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Abstract— In this paper, we investigate the phenomenon of
phase-locking in laser-based optoelectronic oscillators from the
point of view of nonlinear dynamics. We provide a theoretical and
experimental analysis of the phase dynamics of these oscillators
when driven by an external voltage in the intermediate frequency
range. This configuration leads to phase-locking phenomena that
can be theoretically analyzed from the viewpoint of Arnold
tongues theory. Our research permits to determine analytically
the range of parameters where the amplitude and the frequency
of the driving source induce phase-locking.

Index Terms— Optoelectronic devices, nonlinear oscillators.

I. INTRODUCTION

OPTOELECTRONIC oscillators (OEOs) are autonomous
systems where a signal is alternatively converted into the

optical and electrical domains in a closed loop configuration.
In general, an optical laser beam is first phase- or
amplitude-modulated by a nonlinear element driven by an
electric signal. This modulated optical signal is then
photodetected, and provides an electrical signal which is
eventually amplified and fed back into the light-modulating
device [1]–[5].

Manuscript received December 15, 2014; revised February 25, 2015 and
April 6, 2015; accepted April 20, 2015. Date of publication April 23, 2015;
date of current version May 5, 2015. This work was supported in part by the
Centre National d’Etudes Spatiales through the SHYRO Project, in part by
the European Research Council through the NextPhase Project and Versyt
Project, in part by the Agence Nationale de la Recherché through the ORA
Project, in part by the Région de Franche-Comté, and in part by the Labex
ACTION. (Corresponding author: Yanne K. Chembo.)

A. F. Talla and G. R. Goune Chengui are with the Laboratory of Modeling
and Simulation in Engineering, Biomimetics and Prototypes, Department of
Physics, University of Yaoundé I, Yaoundé PO Box 812, Cameroon, and also
with the African Center of Excellence for Information and Communication
Technologies, Polytechnic School of Yaoundé, Yaoundé PO Box 8390,
Cameroon (e-mail: frataalai@yahoo.fr; geraud.goune@yahoo.fr).

R. Martinenghi, K. Saleh, G. Lin, and Y. K. Chembo are with the
Franche-Comté Électronique Mécanique Thermique et Optique—Sciences
et Technologies Institute, Besançon 25030, France (e-mail: romain.
martinenghi@femto-st.fr; khaldoun.saleh@femto-st.fr; guoping.lin@
femto-st.fr; yanne.chembo@femto-st.fr).

J. H. Talla Mbé and P. Woafo are with the Laboratory of Modeling
and Simulation in Engineering, Biomimetics and Prototypes, Department
of Physics, University of Yaoundé I, Yaoundé 20521, Cameroon (e-mail:
jhtallam@yahoo.fr; pwoafo1@yahoo.fr).

A. Coillet is with the National Institute of Standards and Technology,
Boulder, CO 80305 USA (e-mail: acoillet@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JQE.2015.2425957

The principal advantage of OEOs comparatively to other
oscillators is related to their very wide versatility in terms of
time-scales. This time-scale versatility is possible owing to
the fact that the system is built with optical and electronic
devices, which feature significantly different and widely
tunable bandwidth properties [5]–[8]. As a consequence, the
nonlinear time-domain dynamics of OEOs can span over
several orders of magnitude, and during the last three decades,
research on various architectures of OEOs have demonstrated
that they can be particularly far-reaching benchmarks for both
fundamental and applied science [9].

From a fundamental point of view, optoelectronic oscillators
have been used as experimental platforms for the investigation
of the nonlinear dynamics of autonomous and/or delayed
systems. In this regard, OEOs have for example permitted
to understand some of the features related to the complexity
of Ikeda-like delayed systems [9], [10]. From the standpoint
of technological applications, OEOs can serve for the
purpose of ultra-pure microwave generation [2]–[5], chaos
cryptography [11], or neuromorphic computing [12].

When the bandwidth of the electric branch is narrow, the
OEO essentially operates as a single-frequency oscillator. This
configuration corresponds to a technological application of
singular importance, namely ultra-stable radio-frequency (RF)
generation. In this case, the system oscillates at the central
frequency of an in-line narrowband RF filter whenever
the overall loop gain is higher than the losses, following
the well-known Barkhausen condition. From a nonlinear
dynamics point of view, the oscillations originate from a
primary Hopf bifurcation, with an oscillation frequency
matching the resonance of the RF filter.

As it is known from the normal form theory of
Hopf bifurcations, the amplitude of the oscillations is expo-
nentially stable, while the phase is only neutrally stable. This
neutral stability is a direct consequence of the phase invariance
associated with limit-cycles oscillations, and is also at the
origin of the phase drift responsible for phase noise in the
stochastic regime. Along this line, coupled OEO architectures
have been proven to allow for better phase noise performance,
thereby indicating that the phase-locking of the auto-oscillator
to another signal can lead to performance improvement under
certain conditions that have to be determined.
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Fig. 1. Experimental setup of the OEO.

It is therefore of interest to investigate in detail the
conditions under which such phase-locking occurs. The the-
ory of phase-locking is intimately linked to the theory of
phase-locked loops in system control, and to the theory of
phase synchronization in nonlinear dynamics [14]. In the
latter case, the genesis of phase synchronization can be traced
back to the pioneering work of Christiaan Huygens on the
synchronization of two pendulum clocks. Another milestone
was achieved by Kuramoto [15], [16], who proposed a para-
digmatic equation that allows to understand the ubiquitousness
of phase synchronization in many areas [14], [20], [21]. Some
of the technical methods used to study phase synchronization
have been proposed by Arnold [17]–[23], which had demon-
strated that phase-locking occurs in restricted areas of the
parameter space which are nowadays referred to as “Arnold
tongues”.

In this paper, we perform a theoretical analysis that allows
to understand the phase-locking behavior of single-loop
optoelectronic oscillators when subjected to the influence of
an external voltage source. We will investigate the conditions
under which the driven oscillator will phase-lock to the
external source. In particular, we are mainly interested by the
influence of the frequency detuning between the driving and
resonance frequencies on the phase-locking process.

The article is organized as follows. In Sec. II, we present
the experimental set-up of the single-loop OEO. We also
establish the equations ruling the dynamics of this system.
In Sec. III, we focus on the case of null delay, and determine
the fixed points of the oscillator, as well as their stability
properties. We also describe analytically and numerically the
phase-locking in terms of amplitude and frequency parameters
of the driving source. We will also define the Arnold tongues
region for weak and strong coupling. Section IV is devoted
to the configuration where the delay is accounted for. The
phase-locking phenomena are in this case analyzed using a
delayed version of the Adler equation. The last section will
conclude the article.

II. THE DRIVEN OPTOELECTRONIC OSCILLATOR

The architecture of the single-loop OEO we are using
is depicted in Fig. 1 [6], [7]. It consists of a continuous
wave semiconductor laser of power P feeding a wideband
electro-optic Mach-Zehnder modulator (MZM), characterized
by a RF half-wave voltage VπRF and DC voltage VπDC .
The output of the MZM goes through an optical fiber
which induces a time delay T = 0.5 μs corresponding

to 100 m of optical fiber. The delayed optical signal is
detected by a fast photodiode with an optical/electrical
conversion factor S. A narrow bandwidth filter with
center frequency �0/2π = 70 MHz and a bandwidth
�F = ��/2π = 10 MHz is used to select the oscillation
frequency of the OEO. A microwave amplifier with gain G
amplifies the power of the electrical signal at the output
of the filter. A frequency synthetizer is used as driving
source, providing a stationary RF driving signal V2(t) whose
frequency F ′ = (�0 + ε)/2π can be adjusted arbitrarily.

The coupled optoelectronic oscillator is equivalent to an
electronic voltage controlled oscillator (VCO). The dynamics
of the microwave oscillation can be therefore described in
terms of a voltage V (t) which is the sum of an external
voltage V2(t) from the driving source and the voltage V1(t)
from the amplifier output. The dynamics of the in-loop voltage
can be described by the following integro-differential delay
equation:

V1(t)+ 1

��

dV1(t)

dt
+ �2

0

��

∫ t

t0
V1(s)ds

= SGP cos2
[
πV1(t −T )

2VπRF
+ πV2(t −T )

2VπRF
+ πVB

2VπDC

]
, (1)

where the integro-differential term originates from the narrow-
band RF filtering, and the nonlinear term comes from the
interference transfer function of the MZM [6], [7]. A simpler
version of this equation would be based on the dimensionless
voltages xi (t) = πVi (t)/2VπRF with i = 1, 2, and their
delayed counterparts xi,T (t) ≡ xi (t − T ). The dimensionless
equation therefore reads

x1 + 1

��

dx1

dt
+ �2

0

��

∫ t

t0
x1(s)ds = β cos2(x1,T + x2,T + ϕ),

(2)

where the constant parameters of the dimensionless Eq. (2)
are the loop gain β = πSG P/2VπRF and the offset phase
ϕ = πVB/2VπDC .

III. THE CASE OEO WITH NULL DELAY

In order to gain in depth understanding of the phase-locking
mechanisms, it is useful to start our analysis with the case
where the delay is set to zero.

Since the RF filter is narrowband, variable x1(t) can
be expressed under the form of a quasi-sinusoidal signal
with a slowly varying amplitude and frequency, while the
driving signal is a sinusoidal signal with fixed amplitude
and frequency. From a mathematical point of view, these
dimensionless variables can be rewritten as:

x1(t) = 1

2
A(t) ei�0t + c.c. (3)

x2(t) = 1

2
B ei(�0+ε)t + c.c., (4)

where c.c. denotes the complex conjugate of the previous
terms, ε is the detuning frequency shift parameter of the
external signal, A(t) = A(t)eiψ(t) is the complex-valued
slowly varying amplitude of the in-loop signal, and B is
the fixed amplitude of the external signal. Note that B is



TALLA et al.: ANALYSIS OF PHASE-LOCKING IN NARROW-BAND OPTOELECTRONIC OSCILLATORS 5000108

considered here as real-valued and positive (slowly-varying
phase is null), without loss of generality.

Using Eqs. (3) and (4), the trigonometric formula
cos2 z = (1 + cos 2z)/2, and the Jacobi-Anger expansion
given by

eiz cos ξ = J0(z)+ 2
+∞∑
n=1

i nJn(z) cos nξ , (5)

we can therefore rewrite Eq. (2) as

Ȧ = −μA + 2μγ J0[2B]Jc1[2|A|]A
+ 2μγ J0[2|A|]Jc1[2B]Beiεt, (6)

where γ = β sin 2ϕ is the effective loop gain, and μ = ��/2
is the half-bandwidth [8], [13]. The function Jc1(x) = J1(x)/x
denotes the first-order Bessel cardinal function. Equation (6)
explicitly depends on time but we can remove this time
dependence by introducing the variable transformation
Z = Ae−iεt . As a result, we obtain the following equation:

Ż = −μZ − iεZ + 2μγ J0[2B]Jc1[2|Z|]Z
+ 2μγ J0[2|Z|]Jc1[2B]B, (7)

where

Z = Zeiφ(t) with φ(t) = ψ(t) − εt . (8)

is the new dynamical variable.

A. Determination of Fixed Points and Their Stability

In this section we determine the steady state amplitude Zst
of the central mode by using the relationships Ż = 0 and
|Zst| = |Ast|. We rescale the detuning frequency ε to a
dimensionless parameter ε following ε = ε/μ. Hence, the
steady state equation obeys the following equation:

ε2 Z2
st + Z2

st{1 − 2γ J0[2B] Jc1[2Zst]}2

− 4γ 2{J0[2Zst]Jc1[2B])B}2 = 0. (9)

This nonlinear algebraic equation depends on the amplitude
and the detuning frequency of the driving source. The
steady state can not be analytically evaluated, and numerical
simulation is needed to understand how the in-loop oscillation
amplitude is influenced by the driving signal. We first study
the effect of driving amplitude B at ε = 0, and then we
study the contribution of the frequency detuning. A trivial
solution of this equation Zst = 0 is obtained whenever the
amplitude B or the gain γ is null, regardless of the value
of the detuning ε. For the case of the non-driven oscillator
(B = 0), it is well known that there are two fixed points: the
trivial fixed point Z0 = 0 and the non-trivial solution obeying
2γ Jc1[2|Zosc|] = 1, which exists only when |γ | > 1 [8]. The
critical value |γcr| = 1 corresponds to a Hopf bifurcation
leading to single tone oscillations: the trivial fixed point
Z0 = 0 is stable for γ < 1, but looses its stability for γ > 1
in favor of the non-trivial solution Zosc.

When the detuning ε is null, the steady-state equation
becomes a function of the amplitude of external source. This
case is described by the following equation:

Zst − γ J0[2B]J1[2Zst] ± γ J0[2Zst]J1[2B] = 0. (10)

Fig. 2. Numerical evaluation of the fixed point Zst at different values of
B when ε = 0, using Eq. (10). (a) B = 0.01, (b) B = 0.05, (c) B = 0.1,
and (d) B = 0.4. The solid blue line characterizes stable fixed points and the
solid grey line represents unstable fixed points.

Fig. 3. Numerical evaluation of the fixed point Zst at different values of
the detuning ε using Eq. (9). (a) B = 0.01 and ε = 0.01; (b) B = 0.01 and
ε = 0.1; (c) B = 0.1 and ε = 0.01; (d) B = 0.1 and ε = 0.3. The solid
blue line characterizes stable fixed points and the solid gray line represents
unstable fixed point.

We can numerically determine the fixed point at different value
of driving amplitude B . In Fig. 2 we plot for different values
of B the fixed point at ε = 0. Figure 3 gives the evolution
for different values of the detuning ε when it is not null.,
and it is seen that for a small detuning frequency restricted
to the bandwidth of the RF filter, there is noticeable variation
of the threshold. It can be observed in Figs. 2 and 3 that
there can be multiple solutions for the same value of the gain.
That multistability is induced by the presence of the forcing
signal B in the Eq. (10). The oscillations that are actually
observable correspond to stable fixed points (depicted in blue
in the figures).

We now determine the stability properties of the fixed
points. We have to note that the fixed points are not explicitly
defined for γ �= 0. In order to study their stability,
we have to perturb Eq. (8) and check if the perturbation
grows or decreases depending on the driving source parameters
and the normalized value of the normalized gain. Using the
following relation

|Zst + δZ| = Zst + 1

2
δZ + 1

2
δZ∗, (11)



5000108 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 51, NO. 6, JUNE 2015

Fig. 4. Numerical simulation of Eq. (7) for various detuning frequency
values, with B = 0.1 and γ = 1.1. The initial condition has been uniformly
set at Z = 0.2. (a) ε = 0.1; (b) ε = 0.2; (c) ε = 0.3; (d) ε = 0.4.

where the star symbol (∗) denotes the complex conjugate,
we obtain the autonomous perturbation flow

δŻ = kδZ + αδZ∗

δŻ∗ = αδZ + k∗δZ∗ (12)

where the parameters k (complex-valued) and α (real-valued)
are defined as:

k = −μ− 2μγ J0[2B]Jc1[2Zst] + 2μγ J0[2|Zst|]J0[2B]
− 4μγ Jc1[2B]J1[2|Zst|]B − iε, (13)

α = 2μγ J0[2B]J0[2Zst] − 4μγ J0[2B]Jc1[2Zst]
− 2μγ J1[2B]J1[2Zst]. (14)

The characteristic equation for the eigenvalues is given by

λ2 − (k + k∗)λ+ (kk∗ − α2) = 0, (15)

with solutions

λ1,2 = �(k)±
√
α2 − ε2. (16)

The sign of these eigenvalues defines if the fixed point is stable
or not. If |α| < ε, both eigenvalues are complex and the fixed
point is asymptotically stable if all real parts are negative.
In that case, Eq. (16) should be rewritten as:

λ1,2 = �(k)± i
√
ε2 − α2. (17)

These two eigenvalues are complex conjugate in the presence
of the detuning frequency and have the negative real part
described by the blue line in Fig. 3. This corresponds to an
asymptotical stability for this fixed point. For the case with
ε = 0 presented in Fig. 2, both eigenvalues are real and have
real parts with opposite signs. An important observation is that
for all values of B and ε, the fixed point changes its stability
at γ = 1. In Fig. 4, we illustrate the numerical simulation of
Eq. (7) for four values of the detuning frequency ε. It can be
seen that the amplitude converges to the stable fixed point for
ε = 0.1, 0.2 and 0.3, but leads to oscillations for ε = 0.4.

From a more global perspective, the oscillations in OEOs
arise through the scenario presented in Fig. 5, which is the
3D-display of an experimental bifurcation diagram obtained in
absence of the driving source. Below a critical value, the trivial

Fig. 5. 3D-Display of an experimental bifurcation diagram obtained when the
system is not driven (B = 0). The height is a probability density distribution,
and the gain γ is varied from 0 to 3 (laser current varied from 0 to 70 mA).
The color code is such that red (blue) indicates high (low) probability. When
the gain is smaller than 1, the trivial fixed point is stable. Beyond that critical
value (Hopf bifucation point), stable oscillations are triggered.

Fig. 6. Experimental plot of the in-loop oscillations. The normalised gain is
γ = 1.1, corresponding to a laser injection current of 32.4 mA. This timetrace
is to be compared with the one of Fig. 4(d).

fixed point is stable, while above this value, a limit-cycle
induced by a Hopf bifurcations emerges, thereby leading to
self-sustained, single-tone oscillations. When the driving force
is set on, we typically obtain the dynamics displayed in Fig. 6,
which is the experimental plot for the in-loop oscillation for
γ = 1.1 corresponding to a laser injection current of 32.4 mA,
The amplitude of external source is normalized at B = 0.1 and
the detuning frequency is normalized at ε = 0.4. Figure 6
is in concordance with the numerical time trace displayed
in Fig. 4d.

B. The Phase Equation

In this section, we investigate in detail the problem
of phase-locking between the external and in-loop signals.
For this purpose, we define the phase equation using
Eqs. (7) and (8), following

dφ

dt
= −ε + η sin φ, (18)

where η = −2γ J0[2Z ]Jc1[2B]B/Z . This equation
for the phase is sometimes referred to as the Adler
equation [14], [18]. We assume that in the absence of
interaction (B = 0), the phase ψ of this optoelectronic
oscillator is constant [8]. The important task here is to
determine the stability of the phase difference and study the
case where we observe a phase-locked regime. We can see
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Fig. 7. Variations of the phase difference φ. The blue line represents
the results from the numerical simulation using Eq. (18) with ε(μ) = 0.2,
B = 0.1, γ = 1.1, Zst = 0.44, and the gray line represents the results from
numerical simulation using Eq. (7) with ε(μ) = 0.2, B = 0.1, γ = 1.1.

that from Eq. (18), the oscillator can be locked with an
external source, exhibiting a wide variety of Arnold tongues
obtained as a function of the different values of normalized
external voltage.

The stability of phase equation (18) is studied by the
determination of the fixed point of this equation through
φ̇ = 0 yields

sin φ = ε

η
. (19)

Three particular cases can therefore be observed depending on
the magnitude of the ratio ε/η.

The first case is ε = 0, corresponding to the case where
x1 and x2 have the same frequency. Here, the fixed point
φst = 0 is stable, and we have φst = ψst = 0.

The second case is |ε/η| < 1, and here, the system should
have two fixed points, with one being stable and the other
unstable. We observe phase-locking and the constant phase
difference can be expressed as

φst = arcsin
ε

η
. (20)

In Fig. 7, we represent the time evolution of the phase
difference for ε = 0.01 and for ε = 0.4. The gray line
is the numerical simulation using Eq. (7) and the blue line
represents the numerical simulation using equation (18) when
Zst is constant. These curves explain that when the condition
|ε/η| < 1 is satisfied, the phase difference evolves towards
stable oscillations.

According to Eq. (20), we define the steady state solution
of the OEO. We remark that for a weak coupling, the phase
difference is slowly attracted to the fixed point and for the
strong coupling there is a rapid attraction. The instantaneous
phase ψst = φst + εt of the oscillator depends on the phase of
the driving source, and this equation describes a mode-locking
behavior of the envelope which oscillates at the frequency of
driving source ε. In order to study the stability of the fixed
point, we have to perturb it and check if the perturbation
grows or decreases depending on the frequency shift ε.
By neglecting the high order nonlinear terms, the perturbation
equation for δφ is

δφ̇ = λp δφ, (21)

Fig. 8. Variations of the phase difference φ. The blue line represents the
numerical simulation using Eq. (7) with ε = 0.4, B = 0.1, γ = 1.1, and the
gray line represents the numerical simulation using Eq. (18) with ε = 0.4,
B = 0.1, γ = 1.1, Zst = 0.41.

Fig. 9. Variation of the period drift using Eq. (23) with B = 0.1, γ = 1.1
and η is calculated using Eq. (7) in therm of Z .

where

λp = η cos

[
arcsin

ε

η

]
= ±

√
η2 − ε2. (22)

The exponential growth rate λ is here positive or negative since
the condition |ε/η| < 1 is satisfied. It can be assumed here
that the phase difference is asymptotically stable for the case
where the exponential rate λ < 0. This is a direct indicator of
phase synchronization in our OEO .

The last case corresponds to |ε/η| > 1. Here, both fixed
points disappear and the phase-locking is irremediably lost.
The phase difference diverges because of the deterministic
phase drift [20]. The phase difference increases slowly in the
form of a sine wave and the period of the phase-drift can be
evaluated as [16].

Tdrift = 2π√
ε2 − η2

. (23)

The numerical simulation of phase equation for the case of
phase drift is shown in Fig. 8. We observe in this figure that
the phase difference is unstable, thereby characterizing the
phase-drift. The analytical calculation of the period of the
drift using Eq. (23) gives Tdrift = 0.481 and the evaluation
in Fig. 9 shows Tdrift = 0.468. Figure 9 explains the variation
of the period of the drift as a function of detuning frequency.
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IV. INFLUENCE OF THE DELAY

The time-delay induces an infinite-dimensionality in the
system, and when combined with the inherent nonlinearity of
the system, it leads to significantly more complex dynamical
behaviors. When the delay is accounted for, the slowly-varying
amplitude of the microwave obeys

Ȧ = −μA − 2μγ e−i�0TJ0[2B]Jc1[2AT ]AT

−2μγ e−i�0TJ0[2AT ]Jc1[2B]Beiε(t−T ), (24)

where the parameters are identical to those of Eq. (6). The
delay-induced phase-shift term e−i�0 T can be set to −1 [8],
and the explicit dependence in Eq. (24) can be removed by
introducing the variable transformation G = Ae−iεt, thereby
leading to the delayed-differential equation

Ġ = −μG − iεG + 2μγ J0[2B]Jc1[2GT ]GT e−iεT

+ 2μγ J0[2GT ]Jc1[2B]Be−iεT. (25)

In this equation we observe that the microwave envelope is
perturbed by the amplitude and detuning frequency of the
driving oscillator. In the next sub-section we study their effect
on the dynamics of the optoelectronic oscillator.

A. Amplitude and Phase Dynamics

The stationary solutions obey the nonlinear algebraic
equation depending on the the fixed point amplitude Gst
following

(1 + iε)Gst − (ρ1J1[2|Gst|] + ρ0J0[2|Gst|])e−iεT = 0, (26)

where ρ0 = γ J0[2B], ρ1 = γ J1[2B] and ε = ε/μ. This
equation is solved by considering the real and imaginary parts
separately. We arrive in the system described as

Gst − (ρ0J1[2|Gst|] + ρ1J0[2|Gst|]) cos εT = 0 (27)

εGst − (ρ0J1[2|Gst|] + ρ1J0[2|Gst|]) sin εT = 0. (28)

When the gain exceeds a given threshold value, the fixed points
loose their stability and a complex time-domain dynamics is
triggered.

B. Phase Dynamics

The phase dynamics of the system can be analyzed after
introducing new real variables G and φ following

G = Geiφ(t), (29)

where G ≥ 0 and φ = ψ(t) − εt stand for the microwave
amplitude and phase difference between the two oscillators.
Substituting this representation into the Eq. (25) yields two
equations for the amplitude and the phase difference:

Ġ = −μG + 2μγ J0[2B]Jc1[2GT ]GT

× cos(φT − φ − εT )

+ 2μγ BJc1[2B]J0[2GT ] cos(φ + εT ), (30)

φ̇ = −ε + 2μγ J0[2B]Jc1[2GT ]GT

× sin(φT − φ − εT )

− 2μγ BJc1[2B]J0[2GT ] sin(φ + εT ). (31)

Fig. 10. Time variation of the phase difference with B = 0.2 and
ε = 0.5 MHz, T = 0.5 μs and for (a) γ = 1.3 and (b) γ = 1.43. The solid
red line displays the the results of the phase equation given in Eq. (25) while
the solid black line displays the analytical phase equation given in Eq. (32)
for the same values of normalized gain.

This set of equations can be further simplified, and lead to the
phase difference equation:

φ̇ = −�− K sin φ + η sin(φT − φ). (32)

where the parameters �, η and K are respectively defined as
follows:

� = ε + μ tan εT (33)

η = 2μγ J0[2B]Jc1[2GT ]GT

G cos εT
(34)

K = 2μγ BJc1[2B]J0[2GT ]
G cos εT

. (35)

Equation (32) is the delayed phase equation that will describe
the phase-locking effects of interest in our system. In the
literature, this equation is known as the delayed Adler equation
when the parameters are constant. This case is studied in
ref. [24] and the synchronization region is explicitly described
within the framework of Arnold Tongues theory.

C. Stability and Phase Synchronization of the System

The stability of Eq. (32) can be studied by determining the
fixed points of the phase equation. We therefore set φ̇ = 0,
leading to K sin φ = −�. Three particular cases have to be
analyzed in detail.

• Case |�/K | = 0: we are led to � = 0, that is,
ε+μ tan εT = 0 or ε = 0. In this case, we have one fixed point
and the coupled OEO oscillates with the central frequency �0.
This is a trivial case of in-phase synchronization.

• Case |�/K | > 1: here, there is no fixed point and the
phase difference diverges. This case also encompasses the
regime where the system can display a chaotic behavior.

• Case |�/K | < 1: there are two fixed points defined by

φst = − arcsin
�

K
, (36)

with one being stable (corresponding to phase-locking) and the
other being unstable. The stability of the phase-looked solution
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Fig. 11. Numerical simulation of phase-locked solution for γ = 0.5. The
shaded area corresponds to the phase-locked states.

is determined by the root of the corresponding characteristic
equation

λ− ηe−λT + η +
√

K 2 −�2 = 0. (37)

where λ is the complex eigenvalue. Using the fact that λT is
small, we use the a Taylor expansion of exponential term
e−λT 	 1 − λT to determine the following approximation
of the eigenvalue:

λ 	 −η +
√

K 2 − η2

1 + ηT
. (38)

When λ < 0, the dynamics of the phase difference in
the system is asymptotically stable, as it can be observed
in Fig. 10. In that case, all the trajectories of the phase
converge to the stable value and the OEO becomes
phase-locked to the external driving. Figure 11 shows the
area in the parameter space � − K where phase-locking
occurs. This figure is obtained by varying the driving
voltage B from 0 to 1 at constant gain γ = 0.5. For the
natural frequency � inside the shaded area (Arnold tongue),
the voltage controlled oscillator entrained the optoelectronic
oscillator to a synchronous state.

V. CONCLUSION

In this article, we have analyzed the phase synchronization
of an optoelectronic oscillator coupled to an external source.
The global system was therefore similar to a voltage
controlled oscillator. We have proposed an analytical model
that enabled us to investigate the behavior of the phase
difference between the OEO and the driving source. We have
then defined the regimes of weak and strong coupling on
the base of our stability analysis. It appeared that for given
values of the external driving amplitude and frequency, there
exists a phase-locking regime where synchronization occurs.
The OEO is therefore a system where an external source can
be used to phase-lock its frequency. Further research will be
performed in order to study the efficiency of phase-locking
in various architectures of particular technological interest.
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