
is investigated in Sec. VII. We sum up our main results in the
last section, which concludes this article.

II. SEMICLASSICAL MODELS FOR KERR OPTICAL
FREQUENCY COMBS

We provide here a brief overview of the semiclassical
models for Kerr combs, which are useful to gain a deep
understanding of the quantum models that are developed in
the next section and which are also needed to introduce the
key macroscopic parameters needed to describe the system.

A. Modal expansion model

WGM resonators, as well as ring resonators, generally have
several (transverse) families of modes [53–55]. Let us consider
that only one family is involved in our case and, without loss
of generality, we also consider that it is the fundamental family
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(toruslike modes). In that case, the modes of interest, which
are sometimes referred to as azimuthal, can be unambiguously
defined by a single integer wave number �, which characterizes
each member’s angular momentum. In the case of WGM
resonators, this number � can be considered as equal to the
total number of reflections that a photon undergoes during one
round trip in the cavity (ray-optics interpretation). Let us also
consider that the eigennumber of the mode that is pumped by
the external laser is �0. In the spectral neighborhood of �0, the
eigenfrequencies of the resonator can be expanded in a Taylor
series, following

ω� = ω�0 +
nmax∑
n=1

ζn

n!
(� − �0)n, (1)

where ω�0 is the eigenfrequency at � = �0 and nmax is the order
of truncation for the expansion.

For a disk resonator with main radius a, the parameter
ζ1 = c/nga = �ωFSR stands for the free-spectral range (FSR),
with c being the velocity of light and ng the group-velocity
refraction index at ω�0 . This intermodal angular frequency is,
of course, linked to the round-trip period of a photon through
the resonator as TFSR = 2π/ζ1. The parameter ζ2 stands for
the second-order group-velocity dispersion of the eigenmodes
(normal GVD for ζ2 < 0, and anomalous GVD when ζ2 > 0).
We recall that ζ2 is generally the sum of two contributions,
namely the geometrical dispersion (normal) and the material
dispersion (normal or anomalous). The parameters ζn for n �
2 stand for higher-dispersion terms and in this study, these
terms are considered to be uniformly null. Note that perfect
equidistance for the eigenfrequencies is achieved when ζn ≡ 0
for all n � 2. More details can be found in Refs. [16,17,20,56],
for example.

The resonator is also characterized by its losses, which
can be internal or external. For each mode, the internal losses
(bulk absorption, surface scattering, etc.) are quantified by
the linewidth �ωint,�. On the other hand, the external losses
�ωext,� are here considered to be induced by both the in- or
out-coupling processes of the optical fields. The total losses are
just defined as the sum of the two aforementioned contributions
following �ωtot,� = �ωint,� + �ωext,�. The loaded (or total)
Q factor for each mode can be defined as Q−1

tot,� = Q−1
int,� +

Q−1
ext,� = �ωtot,�/ω�, and the modal photon lifetime is τph,� =

1/�ωtot,�.
The total electric field (in V/m) inside the cavity can be

expanded as

E(r,t) =
√

2
�ωL

ε0n2
L

∑
�

1

2
A�(t) eiω�tϒ�(r) + c.c., (2)

where t is the time,A�(t) is the complex-valued slowly varying
amplitude of the �th mode, ϒ�(r) is the corresponding spatial
mode profile (units of m− 3

2 ), ε0 is the permittivity of vacuum,
nL is the refraction index at the laser pump wavelength, and
c.c. stands for the “complex conjugate” of all the preceding
terms [17]. It is important to note that in Eq. (2) the fields
have been normalized such that |A�|2 is equal to the number
of photons in the �th mode.

It has been shown in Ref. [17] that the slowly varying
envelopes A� of the modes are governed by a system of

equations,

dA�

dt
= −1

2
�ωtot,� A� + 1

2
�ωtot,� F� eiσ t δ(� − �0)

− ig0

∑
�m,�n,�p

A�m
A∗

�n
A�p

e[i(ω�m −ω�n+ω�p −ω�)t]

×�
�m�n�p

� δ(�m − �n + �p − �), (3)

where δ(x) is the Kronecker δ function that equals 1 when
x = 0 and equals zero otherwise. In the above equation, the
Kronecker functions indicate that only the mode � = �0 is
pumped and that the allowed four-wave mixing interactions
will be those for which the total angular momentum of the
interacting photons is conserved, following �m + �p = �n + �.

The four-wave mixing gain is g0 = n2c�ω2
�0

/n2
0Veff , where

� is Planck’s constant, n2 is the Kerr coefficient at � = �0, and
Veff = [

∫
V

‖ϒ�0 (r⊥)‖4 dV ]−1 is the effective mode volume of

the pumped mode. The parameter �
�m�n�p

� is an intermodal
coupling tensor which weights the spatial overlap among the
various modes. The laser pump field is characterized by the
detuning σ = ωL − ω� between its angular frequency ωL =
2πc/λL and the resonance frequency ω�0 of the pumped mode
and by F�0 = [4�ωext,�0/�ω2

tot,�0
]

1
2 [P/�ωL ]

1
2 , which stands

for the external pumping field, with �ωext representing in-
coupling losses only.

Equation (3) can be further simplified and rewritten in a
more convenient form, suitable for the canonical quantization.
The first step is to introduce the reduced eigennumber l =
� − �0, so that the pumped mode is now l = 0, while the
various side modes symmetrically expand as l = ±1, ± 2, . . . ,
with “+” and “−” standing, respectively, for higher and lower
frequency side modes. The modes �m, �n, and �p in the
four-wave mixing sum will now be simply replaced by their
reduced counterpart as {m,n,p} = �{m,n,p} − �0. The second
step is to consider that the spectral extension of the comb is
narrow enough to consider that the modes are quasidegenerate
in space and frequency (�mnp

l ≡ 1) and that the modal losses
are quasidegenerate as well, with �ωl ≡ �ωtot,0 = �ωtot. The
last step is to replace the fields A� ≡ Al in Eq. (3) with
A∗

l exp[i(σ − 1
2ζ2l

2)t], so that explicit time dependence is
removed in Eq. (3). From a physical viewpoint, this latter
transformation corresponds to setting the frequency reference
at the laser frequency instead of the cold-cavity resonance of
the pumped mode and to express the modal frequencies with
respect to the equidistant (FSR-spaced) frequency grid, instead
of the dispersion-detuned eigenfrequency grid [57].

After implementing these mathematical transformations,
it can be shown that the new modal fields Al obey the set
of autonomous, nonlinear, and coupled ordinary differential
equations

Ȧl = −1

2
�ωtot Al + i

[
σ − 1

2
ζ2l

2

]
Al

+δ(l)
√

�ωext Ain

+ ig0

∑
m,n,p

δ(m − n + p − l)AmA∗
nAp, (4)

where the overdot indicates the time derivative. Note that
higher-order dispersion at arbitrary order can be accounted
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for by replacing ζ2l
2/2 by

∑nmax
n=2 ζnl

n/n!, which is obtained
from Eq. (1). Without loss of generality, we can arbitrarily
consider the phase of the external pump field as a reference
and set it to zero, so that this field becomes real valued and
can be written as

Ain ≡ Ain =
√

P

�ωL

. (5)

It is important to recall the normalization in the semiclassical
Eqs. (4) is such that |Al|2 is a number of photons (cavity fields),
while |Ain|2 is a number of photons per second (propagating
fields). This normalization is physically the most appropriate
at the time to perform the canonical quantization.

B. The two configurations under study

Two configurations are routinely used to generate Kerr
optical frequency combs, as displayed in Fig. 1. It therefore is
important to identify precisely all the loss terms as well as the
out-coupled fields in each case, because, as we see later on,

FIG. 1. The two main configurations for Kerr comb generation
with monolithic resonators, namely the add-through (left column) and
add-drop (right column) configurations. Each architecture features
a certain number of loss mechanisms (quantified by their half
linewidths κt,i,d), which are associated with vacuum fluctuations. The
related quantum-noise contributions have to be accounted for when
calculating the squeezing spectra. (a), (b) Waveguide coupling of
integrated ring resonators; (c), (d) tapered-fiber coupling of WGM
resonators; (e), (f) prism coupling of WGM resonators.

the vacuum quantum-noise terms are closely related to these
losses and out-coupling configurations.

In the first architecture, which we call add-through [58],
a single coupler is used to pump the cavity and retrieve
the comb signal, which is detected at the through port.
This architecture allows for limited coupling losses (and,
therefore, low threshold power for Kerr comb generation).
However, a disadvantage of this architecture is that the output
signal is a superposition of the intracavity and a portion of
the pump which is directly passing through the coupling
waveguide [22]. In this add-through configuration, the total
and external linewidths in Eq. (4) can be written as

�ωtot ≡ �ωint + �ωext,t, (6)

�ωext ≡ �ωext,t, (7)

while the modal output fields obey

Aout,l = √
�ωext,t Al − Ainδ(l), (8)

with �ωext,t standing for the coupling losses in the through
port.

In the second architecture, referred to as add-drop, two
different couplers are used to perform in- and out-coupling
tasks. The comb is therefore retrieved at the drop port.
This double coupling has the disadvantage to increase the
overall losses (thereby increasing the threshold for Kerr
comb generation); however, at the opposite of the precedent
case, the output signal is proportional to the intracavity field
and provides an unambiguous representation of the physical
processes that are taking place inside the resonator. For the
add-drop configuration, the linewidths in Eq. (4) are explicitly
defined as

�ωtot ≡ �ωint + �ωext,t + �ωext,d, (9)

�ωext ≡ �ωext,t, (10)

and the modal output fields simply obey

Aout,l = √
�ωext,d Al , (11)

where �ωext,d stands for the coupling losses in the drop
port [59].

In all cases, the various linewidths are related to their
corresponding quality factors by �ωint,ext,tot = ωL/Qint,ext,tot.
A technique routinely used to determine the various quality
factors at the experimental level is the cavity-ring-down
method [60].

C. Spatiotemporal formalism

Several studies on the quantum properties of self-organized
dissipative optical structures are performed on systems that are
ruled by the LLE. In the case of Kerr combs, it has be shown
in Ref. [20] that the above modal expansion model is exactly
equivalent to the following normalized LLE

∂A
∂t

= −1

2
�ωtot A + iσA + ig0|A|2A

+ i
ζ2

2

∂2A
∂θ2

+√
�ωext,t Ain, (12)
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where A(θ,t) = ∑
l Al(t)eilθ is the total intracavity field

and θ ∈ [−π,π ] is the azimuthal angle along the cir-
cumference of the resonator. Higher-order dispersion
can be accounted for by replacing (ζ2/2)∂2A/∂θ2 with
vg

∑kmax
k=2(i�FSR )k(βk/k!)∂kA/∂θk , where the dispersion coef-

ficients βk = −[vg(−�FSR )k] ζk exactly correspond to those
used in fiber optics. The total number of intracavity photons is
therefore |A|2, while the output field is Aout = √

�ωext,t A −
Ain in the add-through configuration, and Aout = √

�ωext,d A
in the add-drop configuration. In several theoretical studies,
Eq. (12) is further normalized to

∂ψ

∂τ
= −(1 + iα)ψ + i|ψ |2ψ − i

β

2

∂2ψ

∂θ2
+ F, (13)

where ψ(θ,τ ) = (2g0/�ωtot)1/2A is the dimensionless intra-
cavity field and τ = �ωtott/2 = t/2τph is the dimensionless
time. The dimensionless parameters of this normalized equa-
tion are the frequency detuning α = −2σ/�ωtot, the cavity
second-order dispersion β = −2ζ2/�ωtot, and the external
excitation F = (8g0�ωext,t/�ω3

tot)
1/2
√

P/�ωL . In the context
of Kerr comb generation, the LLE has been extensively
investigated in several articles since the pioneering works of
Refs. [19–21].

In Ref. [57], an exhaustive study of the various dynamical
regimes of the LLE has been performed, and the stability
basin of the various solutions has been determined. In the
anomalous dispersion regime, the stationary solutions are rolls
(super- and subcritical), bright solitons (isolated or coexisting),
and soliton molecules (isolated or coexisting). In the case of
normal dispersion, the stationary solutions can be rolls, dark
solitons (isolated or coexisting), and nonsmooth dark solitons
(sometimes referred to as platicons; see Ref. [61]). For all these
stationary solutions, the Kerr comb is perfectly symmetric in
the semiclassical limit, and we see in Sec. V that this symmetry
opens the way for multimode squeezing when quantum noise
is accounted for.

D. Orders of magnitude in experimental systems

In order to facilitate comparisons between theory and
experiments, it is important to link the normalized parameters
and variables to their counterparts in SI units. In particular,
knowing the power levels involved provides key information
at the time to choose the low-noise, high-sensitivity com-
ponents needed to perform experiments with nonclassical
light [62].

In our Eq. (4), the dispersion parameter ζ2 is linked to
the parameter β2 used in fiber optics by β2 = −ζ2/vg�ω2

FSR

(in s2m−1), where vg = c/ng is the group velocity. The
coefficient g0 can be converted to the nonlinear coeffi-
cient γ = ωLn2/cAeff = g0TFSR/vg�ωL (in W−1m−1), which
is also well known in fiber optics, where Aeff = Veff/2πa

is the effective area and Veff is the effective volume. For
a spherical resonator of radius a, an approximation of
the effective volume of a WGM of azimuthal eigennum-
ber � and polar eigennumber m is given in Ref. [63] as
Veff 	 3.4 π

3
2 (λL/2πng)3�

11
6
√

� − m + 1. Since � 	 m for the
WGMs of interest, the effective area can therefore be approx-
imated as Aeff ∼ (λL/ng)

7
6 a

5
6 for a spherical WGM resonator,

and this is generally a higher bound estimate for WGM disks
or ring resonators. Finally, the intracavity and output dimen-
sionless intensities |Al|2 and |Aout,l|2 can be converted to watts
following |El|2 = �ωL |Al|2/TFSR and |Eout,l|2 = �ωL |Aout,l|2.

The theory based on the stability analysis of the normalized
LLE indicates that Kerr combs can scarcely be generated
when the normalized intracavity power |ψ |2 and external pump
power F 2 are inferior to 1. Therefore, the condition F 2

min = 1
leads the absolute minimum pump power (in watts)

Pmin = �ωL

8g0

�ω3
tot

�ωext,t
= 2πa

ω2
L

8γ v2
g

Qext,t

Q3
tot

(14)

to trigger Kerr comb generation, which corresponds to an
absolute minimum photon flux of |Ain|2min = Pmin/�ωL . On
the other hand, the condition |ψ |2min = 1 yields a formula for
the minimum intracavity power (in watts),

|Emin|2 = �ωL

2g0

�ωtot

TFSR

= ωL

2γ vg Qtot
, (15)

which corresponds to a minimal intracavity number of photon
equal to |A0|2min = �ωtot/2g0. The above values are therefore
absolute minima (necessary but not sufficient for comb
generation) that can be reached when the laser is accurately
detuned to σ = − 1

2�ωtot in the anomalous dispersion regime
(see Refs. [17,57]). For any other detuning, and in both
dispersion regimes, the threshold pump power Pth for Kerr
comb generation will necessarily be higher than Pmin, up to
a factor 100. However, the threshold number of intracavity
threshold number of photons |Ath|2 will still be equal, or very
close, to the minimal value |A0|2min [57].

Therefore, for mm-size crystalline resonator with 10 GHz
free-spectral range (TFSR = 100 ps), γ ∼ 1 W−1 km−1, ng ∼
1.4, and Qint = Qext ∼ 109 at 1550 nm in the add-through
configuration, the absolute minimum threshold power can
be as low as Pmin ∼ 1 mW. Such low pumping power has
already been demonstrated experimentally, like in Ref. [64],
where a threshold power of ∼2 mW was sufficient to trigger
Kerr comb generation. On the other hand, for an integrated
silicon nitride resonator with 100 GHz repetition rate, γ ∼
10 W−1 km−1, ng ∼ 2, and quality factors Qint = Qext ∼ 3 ×
106 at 1550 nm in the add-through configuration, the absolute
minimum threshold pump power is rather Pmin ∼ 1 W. In all
cases, it is also useful to remember that the intracavity power
is always such that |E |2 ∼ FrP , where Fr = �FSR/�ωtot 	
Qtot/�0 is the loaded finesse of the cavity.

III. QUANTUM MODEL FOR KERR OPTICAL
FREQUENCY COMBS

The construction of quantum models for Kerr combs is
required in order to understand the spatio- and spectrotemporal
behavior of the system when it is in a dynamical state like
one of those displayed in Fig. 2. The determination of this
dynamical behavior at the quantum level can be performed
through the canonical quantization of the semiclassical model
or by defining an Hamiltonian operator ruling the relevant
interactions in the system. The first approach has the advantage
to be more intuitive, while the second is generally helpful at the
time to establish conservation rules (which are closely related
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FIG. 2. Spatiotemporal (top row) and spectrotemporal (bottom row) representation at a given time t (snapshot) of some stationary solutions
for the normalized intracavity field ψ(θ ) = ∑

l ψle
ilθ when quantum noise is accounted for. The spatiotemporal representation displays the

intracavity field intensity |ψ |2 (which is proportional to the total intracavity photon number) as a function of the azimuthal angle θ along the
circumference of the resonator of radius a. The spectrotemporal representation displays the corresponding stem plot for the modal intensities
|ψl |2 ≡ |ψ̃(l)|2 as a function of the reduced eigennumber l (note that, technically speaking, these spectrotemporal snapshots are not Fourier
spectra; otherwise, they would have a smooth envelope like in Fig. 5). The quantum noise has been added to the deterministic stationary
solutions (flat state, rolls, and solitons) and in the figure, the noise intensity has been set at a much stronger intensity than realistic quantum
noise for the sake of visual clarity. The parameters of the system are defined in Sec. VI C. In the spectral domain, spontaneous FWM occurs in
(e), while stimulated FWM occurs in (f), (g), and (h). Note that the pumped mode is l = 0, so that the side modes expand as l = ±1, ± 2, . . .

(a), (e) Flat state (P = 1.5 mW and σ = −κ). The system is here under threshold. The deterministic intracavity field is constant and in the
spectral domain there is only one spectral line. The effect of quantum noise is to induce a random modulation of the flat state in the spatial
domain and to generate noisy side modes around the pump in the spectral domain. (b), (f) Roll pattern of order L = 20 (P = 2.5 mW and
σ = −κ). There are 20 rolls in the spatial domain, and the deterministic oscillating side modes in the spectral domain have a 20-FSR spacing.
(c), (g) Bright soliton (P = 3.5 mW and σ = −2κ); (d), (h) dark soliton (P = 5.3 mW and σ = −2.5 κ).

to commutators involving the Hamiltonian). In the present
article we use both formalisms, which are introduced in this
section to derive the temporal behavior of the Kerr comb.

A. Canonical quantization

The canonical quantization makes it possible to derive the
quantum counterpart of a semiclassical model, and in our case

FIG. 3. Schematic representation of the experimental setups used to analyze the quantum states of a Kerr comb. Practical elements such as
polarization controllers, amplifiers, variable attenuators, isolators, etc., have been omitted for the sake of conceptual clarity. (a) Pump below
threshold (spontaneous FWM). Two symmetric side modes from the parametric fluorescence spectrum can be isolated and can be processed in
the time domain using a time interval analyzer (TIA), or in the spectral domain using an optical spectrum analyzer (OSA). Note that the TIA
and the OSA should normally not be used simultaneously. (b) Pump above threshold (stimulated FWM). Two symmetric side modes from the
Kerr comb are isolated and photodetected. The electric signals from the photodetectors can then be subtracted, and the residual signal can be
monitored using an electrical spectrum analyzer (ESA). Squeezing corresponds to the situation where this signal is reduced below the standard
quantum-noise limit (shot-noise of the photodetectors). Note that in the ESA, the baseband spectrum will be a single-side band (the double-side
band pictogram is only a convenient visual reminder of the squeezing spectra we are theoretically plotting in this article).
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it consists in three steps [65,66]: (i) Replace all the fields
Al(t) and their complex conjugates A∗

l (t) with annihilation
and creation operators âl(t) and â†

l (t), respectively [67];
(ii) introduce vacuum fluctuation operators for every loss
mechanism (intrinsic or extrinsic) in the optical system; (iii)
introduce vacuum fluctuation operators at both the in- and
out-coupling ports.

The creation and annihilation operators obey the following
boson commutation rules:

[âl ,â
†
l′ ] = δl,l′ , (16)

[âl ,âl′ ] = [â†
l ,â

†
l′ ] = 0. (17)

The semiclassical photon number |Al|2 = A∗
l Al , which was

a measure of the intracavity optical energy for each mode,
is now represented by its quantum counterpart, which is the
photon number operator

n̂l = â†
l âl . (18)

It is useful to recall that the ordering of the operators â†
l and âl

cannot be arbitrarily swapped, as these two operators do not
commute. We adopt here the so-called normal ordering which
consists in placing the creation operators on the left and the
annihilation operators on the right.

The vacuum fluctuations associated with losses and cou-
pling can be explicitly introduced in each mode using the
vacuum operators V̂i,l for the intrinsic losses, V̂t,l for the
coupling losses in the through port, and V̂d,l for the coupling
losses in the drop port. These free-field operators have zero-
mean value and obey the commutation rules

[V̂s,l(t),V̂
†
s′,l′ (t

′)] = δs,s′ δl,l′ δ(t − t ′), (19)

where s, s′ = t (through), i (intrinsic), or d (drop). The
vacuum fluctuations, which are necessary to avoid a violation
of the Heisenberg uncertainty principle, have the following
correlation properties:

〈V̂s,l(t)V̂
†
s′,l′(t

′)〉 = δs,s′ δl,l′ δ(t − t ′), (20)

〈V̂†
s,l(t)V̂s′,l′(t

′)〉 = 0, (21)

〈V̂s,l(t)V̂s′,l′(t
′)〉 = 〈V̂†

s,l(t)V̂
†
s′,l′ (t

′)〉 = 0. (22)

The pumping field is now defined as a coherent state,

Âin = Ain + V̂t,0, (23)

which is the sum of a semiclassical contribution Ain (this is
a shorthand for Ain1̂, where 1̂ is the identity operator) and a
vacuum fluctuation that will be inserted in the through port.
Its commutation rules is therefore

[Âin(t),Â†
in(t ′)] = [V̂t,0(t),V̂†

t,0(t ′)] = δ(t − t ′), (24)

and then it has the same quantum-noise properties as a vacuum
fluctuation.

The canonical quantization can be now be performed by
transforming the semiclassical Eqs. (4), (8), and (11) into their
quantum counterparts.

Let us first introduce the following notation for the sake of
conciseness:

2κi ≡ �ωint, (25)

2κd ≡ �ωext,d, (26)

2κt ≡ �ωext,t, (27)

2κ ≡ �ωtot. (28)

For the add-through configuration, the quantum model explic-
itly reads

˙̂al = −κ âl + i

[
σ − 1

2
ζ2l

2

]
âl + δ(l)

√
2κt Ain

+ ig0

∑
m,n,p

δ(m − n + p − l) â†
nâmâp

+
√

2κt V̂t,l +
√

2κi V̂i,l , (29)

with

κ = κt + κi, (30)

Âout,l =
√

2κt âl − Ainδ(l) − V̂t,l . (31)

On the other hand, for the add-drop configuration, the quantum
model is

˙̂al = −κ âl + i

[
σ − 1

2
ζ2l

2

]
âl + δ(l)

√
2κt Ain

+ ig0

∑
m,n,p

δ(m − n + p − l) â†
nâmâp

+
√

2κt V̂t,l +
√

2κi V̂i,l +
√

2κd V̂d,l , (32)

where the losses and the output field operator obey

κ = κt + κi + κd, (33)

Âout,l =
√

2κd âl − V̂d,l . (34)

Note that because of the normal ordering, the creation operator
in the nonlinear interaction terms is always placed on the left.
Also, in the canonical quantization procedure, the pump fields
Ain have not been explicitly replaced by the operator Âin, since
the related vacuum fluctuation

√
2κt V̂t,0 is already accounted

for in the generic term
√

2κt V̂t,l .

B. Hamiltonian formalism

The theoretical understanding of the quantum properties of
Kerr optical frequency combs can also be achieved through an
Hamiltonian formalism, and in our case, the total Hamiltonian
of the system has three contributions.

The first contribution corresponds to the propagation of the
fields following

Ĥfree = �

∫ +π

−π

â†
[
σ + 1

2
ζ2

∂

∂θ2

]
â

dθ

2π

= �

∑
l

[
σ − 1

2
ζ2l

2

]
â†

l âl . (35)
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The second contribution originates from the external pump
field and reads

Ĥpump = i�
√

2κt Ain (â†
0 − â0). (36)

The third and last contribution comes from the interactions
related to the Kerr nonlinearity:

ĤKerr = −1

2
�g0

∫ +π

−π

(â†)2
(
â
)2 dθ

2π

= −1

2
�g0

∑
m,n,p,q

δ(m − n + p − q) â†
nâ†

q âmâp. (37)

For the physical understanding of the quantum phenomena in
Kerr media, it is sometimes useful to decompose the interaction
Hamiltonian itself into three contributions following

ĤKerr = ĤSPM + ĤCPM + ĤFWM , (38)

where

ĤSPM = −1

2
�g0

∑
m

(â†
m)2(âm)2 (39)

is the self-phase modulation (SPM) contribution (a single
mode is involved in the interaction),

ĤCPM = −2�g0

∑
m<n

â†
mâ†

nâmân (40)

is the cross-phase modulation (CPM) contribution (two distinct
modes are involved), while the four-wave mixing (FWM) term
ĤFWM gathers all the remaining monomials of ĤKerr, which
necessarily involves three or four distinct interacting modes.

The total Hamiltonian is therefore

Ĥtot = Ĥfree + Ĥpump + ĤKerr, (41)

and it is interesting to note that this Hamiltonian can be very
large for Kerr combs. In earlier studies related to quantum
correlations in systems ruled by the LLE, the Hamiltonian
was always truncated to a maximum of a few tens of
monomials. However, in our case, if we consider a comb with
l = −K, . . . ,K (that is, a comb with 2K + 1 modes), then
the interaction Hamiltonian ĤKerr has exactly 1

3 [2(2K + 1)3 +
(2K + 1)] monomials: This number therefore grows in a cubic
polynomial fashion with the number of modes, and for a comb
with ∼100 modes, there is already ∼106 monomials in the
Hamiltonian.

The Hamiltonian Ĥtot can now be used to track the temporal
dynamics of the quantum Kerr comb, as it permits to obtain an
explicit equation for the annihilation operator âl following

˙̂al = 1

i�
[âl ,Ĥtot] +

∑
s

[−κsâl +
√

2κs V̂s,l], (42)

where the index s runs across the various loss terms corre-
sponding to the configuration under study, that is,

s =
{

t,i for add-through,

t,i,d for add-drop.
(43)

The term κ = ∑
s κs stands for the total losses [see Eqs. (6)

and (9)], and V̂s,l represent the vacuum fluctuations corre-
sponding to these losses. On the other hand, the output field

is

Âout,l =
√

2κr âl − Ainδt,rδ(l) − V̂r,l , (44)

where the index r stands for the output port following

r =
{

t for add-through,

d for add-drop.
(45)

Equation (42) is identical to Eqs. (29) and (32), and the
output field operators defined in Eq. (44) in the add-through
and add-drop configurations obey the same relationships as
in Sec. III A. The commutator [âl ,Ĥtot] generates exactly
3K2 + 3K − l2 + 1 monomials, and, accordingly, Eq. (42)
includes a large number of terms as well. We also note that
this formalism is close to the one adopted by Matsko et al.
to investigate the temporal dynamics of Kerr combs in the
deterministic regime, that is, when all the vacuum noise terms
are uniformly set to zero [68].

Another approach is to study the master equation [42]

˙̂ρ =
∑

l

�lρ̂ − 1

i�
[ρ̂,Ĥtot], (46)

where ρ̂ is the density operator for the comb, and �l is a
Liouvillian explicitly defined as

�l = [âl ρ̂,â†
l ] + [âl ,ρ̂â†

l ]. (47)

In this article, however, we only consider the Hamiltonian in
the context of Eq. (42), which yields a set of equations that
are formally identical to those obtained through the canonical
quantization in Sec. III A.

C. Spatiotemporal formalism

The quantum form of the spatiotemporal LLE for Kerr comb
generation is

∂

∂t
â = −(κ − iσ ) â + ig0 â†â2 + i

ζ2

2

∂2

∂θ2
â +

√
2κt Ain

+
∑

s

√
2κs V̂s(θ,t), (48)

where â(θ,t) = ∑
l âl(t) eilθ is the total intracavity an-

nihilation operator. The quantum equation in the case
where higher-order dispersion is accounted for is straight-
forwardly obtained by replacing (ζ2/2)∂2â/∂θ2 with
vg

∑kmax
k=2(i�FSR )k(βk/k!)∂kâ/∂θk . The multimode vacuum

fluctuation operators are analogously defined as V̂s(θ,t) =∑
l V̂s,l(t) eilθ , and the output field annihilation operator reads

Âout(θ,t) = ∑
l Âout,l(t) eilθ . Quantum versions of the LLE

for other physical systems have previously been investigated
by several researchers in one and two transverse spatial
dimensions (see, for example, Refs. [42–45,69]).

IV. SYSTEM UNDER THRESHOLD: SPONTANEOUS
FOUR-WAVE MIXING

When the system is pumped under threshold (this is always
the case when P < Pmin), only the pumped mode l = 0 is
excited from the semiclassical standpoint; that is, A0 �= 0 and
Al ≡ 0 for l �= 0. However, from a quantum perspective, there
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are quantum fluctuations in all modes, which are allowing
for the spontaneous photonic interaction 2�ω0 → �ωl + �ω−l .
The objective of this section is to determine the power spectra
of all the side modes and their eventual correlations as a
function of pump power, dispersion, detuning, and nonlinear
gain [see Fig. 3(a)]. In the scientific literature, the topic
of quantum dynamics of nonlinear optical systems pumped
under threshold has been the focus of several research works,
essentially in the context of parametric down-conversion [70–
76] or for spontaneous FWM [77,78]. A convenient method to
analyze the system under threshold consists of establishing the
linearized time-domain equation for the quantum fluctuations
and then calculate their Fourier spectra.

A. Quantum Langevin equations

In order to understand the effect of the quantum fluctu-
ations, let us consider that under threshold the annihilation
operator in the various modes of the resonator can be explicitly
rewritten as

âl =
{
A0 + δâ0 for l = 0,

δâl for l �= 0,
(49)

where the operators δâl stand for the quantum fluctuations
in a given mode l ∈ {−K, . . . ,K}. By inserting Eq. (49) into
Eq. (42), it appears that the quantum dynamics of the system is
decomposed under the form of a nonlinear algebraic equation,

(−κ + iσ )A0 +
√

2κt Ain + ig0|A0|2A0 = 0, (50)

for the central mode l = 0, while we have the set of 2K

differential equations,

δ ˙̂al = Rl δâl + Sl δâ†
−l +

∑
s

√
2κs V̂s,l , (51)

for the quantum fluctuations in the side modes ±l �= 0, with

Rl = −
[
κ − i

(
σ − 1

2
ζ2l

2

)]
+ 2ig0 |A0|2, (52)

Sl = ig0 A2
0, (53)

being complex-valued parameters. Equations (51) can be
rewritten under the form of K independent sets of 2 × 2
quantum-noise-driven linear flows, following[

δ ˙̂al

δ ˙̂a†
−l

]
= Ja,l

[
δâl

δâ†
−l

]
+
∑

s

√
2κs

[
V̂s,l(t)

V̂
†
s,−l(t)

]
, (54)

where

Ja,l =
[
Rl Sl

S∗
l R∗

l

]
(55)

is a 2 × 2 Jacobian matrix. It is interesting to note that the
quantum fluctuations δâ±l are mutually coupled, and are
independent from the other modes of order l′ �= l.

B. Spontaneous emission spectra

In the Fourier domain, we transform the operators as

X̃(ω) = 1√
2π

∫ +∞

−∞
X̂(t)eiωtdt, (56)

and we find that in the spectral domain Eq. (54) can be rewritten
as [

δãl(ω)
δã†

−l(ω)

]
= −[Ja,l + iωI2]−1

×
∑

s

√
2κs

[
Ṽs,l(ω)

Ṽ
†
s,−l(ω)

]
, (57)

where I2 is the 2 × 2 identity matrix. Using Eq. (44), it is easy
to find that the output annihilation and creation operators obey[

δÃout,l(ω)

δÃ
†
out,−l(ω)

]
= −[Ja,l + iωI2]−1

×
∑

s

√
4κrκs

[
Ṽs,l(ω)

Ṽ
†
s,−l(ω)

]
−
[

Ṽr,l(ω)

Ṽ
†
r,−l(ω)

]
.

(58)

Using the correlation properties of the vacuum fluctuations in
the Fourier domain

〈Ṽs,l(ω)Ṽ†
s′,l′ (ω

′)〉 = δs,s′ δl,l′ δ(ω − ω′), (59)

〈Ṽ†
s,l(ω)Ṽs′,l′ (ω

′)〉 = 0, (60)

〈Ṽs,l(ω)Ṽs′,l′(ω
′)〉 = 〈Ṽ†

s,l(ω)Ṽ†
s′,l′ (ω

′)〉 = 0, (61)

together with Eq. (58), the spectral density of the output photon
flux in the side modes ±l can be explicitly calculated as

Ssp,l(ω) = 〈δÃ†
out,±l(ω)δÃout,±l(ω)〉

= 4ρκ2 g2
0 |A0|4[

κ2 − g2
0 |A0|4 + ξ 2

l − ω2
]2 + 4κ2ω2

, (62)

where

ξl = �[Rl] = σ − 1
2ζ2l

2 + 2g0|A0|2 (63)

is the overall shift induced by laser detuning, group-velocity
dispersion, and self-phase modulation for a given mode l, while
the parameter ρ ∈ [0,1[ is defined as

ρ = κr

κ
(64)

=
{
κt/(κt + κi) for add-through,

κd/(κt + κi + κd) for add-drop.

The parameter ρ is the ratio between out-coupling and total
losses and can therefore be interpreted as the ratio between
the number of detected photons versus the total number of an-
nihilated photons [76]. The best performance for spontaneous
FWM is achieved for ρ → 1, which physically corresponds
to strong overcoupling in the detection port, that is, to κt � κi

in the add-through configuration, and to κd � κt,κi in the
add-drop configuration. Therefore, ultralow-loss resonators
are the most perfectly suitable for the purpose of spontaneous
FWM, as ρ is maximized when κi → 0 (or Qint → +∞).

Equation (62) defines the line shape of the side-mode
spectra, when populated by spontaneous FWM. Since the
spectra can be rewritten as Ssp,l(ω) = 4ρκ2g2

0 |A0|4/|Dl(ω)|2,
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FIG. 4. Line shape Ssp,l(ω) of various side modes with different l

values when populated by spontaneous FWM, as defined in Eq. (62).
The parameters are set to σ = 1

2 κ, ρ = 0.5, g0|A0|2 = κ/10, and
ζ2 = κ/100. Note that these parameters correspond to those of
Fig. 5(b). Continuous green line, l = ±1; the line shape is single
peaked. Dotted red line, l = ±25; the line shape is doubled peaked.
Dashed red line, l = ±50; the line shape is still doubled peaked, and
the separation between the peaks is wider.

with

Dl(ω) = [
κ2 − g2

0 |A0|4 + ξ 2
l − ω2

]− 2iκω, (65)

it is easy to demonstrate that the line shapes of Ssp,l(ω) are
either single or double peaked, depending on if the biquadratic
polynomial |Dl(ω)|2 has one or two minima, respectively. The
spectra are thereby found to be single peaked when

ξ 2
l � κ2 + g0|A0|2 (66)

and double-peaked otherwise. In other words, single-peaked
line shapes correspond to a small overall detuning |ξl|, while
double-peaked ones indicate large overall detunings. A direct
consequence is that the side modes are always double peaked
in the asymptotic limit l → ±∞. These two typical line-shape
profiles are displayed in Fig. 4.

From Eq. (62), it is possible to define the envelope of
the spontaneous emission spectrum, which is defined as the
continuous line linking the side-mode peaks in the spectral
domain. These maxima are located at the frequency ωm = 0
for single-peaked side modes (SPS), and at ωm = ±[ξ 2

l − κ2 −
g0|A0|2]

1
2 for the double-peaked side modes (DPS). Inserting

these frequency values in Eq. (62) yields the following
envelope:

Senv(l) =

⎧⎪⎨
⎪⎩

4ρ
g2

0 |A0|4κ2[
κ2−g2

0 |A0|4+ξ 2
l

]2 for SPS,

ρ
g2

0 |A0|4
ξ 2
l −g2

0 |A0|4 for DPS.

(67)

There are therefore two types of envelope Senv(l). The first kind
has two maxima located at the nearest integer approximation
of

l 	 ±
√

2

ζ2
(σ + 2g0|A0|2), (68)

when 2(σ + 2g0|A0|2)/ζ2 > 0 (this condition can only be
fulfilled for single-peaked side modes). The second kind
corresponds the case where 2(σ + 2g0|A0|2)/ζ2 � 0, and it
yields an envelope that with a single maximum located around
the pump frequency (l = 0). The various types of envelopes

FIG. 5. Spontaneous FWM (parametric fluorescence) spectra for
various values of the laser frequency detuning σ . Note that the pump
signal (l = 0) has been removed. The green lines are single-peaked
side modes, while the red lines are double-peaked side modes (see
Fig. 4). The thick black line is the envelope Senv(l) of the spectrum as
defined in Eq. (67). The parameters are set to ρ = 0.5, g0|A0|2 =
κ/10, and ζ2 = κ/100. (a) σ = 5κ , the envelope Senv(l) has two
maxima located around l = ±32 as predicted by Eq. (68); (b) σ = 1

2 κ ,
the envelope still has two maxima, located around l = ±12; (c)
σ = − 1

2 κ , the envelope only has one maximum; (d) σ = −5κ , there
is only one maximum and all the modes are double peaked.

are displayed in Fig. 5, where it can be seen that when the
pumping is resonant (|σ | < κ), the spectrum configuration is
such that there are single-peaked side modes around the pump,
and double-peaked ones at the edges of the spectrum. However,
for strong detuning, we have either the case where there are
no single-peaked side modes at all (the envelope only has
one maximum) or the one where single- and double-peaked
line shapes alternate as the side-mode order is varied (with
single-mode line shapes located around the two maxima of the
envelope).

However, the spectrum Ssp,l(ω) diverges when the denomi-
nator function |Dl(ω)|2 → 0. In particular, such a divergence
is observed when the three following conditions are fulfilled:

ω = 0, (69)

g0|A0|2 = κ ⇒ |A0|2 = |Ath|2, (70)

ξl = 0 ⇒ σ = 1
2ζ2l

2 − 2κ. (71)

The first condition is an equidistance condition, which indi-
cates that the spontaneous FWM lines are precursors of the
stimulated FWM comb that is expected to emerge just above
threshold. The second equation is the amplitude condition
(null gain) which indicates that the FWM is passing from
being spontaneous to stimulated. The third and last equation
is a phase-matching condition. However, this unphysical
divergence occurs because the linearization procedure fails
when the system is pumped close to threshold, since the
higher-order contributions are not negligible anymore. This
regime of large quantum fluctuations just below threshold is
nontrivial and therefore deserves a study of its own. Many
of the key properties of the system in this strongly driven
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regime have been investigated in detail by Vernon and Sipe in
Ref. [36].

C. Output photons flux and power of spontaneous
emission spectra

Knowing the spectral power density of the spontaneous
FWM spectra, it is possible to calculate analytically the output
photon flux Rout,l (or photon production rate, in units of s−1)
for any mode l using the Parseval theorem following

Rout,l = 1

2π

∫ +∞

−∞
Ssp,l(ω) dω, (72)

while the output power (in W) for each mode l is simply
obtained through

Pout,l = �ωL Rout,l , (73)

and the total power emitted in the spontaneous emission
spectra is

Pout = �ωL

∑
l �=0

Rout,l . (74)

The explicit calculation of the integral in Eq. (72) mathemati-
cally leads two different cases, depending on if the intracavity
photon number |A0|2 [solution of Eq. (50)] is small or not with
regards to the threshold photon number value |Ath|2 = κ/g0.

1. Case of weak pumping

The first case, which is referred to here as the case of weak
pumping, mathematically corresponds to

g2
0 |A0|4 < κ2 + ξ 2

l , (75)

and it is particularly important because it physically corre-
sponds to the most widespread experimental configuration.
Effectively, weak pumping permits to avoid parasitic nonlinear
(Raman, Brillouin) and thermal effects (such as thermo-optical
oscillations; see Ref. [79]), thereby allowing for a better control
of the spontaneous emission process. In this case, the output
flux of spontaneously emitted photons is explicitly defined as

Rout,l = ρκ
g2

0 |A0|4
κ2 − g2

0 |A0|4 + ξ 2
l

. (76)

However, the nonlinear relationship between |A0|2 and P =
�ωL A2

in is nontrivial, as evidenced by the nonlinear equa-
tion (50). This situation impedes a simple quantitative under-
standing of the interplay between pump power and parametric
spontaneous emission. This nonlinearity disappears in the
asymptotic case of very weak pumping (|A0|2 � |Ath|2 =
κ/g0), which is the most relevant from a physical standpoint
as highlighted above. Effectively, when the pump power is
extremely small, the intracavity photon number is typically
much smaller than the Kerr comb threshold. The nonlinear
gain term can therefore be neglected in Eq. (50) and in that
case, the intracavity photon number in the pumped mode scales
with the pump power following

|A0|2 	 2κt

κ2 + σ 2

P

�ωL

. (77)

In this very weak pumping regime, the intracavity photon
number |A0|2 is therefore proportional to the input pump
power P , and therefore the output photon flux can now be
determined as

Rout,l 	 Rmax[
1 + (

σ
κ

)2]2[
1 + 1

κ2

(
σ − 1

2ζ2l2
)2] , (78)

where

Rmax = 4ρ
g2

0κ
2
t

κ5

[
P

�ωL

]2

= 32
Q6

tot

QrQ
2
t

[
γ v2

g

2πa

]2
P 2

ω3
L

(79)

is the maximum photon production rate that can be achieved in
a given side mode. As far as orders of magnitude are concerned,
if we consider the resonators described in Sec. II D, the
maximal photon flux per side mode is such that Rmax ∼ 104 s−1

when the crystalline resonator is pumped with 0.1 mW or when
the integrated ring resonator is pumped with 10 mW.

Further simplifications can be considered to establish a
useful approximation of the side-mode photon flux Rout,l ,
or equivalently, the side-mode power Pout,l . For example, in
the common case of a ring-resonator of radius a which is
resonantly pumped (σ = 0) and critically coupled (ρ = 1/2)
in the add-through configuration (κt = κi = κ/2), Eq. (78) can
be simplified and leads to the formula for the side-mode power

Pout,l 	 �ωL

g2
0

2κ3

[
P

�ωL

]2

	 4�ωL

[
γ v2

g

2πa

]2[
Qtot

ωL

]3

P 2, (80)

when dispersion effects are neglected. It is noteworthy that the
above formula, which shows that Pout,l scales as γ 2P 2Q3a−2,
exactly corresponds to the one proposed by Azzini et al.
in Ref. [32]. It should also be noted that, as a general
rule of thumb, spontaneous emission is stronger with higher
nonlinearity, higher pump power, higher Q factors, and smaller
size.

Still, in the very weak pumping regime, the total power
emitted in the full spontaneous emission spectrum (all the side
modes) can be calculated using Eq. (78) and a continuous
approximation of the discrete sum of Eq. (74), following

Pout 	 �ωL

∫ +∞

−∞
Rout,l dl

	 �ωL Rmax

π
√

κ
|ζ2|[

1 + (
σ
κ

)2] 9
4

⎡
⎣1 + sgn(σ/ζ2)√

1 + (
κ
σ

)2

⎤
⎦

1
2

, (81)

and it appears that spontaneous FWM is globally more
effective when |ζ2| → 0 (vanishing dispersion) and |σ | → 0
(resonant pumping). Naturally, in the limit case ζ2 = 0, other
effects such as higher-order dispersion or pump depletion have
to be considered in order to prevent the unphysical power
divergence.
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2. Case of strong pumping

The second case of spontaneous FWM which is referred to
as the case of strong pumping corresponds to

g2
0 |A0|4 > κ2 + ξ 2

l . (82)

This case physically corresponds to the situation where the
overall detuning ξl is very large, so that the system remains
under threshold even when the pump power is very large
(|A0|2 ∼ |Ath|2). The photon flux in a side mode l is given
in that case by

Rout,l = ρκ2 g2
0 |A0|4√

g2
0 |A0|4 − κ2

[
g2

0 |A0|4 − κ2 − ξ 2
l

] . (83)

This case of strong pumping is scarcely explored experi-
mentally, because, as emphasized earlier, the high intracavity
power triggers many parasitic phenomena.

Note that the limit case g2
0 |A0|4 = κ2 + ξ 2

l leads to an
unphysical divergence that is circumvented by dropping the
hypothesis of undepleted pump and pairwise coupled side
modes.

D. Quantum correlations and entanglement

The correlation of the output annihilation operators can be
calculated as

C(ω) = 〈δÃout,−l(ω)δÃout,l(ω)〉

= −ρ
2κS l

|Dl(ω)|2 [D∗
l (ω) + 2κ (R∗

l − iω)], (84)

and it appears that it is obviously not null.
It is interesting to note that the dynamical Eqs. (51) for the

side-mode fields ±l correspond to a simplified Hamiltonian
with the approximation of a strong pump with regards to the
side modes; that is, 〈n̂0〉 � 〈n̂±l〉. In that case, the interaction
between the pump and the side modes ±l is described by the
simplified Hamiltonian

Ĥl = − 1
2 �g0

{(
A2

0

)∗
âl â−l + A2

0 â†
l â

†
−l

}
= i� {ζ ∗ âl â−l − ζ â†

l â
†
−l}, (85)

with ζ = − 1
2 ig0A2

0. It is well known that the Hamiltonian Ĥl

creates entangled photons in pairs following [66]

|ψ|l|(t)〉 = e[Ĥl / i�]t |0,0〉 (86)

= 1

cosh r

+∞∑
n=0

(−eiϕ)n tanhn r |n,n〉, (87)

where ζ t = reiϕ . Hence, when the system is pumped far
below threshold, the main characteristics of the spontaneously
emitted photons can be estimated analytically.

V. SYSTEM ABOVE THRESHOLD: QUANTUM
CORRELATIONS AND SQUEEZING FOR THE

PHOTON NUMBERS

In the frequency comb corresponding to a stationary pattern
like rolls of solitons, the photon number in each semiclassi-
cal side modes is defined as |Aout,±l |2 = Nout,±L, which is

proportional to the optical power that can be photodetected
experimentally for each of these two modes. We recalled in
Sec. II C that to be symmetrical, both side modes have the same
amplitude, their photon numbers are equal, and the average
intensity difference 〈Nout,�〉 = 〈Nout,l〉 − 〈Nout,−l〉 is null in
the semiclassical limit. This result indicates that the quantum
operator corresponding to this difference in photon numbers
could potentially display a noticeably nonclassical behavior
under optimal conditions.

Here we show that in a stationary Kerr comb (rolls or
solitons), the photon number difference Nout,� = Nout,l −
Nout,−l which experimentally corresponds to difference of
optical powers photodetected for the modes +l and −l can,
under certain conditions, display squeezing [see Fig. 3(b)]. In
the literature, this phenomenon is sometimes referred to as
two-mode squeezing because two optical modes are involved
in the process, which is the opposite of traditional notion of
squeezing, where a single mode is considered. We show that
this two-mode squeezing can be observed not only for rolls
close to threshold within a three-mode approximation, but
also for any type of stationary Kerr comb, regardless of the
number of modes involved and the dispersion regime and even
far above threshold.

A. General case of combs with arbitrary number of modes

Let us consider the modal photon number operators n̂l =
â†

l âl and n̂−l = â†
−l â−l , which correspond to the modes +l

and −l, respectively. From the Heisenberg Eq. (42), we can
determine the time-domain dynamics of these operators as

˙̂n±l = ˙̂a†
±l â±l + â†

±l
˙̂a±l

= −2κn̂±l + 1

i�
[n̂±l ,Ĥtot]

+
∑

s

√
2κs (V̂†

s,±l
â±l + â†

±lV̂s,±l
), (88)

with s = t, i for the add-through configuration and s = t, i,
d for the add-drop configuration. It can be demonstrated that
the photon numbers n̂±l do not commute with the Hamiltonian
Ĥtot.

We can use Eqs. (88) to show that the operator

n̂
�

= n̂+l − n̂−l (89)

standing for the photon number difference obeys the time-
domain equation

˙̂n
�

= −2κn̂
�

+ 1

i�
[n̂

�
,Ĥtot] +

∑
s

√
2κs Ĝs, (90)

where

Ĝs = V̂†
s,+l

â+l + â†
+lV̂s,+l

− V̂†
s,−l

â−l − â†
−lV̂s,−l

. (91)

The expectation values related to Ĝs are

〈Ĝs(t)〉 = 0, (92)

〈Ĝs(t)Ĝs′(t ′)〉 = 〈n̂
�
〉 δs,s′ δ(t − t ′), (93)

where

n̂
�

= n̂+l + n̂−l (94)
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is the photon number operator for the sum of the side modes
±l [45].

In the general case, Eq. (90), ruling the dynamics of the
photon number difference, is highly nonlinear. However, it
degenerates to a linear Langevin equation when n̂

�
commutes

with Ĥtot. In particular, this condition is fulfilled when the
photon number individually commutes with Ĥfree, Ĥpump, and
ĤKerr.

It is not difficult to show that n̂
�

commutes with both Ĥfree

and Ĥpump. However, the determination of the commutator
[n̂

�
,ĤKerr] is much less trivial. More explicitly, using the

relationships

[n̂±l ,ĤKerr] = [â†
±l ,ĤKerr]â±l + â†

±l[â±l ,ĤKerr], (95)

we can derive an explicit expression of the commutator
[n̂

�
,ĤKerr], following

[n̂
�
,ĤKerr] = [n̂+l ,ĤKerr] − [n̂−l ,ĤKerr]

= �g0

∑
n,p,q

â†
nâ†

q âp {δ(l − n + p − q) âl

− δ(l + n − p + q) â−l} − H.c., (96)

where H.c. stands for the Hermitian conjugate of all preceding
terms. In fact, by setting p ≡ q, it can be shown that
[n̂

�
,ĤSPM ] and [n̂

�
,ĤCPM ] are both null regardless of the size

of the comb. However, [n̂
�
,ĤFWM ] is not necessarily null. This

implies that the photon number difference is generally not
a conserved quantity. For example, for a five-mode comb
(let us consider l = −2, . . . , + 2 for the sake of simplicity),
the photonic interaction 2�ω−1 → �ω0 + �ω−2 induces a
loss of two photons in the mode l = −1 (in favor of the
modes l = 0 and l = −2), while its symmetric side-mode
counterpart l = 1 remains unaffected. Hence, despite the
fact that 〈N�〉 = 〈Nl〉 − 〈N−l〉 is expected to be null (on
average) in the semiclassical approximation, the value of N�

itself is not necessarily conserved at the photon level. This
phenomenology can be witnessed whenever the size of the
comb is strictly larger than 3.

However, when the size of the comb is equal to 3, the
photon number difference does commute with the interaction
Hamiltonian and therefore is conserved. This case corresponds
to the problem that was originally investigated by Lugiato
and Castelli in Ref. [42]. From a physical standpoint, the
explanation of this feature is that in three-mode Kerr combs,
any variation of photon number in one side mode must
induce the very same variation in the other side mode.
Therefore, in this case, the photon number difference itself
N� = Nl − N−l (and not only its average value) is strictly
null in the deterministic photon picture. As a consequence, in
three-mode Kerr combs, nonclassical light can be generated in
twin beams, as analyzed in the next section.

B. Particular case of combs with three modes
(pump, signal, and idler)

We aim here to derive the output spectra of the photon-
number difference in both the add-through and add-drop
configurations, when the Kerr comb is constituted with only
three modes. Such combs arise for example in the anomalous

dispersion regime just after a super-critical Hamiltonian-Hopf
bifurcation (σ > − 41

30κ , see Refs. [25,57,80]). The system in
that case yields the so-called Turing patterns (or rolls) in the
time domain and primary combs in the frequency domain (Kerr
combs with multiple-FSR spacing). Using the normalized LLE
of Eq. (13), it has been shown in [57] that the threshold
pump power is F 2

th = 1 + (1 − α)2, which corresponds in watts
to

Pth = PminF
2
th = Pmin

[
1 +

(
1 + σ

κ

)2
]
, (97)

where Pmin is the absolute minimum power needed for comb
generation, and was introduced in Eq. (14). Above that
threshold pump power, a stable roll pattern of order L with

L 	
√

2

β
(α − 2) =

√
2

ζ2
(σ + 2κ) (98)

emerges in the θ domain through modulational instability, and
it essentially features three modes l = 0, ± L in the frequency
domain (see Refs. [17,22,57]). At the experimental level,
the value of L can be as low as 1 and as high as ∼200
[81,82].

The photon number operators for the output fields ±l are

N̂out,±L = Â†
out,±LÂout,±L (99)

and they can be calculated using Eqs. (31) and (34).
The difference between these operators is experimentally
observable and can explicitly be defined as

N̂out,� = N̂out,+L − N̂out,−L

= 2κrn̂�
−
√

2κr Ĝr + N̂vac
r,�, (100)

where

N̂vac
r,� = V̂†

r,+L
V̂r,+L

− V̂†
r,−L

V̂r,−L
. (101)

When we consider the fact that the photon number commutes
with the total Hamiltonian following [n̂

�
,Ĥtot] = 0, Eq. (90)

becomes linear and can be translated in the Fourier space
according to

ñ
�

(ω) =
∑

s

√
2κs G̃s(ω)

2κ − iω
, (102)

and from Eq. (100), the Fourier spectrum of the difference in
photon numbers is found to be

Ñout,�(ω) = 2κrñ�
(ω) −

√
2κr G̃r(ω) + Ñvac

r,�(ω)

= 2κr

2κ − iω

∑
s

√
2κs G̃s(ω)

−
√

2κr G̃r(ω) + Ñvac
r,�(ω), (103)

so that the power spectrum can be determined as

〈|Ñout,�(ω)|2〉 = 2κr〈n̂�
〉 ω2 + 4κ(κ − κr)

ω2 + 4κ2
. (104)
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FIG. 6. Power spectra of pure amplitude and phase quadratures
for different values of the squeezing parameter ρ. The solid lines
correspond at the same time to the photon number difference spectrum
of Eq. (105) and to the pure amplitude quadrature spectrum of
Eq. (137), since both are identical. The dashed lines correspond to the
phase quadrature spectrum of Eq. (138). Green lines, ρ = 0.1; blue
lines, ρ = 0.5; red lines, ρ = 1. We have arbitrarily set κp ≡ 1

3 κ .

Since the shot noise level is 2κr〈n̂�〉, it is convenient to rewrite
this spectrum under the normalized form

S(ω) = 〈|Ñout,�(ω)|2〉
2κr〈n̂�

〉

= 1 − ρ
4κ2

ω2 + 4κ2
, (105)

where the parameter ρ ∈ ]0,1] is defined in Eq. (64). The
spectrum described by S(ω) is an inverted Lorentzian which
qualitatively displays a dip below the shot noise level close
to the zero frequency. It converges to 1 at ω = ±∞ and
to 1 − ρ at ω = 0. The parameter ρ therefore represents a
direct indicator of the squeezing efficiency, as ρ → 1 leads
to quasiperfect squeezing at zero frequency, while ρ → 0
leads to no squeezing at all frequencies. The case of perfect
squeezing would theoretically correspond to an ideal cavity
with null intrinsic losses in the add-through configuration,
since ρ = 1 for κi = 0 [42,45]. Some squeezing spectra of
the photon number difference with different values of ρ are
displayed in Fig. 6, where they have been plotted as solid
lines.

In Kerr comb generation, efficient squeezing (ρ → 1)
is achieved with strong overcoupling (κt � κi in the add-
through configuration, and to κd � κt,κi in the add-drop
configuration). Hence, exactly as for spontaneous FWM,
ultralow loss resonators are ideal since they systematically
maximize ρ because κi → 0. Around 1550 nm, the record
intrinsic Q factor is 3 × 1011 with a CaF2 resonator [83].
Intrinsic quality factors of the order of 109 are routinely
obtained with crystalline or amorphous WGM resonators.
Hence, these ultralow-loss resonators are therefore idoneous
candidates for highly efficient squeezing, and the technological
solutions for their large-scale fabrication [84] and integration
in chip-scale devices [85] are already available. Finally, it
is very important to note that achieving strong overcoupling
in the output port (κr → +∞) is important not only to
increase the efficiency of the squeezing (ρ → 1), but also
to increase its bandwidth (κ → +∞). However, one should

also keep in mind that the pump power Pmin needed to
trigger comb generation will grow as κ2 in this strongly
overcoupled regime [see Eq. (14)], so that an optimal power vs
bandwidth balance has to be found depending on the targeted
application.

VI. SYSTEM ABOVE THRESHOLD: QUANTUM
CORRELATIONS AND SQUEEZING FOR THE

AMPLITUDE AND PHASE QUADRATURES

For a wide range of parameters (pump power, cavity
detuning, and dispersion), Kerr combs can be phase locked
and lead to the emergence of stationary spatiotemporal patterns
which can be extended (rolls) or localized (solitons). Hence,
beside amplitude correlations, the phase of the optical fields
can display strong correlations as well.

These phase correlations at the semiclassical level can
lead to phase quadrature squeezing from a quantum per-
spective. We hereafter determine the linearized input-output
relationship that is needed to track the temporal dynamics
of the modal fluctuation operators under the influence of
vacuum noise. This fluctuation flow will allow us to determine
some relevant phase quadratures for rolls and bright and dark
solitons.

A. Linearized dynamics of the modal fluctuation operators

Let us consider a stationary Kerr comb spanning from l =
−K to l = K (total of 2K + 1 modes). The intracavity modal
fields can be perturbed as

âl = Al + δâl , (106)

where Al are the constant complex-valued numbers repre-
senting the semiclassical stationary states and δâl are the
fluctuation operators.

Then by plugging Eq. (106) into Eqs. (42), it can easily be
found that the steady-state amplitude of the oscillating modes
obey the set of (2K + 1) nonlinear algebraic equations

−
[
κ − i

(
σ − 1

2
ζ2l

2

)]
Al + δ(l)

√
2κt Ain

+ig0

∑
m,n,p

δ(m − n + p − l)A∗
nAmAp = 0, (107)

while the noise-driven fluctuations are ruled by the following
set of equations:

δ ˙̂al = −
[
κ − i

(
σ − 1

2
ζ2l

2

)]
δâl +

∑
s

√
2κs V̂s,l

+ig0

∑
m,n,p

δ(m − n + p − l) (108)

×{δâ†
nAmAp + A∗

nδâmAp + A∗
nAmδâp}.

The above fluctuation flow can be synthetically rewritten as

δ ˙̂al =
K∑

p=−K

Rlpδâp +
K∑

p=−K

Slpδâ†
p +

∑
s

√
2κs V̂s,l ,

(109)
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where

Rlp = −
[
κ − i

(
σ − 1

2
ζ2l

2

)]
δ(p − l)

+2ig0

∑
m,n

δ(m − n + p − l)AmA∗
n, (110)

Slp = ig0

∑
m,n

δ(m + n − p − l)AmAn (111)

can be considered as the elements of the (2K + 1)th-order
square matrices R and S, and the driving quantum-noise term∑

s

√
2κs V̂s,l represents the sum of all vacuum fluctuations for

a given mode l.
If we introduce the (2K + 1)-dimensional fluctuation and

vacuum noise vectors

δâ(t) =

⎡
⎢⎣

δâ−K (t)
...

δâ+K (t)

⎤
⎥⎦; V̂s(t) =

⎡
⎢⎣

V̂s,−K (t)
...

V̂s,+K (t)

⎤
⎥⎦, (112)

then we can write Eq. (109) under the form of a quantum-
noise-driven linear flow,

[
δ ˙̂a
δ ˙̂a†

]
= Ja

[
δâ
δâ†

]
+
∑

s

√
2κs

[
V̂s(t)

V̂
†
s(t)

]
, (113)

where

Ja =
[

R S
S∗ R∗

]
(114)

is a composite (block matrix) Jacobian of order 2 × (2K + 1).
It should be noted that this Jacobian matrix has to be
determined numerically, since its components exclusively
depend on the steady-state values of the semiclassical modal
fields Al .

B. Dynamics of the quadrature operators

Quadrature operators are observables of particular interest
for the study of the quantum properties of multimode fields.
They are Hermitian operators that correspond to linear com-
binations of annihilation and creation operators, and usually
the relevant linear combinations can be inferred from the
conserved quantities in the semiclassical limit.

In the case of Kerr combs, it is known that in the asymptotic
limit, the amplitudes of two symmetric modes −l and +l

are equal (|A+l| = |A−l|), and the sum of their phases is a
constant, following

φl + φ−l = Const = 2�l. (115)

The constant �l depends on the modes ±l under consideration,
but not on the initial conditions. In other words, once a
symmetric pair of modes has been chosen, the sum of its
steady-state slowly varying phases is a constant of motion.
For that particular pair of mode, the phase reference can be
shifted so that φl = φ−l ≡ �l , leading to the conservation law
φl − φ−l = 0 with the new frame.

From a quantum perspective, the corresponding two-mode
quadratures are [86]

δq̂ϕ,l = 1√
2

(δâ+l − δâ−l)e
−iϕ + H.c., (116)

with l = 1, . . . ,K . It is therefore interesting to investigate
the dynamics of all the quadratures δq̂ϕ,l altogether. For this
purpose, we can build the K-dimensional operator

δq̂ϕ =

⎡
⎢⎣

δq̂ϕ,1
...

δq̂ϕ,K

⎤
⎥⎦ (117)

and from Eq. (116), it is found that the vectorial quadrature
δq̂ϕ can be rewritten as

δq̂ϕ = δq̂0 cos ϕ + δq̂ π
2

sin ϕ, (118)

where δq̂0 and δq̂ π
2

are the amplitude and phase vectorial
quadratures, respectively.

The dynamics of these quadratures can be obtained from
Eq. (116) as

δ ˙̂q0,l = 1√
2

(δ ˙̂a+l − δ ˙̂a−l) + H.c., (119)

δ ˙̂q π
2 ,l = − i√

2
(δ ˙̂a+l − δ ˙̂a−l) + H.c., (120)

with l = 1, . . . ,K . Using Eqs. (113), it can be demonstrated
that the amplitude and phase vectorial quadrature operators
obey the closed-form Langevin equation,[

δ ˙̂q0

δ ˙̂q π
2

]
= Jq

[
δq̂0
δq̂ π

2

]
+
∑

s

√
2κs

[
Ŵs,0(t)
Ŵs, π

2
(t)

]
, (121)

where

Jq =
[

Re(U+) −Im(U+)
Im(U−) Re(U−)

]
(122)

is a Jacobian block matrix of order 2K , the K-dimensional
matrices U± are explicitly defined through their complex-
valued components,

U±,lp = (Rl,p − Rl,−p) ± (Sl,p − Sl,−p)∗, (123)

with l,p ∈ {1, . . . ,K}, while the K-dimensional vacuum noise
operators Ŵs,0(t) and Ŵs, π

2
(t) are explicitly defined as

Ŵs,0(t) = 1√
2

⎡
⎢⎣

V̂s,+1(t) − V̂s,−1(t)
...

V̂s,+K (t) − V̂s,−K (t)

⎤
⎥⎦+ H.c., (124)

Ŵs, π
2
(t) = − i√

2

⎡
⎢⎣

V̂s,+1(t) − V̂s,−1(t)
...

V̂s,+K (t) − V̂s,−K (t)

⎤
⎥⎦+ H.c. (125)

It is interesting to note that the Jacobian matrix Jq is real
valued, as it is built with the real and imaginary parts of the
complex-valued matrices U±. This Jacobian is generally not
diagonal, meaning that in a Kerr comb, all these quadratures
are coupled.
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Equations (44) and (117) allow to determine the output
vectorial quadratures following[

δQ̂out,0(t)
δQ̂out, π

2
(t)

]
=
√

2κr

[
δq̂0(t)
δq̂ π

2
(t)

]
−
[
Ŵr,0(t)
Ŵr, π

2
(t)

]
. (126)

The time-domain dynamics of the generic quadrature δq̂ϕ ,

as well as its output counterpart δQ̂out,ϕ , are determined by
combining the above equation with Eq. (118).

C. Correlations and squeezing spectra

The Fourier spectra of the output signals can be determined
using the output correlation matrix. After translating Eqs. (121)
and (126) in the Fourier domain, the Fourier spectrum of the
output vectorial quadrature is found to be equal to[

δQ̃out,0(ω)
δq̃out, π

2
(ω)

]
= −

√
2κr [Jq + iωI

K
]−1

×
∑

s

√
2κs

[
W̃s,0(ω)
W̃s, π

2
(ω)

]
−
[
W̃r,0(ω)
W̃r, π

2
(ω)

]
,

(127)

where I
K

is the K-dimensional identity matrix. We can use
the above equation to determine the 2K-dimensional output
correlation matrix following

Cout(ω) =
∫ +∞

−∞
dω′

〈[
δQ̃out,0(ω)
δQ̃out, π

2
(ω)

][
δQ̃out,0(ω′)
δQ̃out, π

2
(ω′)

]T
〉

= {2κρ[Jq + iωI
K

]−1 + I
K
} Cin(ω)

×{2κρ[Jq − iωI
K

]−1 + I
K
}T

+ 4κ2ρ(1 − ρ) {[Jq + iωI
K

]−1} Cin(ω)

×{[Jq − iωI
K

]−1}T, (128)

where ρ is the squeezing parameter defined in Eq. (64) and
Cin(ω) is the 2K-dimensional input correlation matrix

Cin(ω) =
∫ +∞

−∞
dω′

〈[
W̃s,0(ω)
W̃s, π

2
(ω)

][
W̃s,0(ω′)
W̃s, π

2
(ω′)

]T
〉

=
[

I
K

iI
K

−iI
K

I
K

]
. (129)

It is interesting to note that this input correlation matrix is
found to be frequency independent.

For each side-mode pair ±l, the quadrature spectra are
explicitly defined as

Sϕ,l(ω) = Cout
11;(l,l) cos2 ϕ + Cout

22;(l,l) sin2 ϕ

+ [Cout
12;(l,l) + Cout

21;(l,l)

]
cos ϕ sin ϕ, (130)

where the complex-valued coefficients Cout
ab;(l,l) with a,b ∈

{1,2} are diagonal elements of the K-dimensional matrices
Cout

ab (ω) that are used to write Cout(ω) in Eq. (128) under the
form of the block matrix

Cout(ω) =
[

Cout
11 (ω) Cout

12 (ω)

Cout
21 (ω) Cout

22 (ω)

]
. (131)

The analytical expression provided by Eq. (130) makes it
possible to plot the spectra of any quadrature for any pair
of side modes ±l, regardless of the size of the Kerr comb.

In the next two sections, we investigate in more detail
the squeezing phenomena that can take place in Kerr combs
originating from roll patterns and from solitons. For all
our simulations, we consider a calcium fluoride (CaF2)
resonator with main radius a = 2.5 mm and pumped around
1550 nm in the add-through configuration. The intrinsic and
extrinsic Q factors are fixed to Qint ≡ Qi = 109 and Qext ≡
Qt = 0.25 × 109, respectively, yielding loaded quality factor
Qtot = QtQi/(Qi + Qt) = 0.2 × 109, a full linewidth at half-
maximum 2κ = ωL/Qtot = 2π × 0.97 MHz, and a squeezing
factor ρ = Qi/(Qi + Qt) = 0.8. The group-velocity index
is ng = 1.43, so that the free-spectral range is �ωFSR =
2π × 13.35 GHz. The nonlinear coefficient is set to γ =
1 W−1 km−1, corresponding to g0 = 2π × 57.2 μHz. For
simulations in the anomalous dispersion regime (rolls and
bright solitons), the overall second-order dispersion is fixed
to β2 = −12.4 × 10−27 s2/m, which translates to ζ2 = 2π ×
2.9 kHz. In the normal dispersion regime (dark solitons), the
dispersion parameters are set values opposite to those of the
anomalous case.

VII. SYSTEM ABOVE THRESHOLD: QUADRATURE
SQUEEZING IN ROLL PATTERNS AND SOLITONS

Rolls are azimuthal Turing patterns that emerge in the
system when the resonator is pumped above a certain critical
value. In the temporal domain, they are characterized by an
integer number L of stationary nodes and antinodes of the
optical energy in the azimuthal direction of the resonator.
In the spectral domain, they yield a comb where only the
side modes of order l = ±kL (k being an integer) oscillate.
These combs, which are sometimes referred to as primary
combs, are particularly important because they are the most
robust and stable patterns that can be obtained experimentally.
Bright solitons, on the other hand, emerge in the system
in the regime of anomalous dispersion, after a subcritical
bifurcation. Finally, dark solitons can be excited in the
regime of normal dispersion, and in first approximation, they
topologically connect the (hysteretic) upper and lower flat
states inside the resonator. These various dynamical states have
been investigated extensively in Ref. [57]. Their spatio- and
spectrotemporal representation is displayed in Fig. 2. In the
forthcoming sections, we determine the squeezing spectra for
the combs corresponding to all these stationary states.

A. Quadrature squeezing in roll patterns with three modes

In order to understand the spectra of amplitude and phase
quadratures, it is important to analyze in detail the case where
there are only three modes in the comb. As explained in
Sec. V B, such three-mode combs emerge in the supercritical
case close to threshold, and they feature a multiplicity L 	√

(2/ζ2)[σ + 2κ]. It is useful to recall that, regardless of the
initial conditions, the two side modes |A±L| have the same
amplitude and according to Eq. (115), the sum of their phases
is a constant, following φL + φ−L = Const = 2�L. Without
loss of generality, we can consider in this three-mode case that
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the semiclassical solutionsA±L have the same phase �L ≡ �;
i.e., they are considered identical. It is also noteworthy that
close to threshold the phase φ0 is a constant that is independent
from the side modes.

In this three-mode configuration, there is a only a single pair
of amplitude and phase quadratures, namely δq̂0,L

and δq̂ π
2 ,L

.
Therefore, the matrices U± degenerate to scalars following
U± ≡ U±,LL, yielding

U+ = +2g0{|AL|2 sin � + |A0|2 sin(2φ0 − �)} e−i�,

U− = −2ig0{|AL|2 cos � + |A0|2 cos(2φ0 − �)} e−i�.

(132)

Accordingly, the Jacobian matrix Jq becomes two-
dimensional. Interestingly, it already appears that when the
quadratures are rotated by an angle �, the value ofU+ becomes
pure real, while U− becomes pure imaginary. In other words,
the quadrature δq̂

�,L
is a pure amplitude quadrature, while the

quadrature δq̂
�+ π

2 ,L
corresponds to a pure phase quadrature.

Using Eqs. (116) and (121), it can be shown that the dy-
namics of these pure quadratures can be explicitly determined
as

δ ˙̂q
�,L

= −2κa δq̂
�,L

+
∑

s

√
2κs Ŵs,� (t), (133)

δ ˙̂q
�+ π

2 ,L
= −2κp δq̂

�,L
+
∑

s

√
2κs Ŵ

s,�+ π
2

(t), (134)

where the linear coefficients are

κa = −g0|A0|2 sin(2φ0 − 2�), (135)

κp = g0{|AL|2 + |A0|2 cos(2φ0 − 2�)}, (136)

while the noise driving terms are defined analogously to the
quadratures of Eq. (116) using Eqs. (124) and (125). The
normalized spectra corresponding to the pure amplitude and
phase output quadratures can finally be calculated as

Sa(ω) = 〈|δQ̃out,�(ω)|2〉

= 1 − ρ
4κ2

a

ω2 + 4κ2
a

, (137)

Sp(ω) = 〈|δQ̃out,�+ π
2
(ω)|2〉

= 1 + ρ
4κ2

a

ω2

[
1 + 4κ2

p

ω2 + 4κ2
a

]2

. (138)

It can be demonstrated that κa ≡ κ in a three-mode comb,
and as a consequence, Eq. (137) becomes, in fact, identical
to Eq. (105). This is explained by the fact that δq̂

�,L
is a pure

amplitude quadrature, which exactly corresponds to the case
of photon number squeezing we have studied in Sec. V B.
On the other hand, the phase quadrature is characterized by
a spectrum that is diverging at ω = 0, and this divergence is
a generic signature of phase noise spectra. It is noteworthy
that Sa(ω) is always smaller than 1 and does not depend
on the modal amplitudes, while Sp(ω) is always larger than
1, and does depend on |A0| and |A±L|. Figure 6 displays
both the amplitude (solid lines) and the phase (dashed lines)
quadratures for various values of the squeezing parameter ρ,

FIG. 7. Spectra of quadratures with different angles ϕ in a Kerr
comb close to threshold, where the three-mode approximation is
valid. The spectra are calculated using Eq. (130). The system is in
the add-through configuration with ρ = 0.8. The threshold power is
Pth = 2.06 mW and the pump power is set to P = 1.01Pth and the
laser detuning is σ = −κ . The comb features side modes at L = ±18.
Pure amplitude quadrature (dashed black line) is not exactly achieved
for ϕ = �, as expected, but rather for ϕ = � + δ� ≡ �opt, where δ�

is an additional offset angle that is generally small. In this case,
we have found δ� = 0.022. Accordingly, pure phase quadrature
(dotted black) is obtained for ϕ = �opt + π

2 . The other spectra
correspond to the following quadrature angles: ϕ = �opt + π/100
(green lines); ϕ = �opt + π/50 (red lines); ϕ = �opt + π/20 (blue
lines); ϕ = �opt + π/10 (pink lines); ϕ = �opt + π/6 (yellow lines);
ϕ = �opt + π/4 (gray lines). Note that once we deviate from the pure
amplitude spectrum, we here have a divergence at zero frequency.

when the other parameters are kept constant. As explained
earlier, better squeezing is ensured when ρ gets closer to 1,
which physically corresponds to strong overcoupling.

The quadratures fluctuations δq̂ϕ have been expressed as
a linear combination of δq̂0 and δq̂ π

2
in Eq. (118). However,

after rotation by an angle �, they can also be expressed as a
function of the pure amplitude and phase quadratures as

δq̂
ϕ,L

= δq̂
�,L

cos(ϕ − �) + δq̂
�+ π

2 ,L
sin(ϕ − �), (139)

which is just another way to express the fact that we have
a pure amplitude quadrature for ϕ = � and a pure phase
quadrature for ϕ = � + π

2 . Therefore, since the quadratures
with phases ϕ �= �,� + π

2 are mixtures of pure amplitude
and phase quadratures, their spectra are expected to have
intermediate characteristics. This phenomenology is displayed
in Fig. 7, where the power spectra Sϕ,L(ω) explicitly defined in
Eq. (130) have been plotted for various values of the quadrature
angle ϕ. The resonator is pumped very close to threshold (in
excess of 1%), and in that case, the three-mode approximation
is very accurate.

It can be seen in Fig. 7 that the pure amplitude quadrature
with inverted Lorentzian spectrum predicted by Eq. (137)
does not exactly correspond to the angle ϕ = � predicted
theoretically. Instead, amplitude quadrature corresponds to a
slightly different angle ϕ = � + δ� ≡ �opt, where the offset
angle δ� is generally found to be small close to threshold.
When the angle of the quadrature is slightly detuned from
the optimal value �opt, the spectra maintain the inverted
Lorentzian structure (like Sa) but feature a sharp divergence at
zero frequency (like Sp). As the detuning is further increased,
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the spectra Sϕ lose the inverted Lorentzian structure and
start to converge continuously towards the phase quadrature
spectra Sp, which corresponds to ϕ = �opt + π

2 . A similar
phenomenology has been analyzed in depth by Gatti and
Mancini in Ref. [45] in the context of quantum correlations in
hexagonal spatial patterns.

It is interesting to emphasize the physical interpretation
of strong squeezing (ρ → 1) in the context of Kerr combs.
In Ref. [44], Grynberg and Lugiato did discuss the physical
implication of the two-mode amplitude-phase squeezing. In
particular, they emphasized that if one successfully achieves
perfect squeezing of the photon number difference (N+ − N−),
the conjugate variable (which is here the phase difference)
becomes undetermined and “as a consequence, the position of
the rolls [...] cannot be known,” thereby impeding a “direct”
observation of the roll pattern (however, indirect detection
using correlation techniques might remain possible). The
authors where discussing the physical manifestation of two-
mode squeezing in the context of the original Lugiato-Lefever
experimental system (spatial patterns, free space signals, etc.):
Since Kerr combs translate the problem to a much more
controllable environment (temporal patterns, guided signals,
etc.), the phenomenon of two-mode squeezing could here make
it possible to explore the phase-amplitude complementarity to
a unprecedented extent.

B. Quadrature squeezing in roll patterns with more
than three modes

When the resonator is pumped far above threshold, the
primary comb grows accordingly and features an increasing
number of side modes. As analyzed in Sec. V A, squeezing is
not guaranteed anymore in the system when there are more than
three modes involved. However, the regime of large primary
combs (with five modes or more) is interesting for various
reasons. For instance, when the system is restricted to three
modes close to threshold, the amplitude of the side modes
is very weak and detection can be problematic. Pumping the
system far above threshold yields significantly more powerful
signals. Another interesting point is that in the supercritical
regime, the higher-order side modes (|l| > L) do not appear
discontinuously: They are, in fact, always present, even though
their amplitude is extremely small close to threshold. However,
their effect never completely vanishes (for example, they
contribute to the offset δ�). It is therefore pertinent to
investigate systematically how the quantum correlations are
affected by these higher-order side modes in a primary Kerr
comb.

In Fig. 8, we display the best squeezing spectra for
the amplitude quadratures as the pump power is increased
from 1.01 to 3 times the threshold for comb generation.
It should be recalled that as the pump power is increased,
the parametric gain bandwidth is shifted outwards, and this
explains why the mode orders L increase with the pump
(see Refs. [16,17,57]). When the system is very close to
threshold (P = 1.01Pth), the three-mode approximation holds
and the numerical simulations provide results that are in
quasiperfect agreement with the theoretical prediction. As the
pump power is increased, it can be seen that there is a deviation
from the ideal inverted Lorentzian profile, but excellent

FIG. 8. Spectra of amplitude quadratures as the pump power is
increased in a Kerr comb originating from a roll pattern. Except
the pump power P , the parameters of the system are the same as in
Fig. 7. The modes ±L of interest are the first (main) side modes of the
comb. The solid blue lines stand for the analytical and ideal amplitude
squeezing spectrum provided by the three-mode approximation in
Eq. (137). The red dots stand for the numerical spectra obtained
with Eq. (130), where all the modes of the comb are accounted
for [87]. The figures display the best squeezing spectra for the pump
powers P , oscillating modes ±L, and offsets δ� listed hereafter.
(a) P = 1.01Pth (L = 18 and δ� = 0.015); (b) P = 1.1Pth (L =
19 and δ� = −0.03); (c) P = 1.5Pth (L = 22 and δ� = 0.1); (d)
P = 2.0Pth (L = 24 and δ� = 0.02); (e) P = 2.5Pth (L = 25 and
δ� = −0.0025); (f) P = 3.0Pth (L = 26 and δ� = 0.18). As the
pump is increased, the three-mode approximation becomes less and
less valid, but very efficient squeezing can still be achieved with the
fundamental pair of side modes.

squeezing performance is still achieved up to P = 3Pth where
there are more than 15 oscillating modes. These results
therefore show that even in the highly multimode regime
corresponding to a resonator pumped far above threshold,
very efficient squeezing is still possible in Kerr combs. It
is interesting to note that the spectra and the offsets δ� are
not invariant, as they depend on initial conditions. This is
explained by the fact that the spectra depend on the Jacobian
matrices Jq, which are built with the complex-valued modal
amplitudes and which depend themselves on these initial
conditions.

We have also investigated the quantum correlation proper-
ties of higher-order modes in the comb originating from a roll
pattern (modes of order l = ±kL with k = 2,3, . . . ). Figure 9
shows that the first-order modes displays very good squeezing,
as discussed earlier, but the spectrum of the second-order
modes still features some weak squeezing in a frequency band
where it seems that there is excess noise in the spectrum of
the fundamental pair of side modes. Squeezing is numerically
found to be quasinonexistant for the third-order pair, as well
as for the higher orders with k > 3.
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FIG. 9. Spectra of amplitude quadratures for different mode of
order ±kL in a primary comb of a roll pattern. The parameters of the
system are the same as in Fig. 7(c) [with P = 1.5Pth and L = 22],
except the detuning δ� = 0.03 that has been applied to all mode
quadratures. The solid blue line is the ideal amplitude squeezing
spectrum obtained from Eq. (137). The dots stand for the numerical
spectra obtained with Eq. (130) [87]. Red line, modes ±L; black line,
modes ±2L; green line, modes ±3L.

C. Quadrature squeezing in bright and dark solitons

An interesting open point is to determine if squeezing with
symmetric pairs of side modes is still possible in solitons.
Solitons in WGM resonators do not emerge supercritically;
their amplitude cannot be arbitrary small. As a consequence,
they always induce combs with a large numbers of phase-
locked modes.

Figure 10 displays the quadrature spectra for some modes
of a Kerr comb originating from a bright soliton. It can be seen
that there is a certain angle of quadrature for which the closest
side-mode pair (l = ±1) features very good squeezing, of the
order of the ideal squeezing of the three-mode comb. As the
mode order |l| is increased and the offset δ� is kept constant,
the squeezing degrades and eventually disappears beyond |l| ∼
20. The case of dark solitons is presented in Fig. 11, where it
can be seen that, as in the bright soliton case, the side-mode

FIG. 10. Spectra of amplitude quadratures for different mode of
orders ±l of the comb from a isolated bright soliton. The power is
set to P = 4 mW and σ = −2κ . The same offset δ� = π

2 − 0.04
has been applied to all mode quadratures. The solid blue line is the
ideal amplitude squeezing spectrum obtained from Eq. (137). The
dots stand for the numerical spectra obtained with Eq. (130) [87].
Red line, l ± 1; black line, l ± 5; green line, l ± 10; gray line, l ± 20.

FIG. 11. Spectra of amplitude quadratures for different mode of
orders ±l of the comb from a isolated dark soliton. The power is set
to P = 5.3 mW, and σ = −2.5κ . The same offset δ� = 0.72 has
been applied to all mode quadratures. The solid blue line is the ideal
amplitude squeezing spectrum obtained from Eq. (137). The dots
stand for the numerical spectra obtained with Eq. (130) [87]. Red
line, l ± 1; black line, l ± 5; green line, l ± 10; gray line, l ± 20.

pair l = ±1 displays good squeezing. However, this squeezing
degrades much faster as the mode order is increased, while
keeping the offset phase δ� constant.

VIII. CONCLUSION

In this article, we have investigated in detail the quantum
correlations that are taking place in stationary Kerr combs
below and above threshold, when driven by the quantum noise
associated with vacuum fluctuations.

We have shown that either a canonical quantization proce-
dure or an Hamiltonian formalism can be used to establish
the quantum stochastic equations ruling the time-domain
dynamics of each mode, and particular emphasis has been
laid on the two principal architectures that are routinely used
for Kerr comb generation, namely the add-through and the
add-drop configurations.

For the system under threshold (spontaneous FWM), we
have investigated the coupling between the pump photons and
the vacuum fluctuation in the side modes, which is at the
origin of parametric fluorescence spectra. We have analyti-
cally determined the main characteristics of the spontaneous
emission spectra, with particular emphasis on the line shape
of the individual side modes and envelope of the full spectra.
We have explained the conditions under which the side modes
and/or the spectra might have one or two extrema. We have also
provided a detailed calculation making it possible to determine
accurately the spontaneous noise power emitted per side mode
as a function of all the relevant parameters of the system.

For the system pumped above threshold (stimulated FWM),
we have provided insight in relation with the essential
commutation properties between the interaction Hamiltonian
and the photon numbers, which made it possible to understand
the physical mechanisms leading to photon number squeezing
in Kerr combs. We have then explicitly defined the quantum
Langevin equations ruling the fluctuations of annihilation and
creation operators for each mode, regardless of the number of
modes in the comb. We have shown that this fluctuation flow
can be reduced to a flow of lower dimension that rules the
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dynamics of both amplitude and phase quadratures for each
pair of side modes. Our analysis has shown that the reduced
three-mode model, which is valid close to threshold for roll
patterns, allows for the the exact determination of the spectra of
the amplitude and phase quadratures. These exact analytical
solutions have been found to be very good approximations
even far above threshold for roll patterns. Squeezing in bright
and dark solitons has also been analyzed as well, for various
pairs of side modes. The best squeezing spectra have been
shown to be relatively close to the inverted Lorentzian profile
that is predicted from the reduced three-mode model. In
stationary Kerr combs driven by quantum noise, squeezing can
therefore be obtained regardless of the spectral extension of
the comb, regardless of the dynamical state, and regardless
of the dispersion regime. Our results also indicate that a
key parameter is the so-called squeezing factor, which is
the ratio between out-coupling and total losses. Regardless
of the architecture of the Kerr comb generator (add-through
or add-drop), strong overcoupling has been shown to be the
always the best configuration for squeezing purposes.

This work could be extended to the case where nonclas-
sical light is generated through second-harmonic generation
[88–90]. New bulk materials, such as aluminum nitride (AlN),
allow for the efficient excitation of both the second- and the
third-order susceptibility owing to their noncentrosymmetric
crystalline structure [91], and they could be interesting mate-
rials for the exploration of a wide variety of quantum optics
phenomena at chip scale. The platform of centrosymmetric
crystals allowing for ultrahigh Q factor is rapidly expanding
as well [92–94], making it possible to explore other nonlinear
phenomena such as Brillouin and Raman scattering at the
quantum level [95–97].

We have assumed in our investigations that the noise
was exclusively of quantum origin and was associated with
the fundamental vacuum fluctuations. At the experimental
level, other sources of noise arise as well [98,99], and it is
important to account for this technical noise in order to perform
pertinent comparisons between theory and experiments. Future
work will address this issue, as well as deterministic effects
such as higher-order dispersion (which deserves particular
attention even for crystalline materials, see Ref. [100]),
polarization degrees of freedom [43,69], or other experimental
imperfections such as unbalanced detection. The investigation
of the quantum properties of time-dependent solutions such as
soliton breathers is an interesting challenge as well, which can
deserve much attention. We expect these investigations to open
the way for new applications in the area of guided quantum
optics at telecom wavelengths and to provide an idoneous
platform for the investigation of the fundamental properties of
light at the quantum level [101,102] in general and for optical
frequency combs in particular [103,104].
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[90] M. Förtsch et al., Highly efficient generation of single-mode
photon pairs using a crystalline whispering gallery mode
resonator, Phys. Rev. A 91, 023812 (2015).

[91] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang,
Optical frequency comb generation from aluminum nitride
microring resonator, Opt. Lett. 38, 2810 (2013).

[92] R. Henriet, A. Coillet, K. Saleh, L. Larger, and Y. K. Chembo,
Barium fluoride and lithium fluoride whispering gallery mode
resonators for photonics applications, Opt. Eng. 53, 071821
(2014).

[93] G. Lin, S. Diallo, R. Henriet, M. Jacquot, and Y. K. Chembo,
Barium fluoride whispering-gallery-mode disk-resonator with
one billion quality-factor, Opt. Lett. 39, 6009 (2014).

[94] R. Henriet, G. Lin, A. Coillet, M. Jacquot, L. Furfaro, L. Larger,
and Y. K. Chembo, Kerr optical frequency comb generation in
strontium fluoride whispering-gallery mode resonators with
billion quality factor, Opt. Lett. 40, 1567 (2015).

[95] G. Lin, S. Diallo, K. Saleh, R. Martinenghi, J.-C. Beugnot,
T. Sylvestre, and Y. K. Chembo, Cascaded Brillouin lasing
in monolithic barium fluoride whispering gallery mode res-
onators, Appl. Phys. Lett. 105, 231103 (2014).

[96] Y. K. Chembo, I. S. Grudinin, and N. Yu, Spatiotemporal
dynamics of Kerr-Raman optical frequency combs, Phys. Rev.
A 92, 043818 (2015).

[97] G. Lin and Y. K. Chembo, Opto-acoustic phenomena in
whispering gallery mode resonators, Int. J. Optomechatron.
(2015), doi:10.1080/15599612.2015.1124476.

[98] A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki,
Whispering-gallery-mode resonators as frequency references.
I. Fundamental limitations, J. Opt. Soc. Am. B 24, 1324
(2007).

[99] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, and
L. Maleki, Whispering-gallery-mode resonators as frequency
references. II. Stabilization, J. Opt. Soc. Am. B 24, 2988
(2007).

[100] I. S. Grudinin and N. Yu, Dispersion engineering of crystalline
resonators via microstructuring, Optica 2, 221 (2015).

[101] C. Fabre, Squeezed states of light, Phys. Rep. 219, 215 (1992).
[102] B. C. Sanders, Review of coherent entangled states, J. Phys. A:

Math. Theor. 45, 244002 (2012).
[103] O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin,
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