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In this Letter, we show that giant thermo-optical oscilla-
tions can be triggered in millimeter (mm)-size whispering
gallery mode (WGM) disk resonators when they are
pumped by a resonant continuous-wave laser. Our resona-
tor is an ultrahigh-Q barium fluoride cavity that features a
positive thermo-optic coefficient and a negative thermo-
elastic coefficient. We demonstrate for the first time, to
our knowledge, that the complex interplay between these
two thermic coefficients and the intrinsic Kerr nonlinearity
yields very sharp slow–fast relaxation oscillations with a
slow timescale that can be exceptionally large, typically
of the order of 1 s. We use a time-domain model to gain
understanding into this instability, and we find that both
the experimental and theoretical results are in excellent
agreement. The understanding of these thermal effects is
an essential requirement for every WGM-related applica-
tion and our study demonstrates that even in the case of
mm-size resonators, such effects can still be accurately an-
alyzed using nonlinear time-domain models. © 2015
Optical Society of America
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Optical whispering gallery mode (WGM) resonators are mono-
lithic cavities that can feature ultrahigh quality factors (up to
∼1011 at 1 μm) and small mode volume. They can be used
in several applications such as laser stabilization [1–5], sensing
[6–8], or optical frequency comb generation (see Ref. [9] and
references therein).

When these resonators are pumped with a resonant continu-
ous-wave (CW) laser, the pump photons are trapped by total
internal reflection within the torus-like modes of the resonator
for time durations that can be as long as few microseconds. As a
consequence, the laser field is significantly enhanced in the
mode volume, and strongly heats the disk resonator close to
its inner periphery. From an intuitive viewpoint, one may

consider that the heat originating from this local increase in
temperature would smoothly diffuse both inside and outside
the bulk resonator, and asymptotically lead to a space-
dependent, but time-independent (stationary), distribution
of temperature. This is actually always the case when the pump
power is sufficiently low, regardless of the thermal properties of
the resonator.

However, when the power of the pump laser is high enough,
the dynamics of the temperature in the mode volume and in the
bulk cavity can become time dependent, and display very com-
plex relaxation oscillations. Such a counterintuitive behavior
has already been evidenced and analyzed in microspheres,
where the very small mode and resonator volumes are likely
to be strongly affected by temperature increase through thermal
expansion [10–14]. Indeed, the effect of temperature is to in-
duce a resonance shift for the WGMs, which affects the input
energy rate (since the laser frequency is fixed), and ultimately,
the temperature of the resonator. This feedback loop might be
unstable depending on the parameters of the system, and it was
shown that nonlinear time-domain models could be used
to gain understanding of this complex phenomenology.
Nevertheless, such relaxation oscillations have never been ob-
served in millimeter (mm)-size WGM resonators, where the
resonator volume is significantly larger than the mode volume.
Most of the time, mm-size WGM resonators are operated in
the regime of so-called thermal locking, where temperature-
induced resonance shifts play a beneficial role with regards
to the stabilization of the pumped resonator.

In this Letter, we present the first experimental observation,
to our knowledge, of relaxation oscillations in a ultrahigh-Q
mm-size WGM resonators. The bulk material of our mono-
lithic cavity is barium fluoride (BaF2), and we demonstrate that
the interplay between thermal and nonlinearity-induced shifts
can lead to sharp relaxation oscillations whose period is of the
order of 1 s. We also present a theoretical model that is able to
match experimental results with excellent accuracy.

The experimental setup is shown in Fig. 1. A tunable CW
fiber laser with subkilohertz instantaneous linewidth at
1550 nm was used to pump the ultrahigh-Q barium fluoride
disk resonator. Optical WGMs were excited using a SF11 prism
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as the evanescent wave coupler. The first pigtailed gradient-
index (GRIN) lens focuses the incident light on the prism
for the WGM coupling, while the second lens collects the re-
flected light for the detection by a photodiode with a digital
oscilloscope. A piezoelectric actuator was used to accurately
control the coupling gap between the prism and the resonator.

As illustrated in Fig. 2, when pumped with laser light, the
mode volume hosting the intracavity field is subjected to a
strong increase of temperature, and subsequently, this modal
volume plays the role of a hot source, which diffuses the heat
inside the bulk resonator. The resonator transfers part of this
heat to the surroundings. This thermal dynamics induces a res-
onance shift through two distinct mechanisms. The first one is
that the refraction index is temperature dependent, and there-
fore, the bulk optical properties, such as the group velocity, are
affected by the intracavity field via the induced heat transfer.
This effect is essentially restricted to the modal volume. The
second reason is that as the bulk resonator heats up, it under-
goes a thermal dilatation that modifies its main radius. Both
effects induce a shift of the free-spectral range, or equivalently,
of the WGM resonances. The overall frequency shift caused by
thermal effects can be explicitly expressed as

Δωth�t� � −ωc�α1ΔT 1�t� � α2ΔT 2�t��; (1)

where ωc is the angular frequency of resonance,ΔT 1 is the shift
temperature of the modal volume, ΔT 2 is the average temper-
ature shift of the full resonator, and the parameters α1;2 are the
coefficients that enable the conversion from temperature to fre-
quency shift. The two effects highlighted above can be of sto-
chastic or deterministic nature, depending on if the variables
ΔT 1 and ΔT 2 correspond to fast-timescale thermodynamic
fluctuations or to slow-timescale thermal shifts. In the stochas-
tic case, these thermal effects are associated to fundamental
fluctuations set by the laws of statistical thermodynamics, while
in the deterministic case, thermal effects can induce either a
desired locking between the laser and the resonance frequen-
cies, or thermo-optical oscillations [6,12].

The Kerr nonlinearity also induces a local modification of
the refraction index, which leads to the resonance shift

Δωnl�t� � −ωc

�
n2
neff

Pc�t�
Aeff

�
; (2)

where neff is the effective refractive index, n2 is the Kerr coef-
ficient of the WGM resonator, Pc�t� is the intracavity power,
and Aeff is the effective cross-sectional area of the WGM res-
onator. According to formula (4) of Ref. [15], the effective area

of a disk resonator with diameter D is of the order of
Aeff ∼D

5
6λ

7
6, where λ is the laser pump wavelength in the bulk

medium. The intracavity power Pc�t� can be expressed as a
function of the intracavity field E c�t� as Pc�t� � jE c�t�j2∕
T r, where T r � πDneff∕c is the intracavity round-trip time
and c is the velocity of light in vacuum.

The dynamics of the intracavity field therefore obeys

dE c

d t
� −

�
1

2
δωQ � i�σ � Δωth � Δωnl�

�
E c � i

k
T r

E in; (3)

where σ � ωc − ωp is the cold cavity detuning between the
laser pump frequency ωp and the resonance frequency ωc.
The parameter E in �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P in × T r

p
is the amplitude of the input

optical field, and k � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T r × Δωext

p
is the optical coupling

coefficient. The loaded linewidth δωQ � ωc∕Q is the sum
of the intrinsic linewidth δωin � ωc∕Q in and extrinsic (or
coupling) linewidth δωext � ωc∕Qext, where Q−1 � Q−1

in�
Q−1

ext. The output field of the prism resonator is defined by

Eout�t� �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
E in � ikE c�t�; (4)

and the normalized transmission explicitly reads

T � jEoutj2
jE inj2

; (5)

with 0 ≤ T ≤ 1. This transmission factor will be the dynamical
variable of interest for both the experimental and theoretical
analysis.

The understanding of the system’s behavior also requires a
time-domain description of the temperature dynamics. Two
different temperature variables have to be accounted for,
namely, the temperature of the mode volume and the bulk res-
onator with respect to the external thermal bath (temperature
of the environment). These two variables are respectively
labeled as ΔT 1 and ΔT 2, and they obey the equations

dΔT i

d t
� −γth;iΔT i�t� � γabs;iPc�t� with i � 1; 2; (6)

where γth;i is effective thermal relaxation rate to ambient tem-
perature, while γabs;i is the effective thermal absorption rate,
which weights the heat transfer from to the confined laser field
to the mode and resonator volumes.

It is convenient to normalize Eqs. (3) and (6) as

dξ
dτ

� −�1� i�ς� β1Δθ1 � β2Δθ2 � ηjξj2��ξ� iμ; (7)

dΔθi
dτ

� −ρiΔθi � κijξj2; (8)

where the dimensionless time τ, intracavity field ξ�t�, and
relative temperatures Δθi are explicitly defined as

τ � t
2τph

with τph �
1

δωQ
; (9)

ξ � E c

E ref

with E ref �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T rδω

3
Q

8γvgδωext

s
; (10)

Δθi �
ffiffiffiffiffiffiffiffiffiffiffiffi
−α1α2

p
ΔT i; (11)

with τph being the photon lifetime in the coupled resonator,
vg � c∕neff being the group velocity in the bulk resonator,

Fig. 1. Schematic illustration of the experimental setup. PC, fiber
polarization controller; VOA, variable optical attenuator; L1, L2,
GRIN lenses; PD, photodetector.
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and γ � ωcn2∕cAeff being the Kerr parameter, which is
commonly used in nonlinear guided structures. Note that
the reference electric field E ref used for the normalization cor-
responds to the absolute minimum threshold for Kerr comb
generation. The dimensionless parameters of Eqs. (7) and
(8) are explicitly defined as

ς � 2σ

δωQ
; η � −2ωcn2E2

ref

δωQAeffneffT r

; μ � 2kE in

E ref δωQT r

; (12)

ρi �
2γth;i
δωQ

; κi �
2E2

ref

ffiffiffiffiffiffiffiffiffiffiffiffi
−α1α2

p
δωQT r

γabs;i ;

βi �
−2ωcαi

δωQ
ffiffiffiffiffiffiffiffiffiffiffiffi
−α1α2

p ; (13)

with i � 1; 2. The physical meaning of these dimensionless
parameters is fairly transparent.

At the experimental level, our laser was finely tunable using
a high-voltage external drive control signal. A triangular ramp
was first applied to widely scan the frequency across several op-
tical modes, in order to locate the ultrahigh-Q ones. A barium
fluoride WGM resonator with an intrinsic quality factor of
1.0 × 108 was chosen to study its thermal oscillatory behavior.
It is noteworthy that billion quality factors can be obtained as
well with this crystal [16]. To observe the thermal oscillations,
the laser frequency was tuned into the vicinity of the resonance
center frequency and then set to a fixed value. The thermal
oscillatory behavior was then observed in the transmitted light
through the prism–resonator coupling setup, as shown in
Fig. 1. We have observed different types of oscillatory behavior
depending on the laser power that was coupled inside the res-
onator. For very low (asymptotically null) input power, no ther-
mal oscillation is observed at all. However, above a certain
threshold, a relatively smooth oscillatory behavior is observed
in the optical output port, as displayed in Fig. 3(a). As the
coupled power increases, these oscillations morph into a sharper
slow–fast waveform, and the period of the oscillations increases,
as well [Fig. 3(b)]. Further increase of the in-coupled power
leads to even sharper relaxation oscillations, and also an even
longer period for the oscillations [up to half a second; see
Fig. 3(c)]. Beyond their unusually long period, a noteworthy
feature of these relaxation oscillations is their waveform, which
is characterized by a very sharp dip (over a millisecond time-
scale), followed by another one that is about 1000 times longer.

Fig. 3. (a)–(c) Experimental and (d)–(f ) numerical time traces of the relaxation oscillations. The numerical variations of the corresponding
frequency detunings Δωth�t�∕2π are displayed in (g)–(i). The periods of the relaxation oscillations are (a), (d), and (g) 181 ms; (b), (e), and
(h) 290 ms; and (c), (f ), and (i) 504 ms. Note that the minima of transmission correspond to zero detunings (light is maximally coupled inside
the resonator).

Fig. 2. Scheme of the thermal oscillations. In the first step (top left),
the laser is resonant with the cavity. The mode is heated and its tem-
perature increases (T 1↑). As a result of this increase of the mode tem-
perature, the resonance is blueshifted because α1 < 0. In the second
step (top right), the laser pump becomes off-resonant, thereby leading
to a cooling of the mode (T 1↓). The heat of the mode diffuses to the
bulk resonator (T 2↑); the consequent thermal expansion leads to a
resonance redshift (induced by α2 > 0). In the third step (bottom),
both the mode and the resonator cool down because the laser is still
off-resonance (T 1;2↓). This cooling down process resets the resonance
to its initial position, which is resonant with the laser, and the cycle
starts again.
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The observed phenomenology at the experimental level is
accurately recovered numerically using Eqs. (7) and (8). The
physical parameters used for the simulations are D � 3 mm,
Aeff � 10−11 m2, neff � 1.466, n2 � 2.89 × 10−20 W∕m2,
Q � 108, ωL � 1.3 × 1015 rad∕s, γth1 � 1.0 s−1, γth2 �
103 s−1, γabs1 � 0.25 × 10−3 K∕J, and γabs2 � 1.0 K∕J. For
most sets of coupled ordinary differential equations, the
fourth-order Runge–Kutta algorithm enables fast and accurate
numerical simulations. However, in our case, we are confronted
by two practical problems that impede using that well-known
algorithm. The first issue is that we have two timescales that are
widely split, and the second one is that the largest timescale is
exceptionally large. As a consequence, the fourth-order
Runge–Kutta algorithm has been found to be so slow that it
was impossible to simulate even a single period of the relaxation
oscillations. The solution to circumvent this difficulty is to
use an adaptive-step-size method such as the Runge–Kutta–
Fehlberg algorithm, which is able to reduce significantly the
simulation time (down to less than 1 h per relaxation oscillation
period in a computer).

The results of the numerical simulation are presented in
Figs. 3(d)–3(f ). The intracavity power was increased through
laser power, and was set to 45, 71, and 200 mW in Figs. 3(d),
3(e), and 3(f ), respectively. An excellent agreement between
numerical and experimental is achieved, and it is noteworthy
that both the characteristic shape of the temporal profile and
the period of the relaxation oscillations can be matched almost
perfectly. The analysis of the temperature-induced frequency
detuning in Figs. 3(g)–3(i) shows that the fast-timescale dy-
namics essentially originate from the crossing of the zero-detun-
ing state, which corresponds to maximal light absorption and
minimal transmission. The sharpest peak is associated to a fast
(almost vertical) crossing, while the wide peak is associated with
a much slower crossing. The ratio between the fast and slow
timescales is essentially defined by the parameters αi (temper-
ature-to-frequency conversion factors), γth;i (relaxation rates),
and γabs;i (absorption capacity of the laser heat). The consistent
trend is that, as the in-coupled power increases, the period of
the relaxation increases, as well. In particular, such a phenom-
enology is important for sensing applications, where this period
variation can be linked to a change in one of the system’s
parameters [6]. It is also important to note that a key ingredient
for the observation of these relaxation oscillations is the fact
that the thermo-refractive and thermo-elastic coefficients are
of opposite sign, while thermal locking occurs otherwise.

In conclusion, we have evidenced for the first time, to the
best of our knowledge, thermo-optical oscillations in a mm-size

ultrahigh-Q WGM resonator pumped by a resonant CW laser.
We have demonstrated that the resonance shifts induced by the
thermic coefficients and the Kerr nonlinearity trigger giant re-
laxation oscillations with a second timescale. Our numerical
simulations, which are based on a time-domain set of nonlinear
differential equations, are in excellent agreement with experi-
mental results. This work is expected to lead to a better under-
standing of thermal effects on mm-size resonators, which are
core components in many photonics systems for sensing,
metrology, and coherent microwave/lightwave generation.
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