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Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs
in the anomalous and normal dispersion regimes

Cyril Godey,1 Irina V. Balakireva,2 Aurélien Coillet,2 and Yanne K. Chembo2,*
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We propose a detailed stability analysis of the Lugiato-Lefever model for Kerr optical frequency combs
in whispering-gallery-mode resonators when they are pumped in either the anomalous- or normal-dispersion
regime. We analyze the spatial bifurcation structure of the stationary states depending on two parameters that are
experimentally tunable; namely, the pump power and the cavity detuning. Our study demonstrates that, in both
the anomalous- and normal-dispersion cases, nontrivial equilibria play an important role in this bifurcation map
because their associated eigenvalues undergo critical bifurcations that are actually foreshadowing the existence
of localized and extended spatial dissipative structures. The corresponding bifurcation maps are evidence of
a considerable richness from a dynamical standpoint. The case of anomalous dispersion is indeed the most
interesting from the theoretical point of view because of the considerable variety of dynamical behavior that
can be observed. For this case we study the emergence of super- and subcritical Turing patterns (or primary
combs) in the system via modulational instability. We determine the areas where bright isolated cavity solitons
emerge, and we show that soliton molecules can emerge as well. Very complex temporal patterns can actually
be observed in the system, where solitons (or soliton complexes) coexist with or without mutual interactions.
Our investigations also unveil the mechanism leading to the phenomenon of breathing solitons. Two routes to
chaos in the system are identified; namely, a route via the destabilization of a primary comb, and another via the
destabilization of solitons. For the case of normal dispersion, we unveil the mechanism leading to the emergence
of weakly stable Turing patterns. We demonstrate that this weak stability is justified by the distribution of stable
and unstable fixed points in the parameter space (flat states). We show that dark cavity solitons can emerge in
the system, and also show how these solitons can coexist in the resonator as long as they do not interact with
each other. We find evidence of breather solitons in this normal dispersion regime as well. The Kerr frequency
combs corresponding to all these spatial dissipative structures are analyzed in detail, along with their stability
properties. A discussion is led about the possibility to gain unifying comprehension of the observed spectra from
the dynamical complexity of the system.
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I. INTRODUCTION

A Kerr comb is a set of equidistant spectral components
generated through the optical pumping of an ultrahigh-quality-
factor whispering-gallery-mode (WGM) resonator with Kerr
nonlinearity. In this system, the WGM resonator is pumped
by a continuous-wave (cw) laser, and the pump photons are
transferred through four-wave mixing (FWM) to neighboring
cavity eigenmodes. All these excited modes are coupled
through FWM and, as a result, may excite an even greater
number of modes. This process can generate as much as several
hundred oscillating modes, which are the spectral components
constituting the so-called Kerr comb.

Kerr-comb generators are characterized by their conceptual
simplicity, structural robustness, small size, and low power
consumption. They are therefore promising candidates to
replace femtosecond mode-locked lasers in applications where
these features are of particular relevance. The theoretical
understanding of Kerr-comb generation in whispering-gallery-
mode resonators is currently the focus of a worldwide activity
that is motivated by the wide range of potential applications
[1–8]. Another incentive is the necessity to understand the
complex light-matter interactions that are induced by the
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strong confinement of long-lifetime photons in nonlinear
media.

Early models for Kerr-comb generation were based on a
modal-expansion approach [9–11], which used a large set of
coupled nonlinear ordinary differential equations to track the
individual dynamics of the WGMs. This formalism enabled
researchers to determine threshold phenomena and to explain
the role of dispersion as well as some of the mechanisms
leading to Kerr-comb generation. However, this modal model
becomes difficult to analyze theoretically when the number of
excited modes is higher than five [11].

An alternative paradigm has been introduced recently and
is based on the fact that, in the system under study, light
circumferentially propagates inside the resonator and can be
treated as if it were propagating along an unfolded trajectory
with periodic boundary conditions [12–15]. In this case, the
system can be modeled by a spatiotemporal formalism known
as the Lugiato-Lefever equation (LLE), which is a nonlinear
Schrödinger equation (NLSE) with damping, detuning, and
driving [16]. The variable of the LLE is the overall intracavity
field, which is the sum of the modal fields described by the
modal model. Equivalence between the modal approach and
the spatiotemporal formalism has been demonstrated recently
and enables us to understand the Kerr-comb generation process
from different viewpoints: the modal approach is useful to
investigate threshold phenomena when only few modes are
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involved, while the spatiotemporal formalism is suitable when
a very large number of interacting modes are involved [11].
In this latter case, mode-locking between the modes can lead
to the formation of narrow pulses, such as cavity solitons, for
example. From a more general perspective, the LLE formalism
shows that Kerr combs are the spectral signature of dissipative
patterns or localized structures in WGM resonators [17].

Among the various parameters that are relevant to under-
stand Kerr-comb generation, group velocity dispersion (GVD)
is one of the most important. GVD in WGM resonators can
be either normal or anomalous, and the real-valued parameter
corresponding to GVD has opposite signs depending on the
dispersion regime. From a mathematical point of view, the
solutions to be expected when using the constitutive dynamical
equations are therefore different; from the physics standpoint,
the phenomenology is intrinsically different as well. However,
the role of dispersion in Kerr-comb formation is still a
wide-open problem, and the various solutions that are expected
to arise depending on the sign of dispersion are to a large extent
unknown.

Almost all previous research has been devoted to the
investigation of Kerr-comb generation in the anomalous group
velocity dispersion (GVD) regime. In fact, it was thought
for a long time that normal-GVD Kerr-comb generation was
impossible but, later on, it was shown to occur only under
fairly exceptional circumstances (see, for example, Refs. [17–
19]). This explains why the quasitotality of the scientific
literature on Kerr combs assumes a laser-pump frequency
in the anomalous-GVD regime for the bulk material of the
resonator.

When the dispersion is anomalous, earlier studies on Kerr-
comb generation have shown that, above a given threshold,
the long-lifetime photons originating from the pump interact
nonlinearly with the medium and populate the neighboring
cavity modes through four-wave mixing (FWM). The resulting
permanent state features an all-to-all coupling among the
excited modes, which can enable various dynamical outputs
such as phase-locked (through Turing patterns or solitons),
pulsating, and even chaotic states. In particular, the phase-
locked states are expected to be useful for a wide spectrum of
applications [1–8].

Comprehensive studies where all these behaviors are asso-
ciated with well-identified regions of the parameter space are
scarce. Most research articles so far have focused on specific
phenomenologies (modulational instability, solitons, chaos,
breathers, etc.) and our objective in this paper is to provide
a larger viewpoint for understanding of Kerr-comb generation
with either anomalous or normal GVD. More specifically, we
perform a stability analysis of the various solutions that can
arise when a nonlinear WGM resonator is pumped. The control
parameters of the two-dimensional stability map are those that
are the most easily accessible at the experimental level; that is,
the pump power and the laser detuning relative to the cavity
resonance.

The plan of this article is the following: In the next
section, we present the model that is used to perform the
stability analysis. A short discussion will also be led to link
the parameters of the model with the physical properties
of the system under study. Section III is devoted to the
equilibria of the system and their temporal stability, and we
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FIG. 1. (Color online) Schematic of a coupled WGM resonator.
The pump radiation originates from a cw laser and the coupling is
achieved by using, for example, a tapered fiber.

then investigate in Sec. IV the spatial bifurcations of the
system. Section V focuses on the construction of bifurcation
maps based on the eigenvalue distribution. Section VI is
devoted to the analysis of the various solutions that can be
obtained in the case of anomalous dispersion. Turing patterns
(rolls) arising from modulational instability (MI) are shown
to emerge in the system, and their super- or subcritical nature
is analyzed in the time domain with respect to the detuning
frequency of the pump laser. We also study the emergence of
bright cavity solitons, soliton molecules, soliton breathers, and
spatiotemporal chaos. Section VII focuses on solutions found
in the case of normal dispersion. We analyze the emergence
of weakly stable extended Turing patterns and also determine
the basins of attraction of a wide variety of dark solitons and
breathers. The main findings of this study are comprehensively
reviewed in the last section, which concludes this article.

II. THE MODEL

The system under study is a WGM disk pumped by a
cw pump laser radiation via evanescent coupling. The typical
experimental setup is displayed in Fig. 1. The understanding of
the various phenomena of interest requires a sound knowledge
of the eigenmode structure of WGM cavities [20,21].

Let us consider a disk of main radius a and group velocity
refraction index ng at the laser pump frequency �0. The
simplest set of eigenmodes is the so-called fundamental family,
which is characterized by a torus-like (or doughnut) spatial
form inside the cavity. Each mode of this family can be
unambiguously defined by a single eigennumber �, which
can be interpreted as the number of internal reflections that a
photon undergoes in that mode in order to perform a round-trip
along the rim of the disk.

Let us now consider that the pumped mode is �0. If we only
consider the modes � that are close to �0, their eigenfrequencies
can be Taylor expanded as

ω� = ω�0 + ζ1(� − �0) + 1
2ζ2(� − �0)2, (1)

where ζ1 = c/(ang) is the intermodal angular frequency (or
free spectral range, FSR), with c being the velocity of light in
vacuum, while ζ2 stands for the second-order dispersion which
measures the nonequidistance of the eigenfrequencies at the
lowest order (see Fig. 2). We have here restricted ourselves to
the second order in the Taylor expansion, but nothing forbids
us from considering higher-order dispersion terms if necessary.
It is also interesting to note that the intracavity round-trip time
is linked to the FSR by T = 2π/ζ1.

The eigenmodes that are sufficiently close to �0 are char-
acterized by the same modal linewidth �ωtot. More precisely,
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FIG. 2. (Color online) Eigenmodes of WGM resonator. The real
location of the eigenfrequencies with anomalous or normal dispersion
is represented by solid lines, while the dashed lines represent the
location of the eigenfrequencies if the dispersion were null (perfect
equidistance). The enlargement displays the relationship between the
loaded linewidth �ωtot, the cold-resonance frequency ω�0 , the laser
frequency �0, and the cavity detuning σ = �0 − ω�0 . It is sometimes
convenient to introduce the shifted eigennumber l ≡ � − �0, so that
the pumped mode is l = 0, while the side modes correspond to
l = ±1, ± 2, . . . [11]. In the case of anomalous dispersion, the
eigenmodes are pulled rightward (blueshift), while in the case of
normal dispersion, the eigenmodes are pulled leftward (redshift).

we have

�ωtot = �ωin + �ωext, (2)

where �ωin = ω�0/Qin, �ωext = ω�0/Qext, and �ωtot =
ω�0/Qtot are respectively the intrinsic, extrinsic (or coupling),
and total linewidths, while the quality factors Q are defined
analogously. Interestingly, the modal linewidth �ωtot can be
viewed as a measure of the total losses of the resonator, since
it is linked to the average photon lifetime τph as

τph = 1

�ωtot
. (3)

The normalized complex slowly varying envelopes A�(t) of
the various eigenmodes can be obtained by using the modal-
expansion model proposed in Ref. [11]. The amplitudes were
normalized such that |A�|2 was the number of photons in the
mode �. The overall intracavity field A can be determined as a
sum of the modal fields A� and, in Ref. [14], a spatiotemporal
Lugiato-Lefever formalism has been constructed in order to
describe the dynamics of this total intracavity field. In its
normalized form, this corresponding equation is the following
partial differential equation:

∂ψ

∂τ
= −(1 + iα)ψ + i|ψ |2ψ − i

β

2

∂2ψ

∂θ2
+ F, (4)

where ψ(θ,τ ) is the complex envelope of the total intracavity
field, θ ∈ [−π,π ] is the azimuthal angle along the circum-
ference, and τ = t/(2τph) is the dimensionless time, with τph

being the photon lifetime in the coupled cavity defined in
Eq. (3). It is important to note that this equation has periodic
boundary conditions, and that ψ represents the intracavity
fields dynamics in the moving frame.

The other dimensionless parameters of this normalized LLE
are the frequency detuning

α = −2(�0 − ω�0 )

�ωtot
= − 2σ

�ωtot
, (5)

where �0 and ω�0 are, respectively, the angular frequencies
of the pumping laser and the cold-cavity resonance, and the
overall dispersion parameter

β = − 2ζ2

�ωtot
. (6)

Note that the anomalous-GVD regime is defined by β < 0
while normal GVD corresponds to β > 0. Finally, by using
the coupling formalism presented in Ref. [22] and used in
Ref. [23] for optical resonators, the dimensionless external
pump field intensity can be explicitly defined as

F =
√

8g0�ωext

�ω3
tot

P

��0
, (7)

where P is the optical power (in W) of the laser pump at
the input of the resonator. The nonlinear gain g0 is equal to
n2c��2

0/(n2
0V0), where n0 and n2 are, respectively, the linear

and nonlinear refraction indices of the bulk material, and V0

is the effective volume of the pumped mode. Note that since
F is real valued and positive, the optical phase reference is
arbitrarily set by this pump radiation for all practical purpose.

It is interesting to note that, as demonstrated in Ref. [14]
which links the modal and spatiotemporal formalisms for Kerr-
comb generation, the intracavity field can be expanded as

ψ(θ,τ ) =
∑

l

�l(τ )eilθ , (8)

with

�l(τ ) =
√

2g0

�ωtot
A∗

�(τ )ei 1
2 βl2τ , (9)

where A� corresponds to the modal complex field envelopes
introduced in Refs. [10,11], and l ≡ � − �0 is the azimuthal
eigennumber of the photons with respect to the pumped
mode (which is therefore labeled l = 0, while the side modes
correspond to l = ±1, ± 2, . . . ). By inserting the expansion
(8) into Eq. (4), it can be shown that the dynamics of the
complex-valued slowly varying envelopes �l is ruled by

d�l

dτ
=

[
−(1 + iα) + i

β

2
l2

]
�l + δ(l)F

+ i
∑
m,n,p

δ(m − n + p − l)�m�∗
n�p, (10)

where δ(x) is the usual Kronecker function equal to 1
for x = 0 and to 0 otherwise, while m, n, p, and l are
eigennumbers labeling the interacting modes following the
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interaction �ωm + �ωp ↔ �ωn + �ωl . Note that the above
modal model of Eq. (10) is strictly equivalent to the original
modal-expansion formalism presented in Ref. [11]. However,
Eq. (10) is significantly simpler and is much easier to simulate
and to analyze than the former modal model for two reasons.
The first reason is that the explicit time dependence is
removed in the sum accounting for the four-wave mixing,
and Eq. (10) is therefore totally autonomous: from a physical
viewpoint, this is due to the fact that A� was defined relative
to the (nonequidistant) nominal eigenfrequencies ω� of the
resonator (continuous lines in Fig. 2), while the modes �l

are defined relative to the (equidistant) dispersion-shifted
eigenfrequencies ω� + 1

2ζ2(� − �0)2 (dashed lines in Fig. 2).
The second reason is that the modal equations in �l are
completely dimensionless, owing to the full normalization.
It was shown in Ref. [14] that both the spatiotemporal and
modal-expansion formalisms are equivalent. It has also been
shown recently in Ref. [24] that the coupled-mode equations
can be numerically simulated as fast as the LLE provided that
the four-wave mixing terms are also computed by using the
fast-Fourier transform.

It is useful to give some orders of magnitude in relation to
the model of Eq. (4). Let us consider, for example, the case
of mm-size ultrahigh-Q crystalline WGM resonators pumped
around 1550 nm. The intermodal frequencies ζ1/(2π ) are of
the order of 10 GHz, which corresponds to round-trip times of
100 ps and eigennumbers �0 � ω�0/ζ1 ∼ 104. On the other
hand, the dispersion parameter ζ2/2π is typically of the order
of 10 kHz or less in absolute value. The intrinsic Q factors
are typically of the order of 109, so that the corresponding
photon lifetimes τph are of the order of 1 μs, and the modal
linewidths are of the order of 100 kHz. The pump power
typically varies from 10 mW to 1 W. These parameters can be
easily translated to those of the LLE: the frequency detuning
α can be linearly scanned at the experimental level to any
value, but relevant values typically range from −5 to 5 since
off-resonance pumping occurs as soon as |α| > 1. The absolute
value of the dispersion parameter, |β|, is 10 to 1000 times
smaller than unity. The pumping term F will typically range
between 0 and 100. Accordingly, the normalized intracavity
field will also have an order of magnitude |ψ |2 ∼ 1 around the
threshold.

It is interesting to explain why the case β = 0 is not
investigated in the present work. It had sometimes been
considered that dispersion was necessarily detrimental to
Kerr-comb generation, and that the zero-dispersion limit
would be ideal to guarantee equidistance in the comb. The
analysis of the modal-expansion model performed in Ref. [11]
already showed that it is the opposite statement that is indeed
correct: Kerr-comb generation is a priori possible for all
but zero dispersion. The mathematical explanation of this
statement is in fact strikingly simple from the standpoint of the
spatiotemporal formalism of Eq. (4): setting β to zero would
eliminate the spatial dependence of ψ , therefore allowing
only for θ -independent solutions (flat states, characterized
by a single frequency). The LLE would then degenerate into
an autonomous set of two-dimensional ordinary differential
equations describing the dynamics of the real and imaginary
parts of ψ . It can be inferred from the Poincaré-Bendixon
theorem that the only solutions might be stationary states

and limit-cycles (temporally slowly varying flat states in this
case, yielding a single frequency and modulation side modes
located within the loaded resonance). It therefore appears
that both Kerr nonlinearity and dispersion are necessary (but
not sufficient) ingredients for Kerr-comb generation. Another
important point is that, from a physical point of view, setting
β to zero requires taking into account at least the first of all the
higher-order dispersion terms (proportional to ∂nψ/∂θn with
n � 3) that is not null. Hence, in this regard, the case β = 0
would actually force us to consider a new problem that is more
complex than the LLE from a physical point of view.

We will use the spatiotemporal Lugiato-Lefever formalism
represented by Eq. (4) in order to investigate the various
steady-state solutions that can emerge in the system when
β �= 0. The numerical simulations will be performed by using
the split-step Fourier algorithm. It is noteworthy that this
algorithm inherently assumes periodic boundary conditions
because it is based on the fast Fourier transform (FFT).
It is therefore a very fast and efficient simulation method
in our case where the periodic conditions are indeed pe-
riodic [14]. Note that this FFT algorithm can be used to
speed up the simulation of the modal-expansion model as
well [24].

III. EQUILIBRIA AND THEIR TEMPORAL STABILITY

In this section, we aim to find the various equilibria of the
system and determine their temporal stability.

All equilibria ψe are obtained from Eq. (4) by setting all
the derivatives to zero, thereby yielding

F 2 = [1 + (ρ − α)2]ρ ≡ G(α,ρ), (11)

which is a cubic polynomial equation in ρ = |ψe|2. It is well
known that this equation has one, two, or three real-valued
solutions depending on the parameters α and F . Multiple
solutions may arise in a polynomial equation when it has local
extrema; in our case, this condition requires the existence of
critical values of ρ such that the partial derivative

∂G

∂ρ
= 3ρ2 − 4αρ + α2 + 1 (12)

is null. This condition yields a quadratic equation with a
discriminant equal to 4(α2 − 3); therefore, if |α| <

√
3, there

are no such critical values for ρ whereas, for |α| �
√

3, these
critical values are

ρ±(α) = 2α ± √
α2 − 3

3
, (13)

and the corresponding pumping terms are

F 2
±(α) = G[α,ρ∓(α)] (14)

= 2α ∓ √
α2 − 3

3

[
1 +

(√
α2 − 3 ± α

3

)2
]

.

Hence, when α >
√

3, there exists a range of pumping power
F 2 ∈]F 2

−(α),F 2
+(α)[ such that there are three equilibria ρ1, ρ2,

and ρ3 ordered as ρ1 � ρ− � ρ2 � ρ+ � ρ3. On the one hand,
it can be shown that, if these solutions are perturbed in the
temporal domain, the extremal solutions ρ1 and ρ3 are always
stable while the intermediate solution ρ2 is always unstable.
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FIG. 3. (Color online) Relationship between the number of solu-
tions and the pumping strength F . There is always only one solution
for α <

√
3, but for α >

√
3, there is a range of pumping strengths

F for which there are three solutions.

This is the well-known theory of hysteresis in dynamical
systems with cubic nonlinearity. On the other hand, outside
the interval [F 2

−(α),F 2
+(α)], there is a unique equilibrium

which is always stable. The same conclusion applies as well
for every value of F 2 whenever α <

√
3. The intermediate

case where two solutions exist precisely corresponds to the
boundary lines F 2

−(α) and F 2
+(α). Figure 3 shows how the

multiple-equilibria states emerge as the value of the cavity
detuning α increases. This analysis is actually equivalent to the
one that was performed in Ref. [11] with the modal-expansion
model, when the time dynamics was disregarded (temporal
derivative set to zero).

IV. SPATIAL BIFURCATIONS

The objective of a spatial bifurcation study is to investigate
the various stationary solutions of the system as a function of
the parameters. The full study requires at least the calculation
of the relevant normal forms around all the critical points and
lines of the system. This task is indeed very complex, and can
be circumvented by a simpler approach which can still provide
insightful information about the spatial stability of the various
solutions.

We start by setting the temporal derivative to zero and we
rewrite the original Eq. (4) as

∂2ψr

∂θ2
= 2

β

[(
ψ2

r + ψ2
i − α

)
ψr − ψi

]
, (15)

∂2ψi

∂θ2
= 2

β

[(
ψ2

r + ψ2
i − α

)
ψi + ψr − F

]
, (16)

where ψ = ψr + iψi , with ψr and ψi being, respectively, the
real and complex parts of ψ . If we introduce the intermediate
variable

φr,i = ∂ψr,i

∂θ
, (17)

then Eq. (16) can be rewritten under the form of a four-
dimensional flow:

∂ψr

∂θ
= φr, (18)

∂φr

∂θ
= 2

β

(
ψ3

r + ψ2
i ψr − αψr − ψi

)
, (19)

∂ψi

∂θ
= φi, (20)

∂φi

∂θ
= 2

β

(
ψ2

r ψi + ψ3
i − αψi + ψr − F

)
. (21)

The matrix of the linearized system around an equilibrium
ψe = ψe,r + iψe,i is

J =

⎡
⎢⎢⎢⎣

0 1 0 0
2
β

(
3ψ2

e,r + ψ2
e,i − α

)
0 2

β
(2ψe,rψe,i − 1) 0

0 0 0 1
2
β

(2ψe,rψe,i + 1) 0 2
β

(
ψ2

e,r + 3ψ2
e,i − α

)
0

⎤
⎥⎥⎥⎦,

(22)

and the eigenvalues λ of this Jacobian matrix obey the
characteristic equation

λ4 − 4

β
(2ρ − α)λ2 + 4

β2
(3ρ2 − 4αρ + α2 + 1) = 0. (23)

As explained before, the sign of β is determined by the overall
dispersion (β < 0 for anomalous GVD, and β > 0 for normal
GVD).

Equation (23) is quadratic in λ2; hence, we always have
four eigenvalues which are either pairwise opposite (when real
valued) or pairwise conjugated (when complex valued). It is
also important to note that there is a quadruplet of eigenvalues
for each solution. We will therefore have four eigenvalues in
the area of the α-F 2 plane where there is a single equilibrium,
twelve eigenvalues in the hysteresis area where there are three
equilibria, and eight eigenvalues in the boundary lines where
there are two solutions.

The nature (complex, real, or pure imaginary) of the
eigenvalues is partially decided by the sign of the discriminant
� = 16(ρ2 − 1)/β2; that is, by the comparative value of the
equilibrium ρ with regards to 1. We hereafter analyze in detail
the nature of the eigenvalues as a function of the sign of this
discriminant, which is decided by ρ > 1, ρ = 1, or ρ < 1. We
will also see in Sec. V how the structural properties of these
eigenvalues are controlled by the parameters α and F 2, thereby
enabling us to plot an insightful bifurcation map.

A. First case: ρ > 1

In this case the paired solutions obey

λ2 = 2

β
[2ρ − α ±

√
ρ2 − 1]. (24)

The product of these paired solutions is equal to 4(3ρ2−
4αρ+α2+1)/β2; that is, proportional to ∂G/∂ρ as defined
in Eq. (12).

There are five subcases depending on the sign of this
function and the sign of β:

(1) If ∂G/∂ρ > 0, then
(i) If β < 0, the eigenvalues can be written as

(λ1,2; λ3,4) = (±a; ±b) if 2ρ − α < 0 (this subcase is
referred to as Type 1), and as (λ1,2; λ3,4) = (±ia; ±ib) if
2ρ − α > 0 (Type 3).

(ii) If β > 0, the eigenvalues are (λ1,2; λ3,4) =
(±a; ±b) if 2ρ − α > 0 (Type 1), and as (λ1,2; λ3,4) =
(±ia; ±ib) if 2ρ − α < 0 (Type 3).
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(2) If ∂G/∂ρ = 0, then
(i) If β < 0, the eigenvalues can be written as

(λ1,2; λ3,4) = (±a; 0) if 2ρ − α < 0 (Type 4), and as
(λ1,2; λ3,4) = (0; ±ib) if 2ρ − α > 0 (Type 5).

(ii) If β > 0, the eigenvalues are (λ1,2; λ3,4) = (±a; 0)
if 2ρ − α > 0 (Type 4) and (λ1,2; λ3,4) = (0; ±ib) if 2ρ −
α < 0 (Type 5).
(3) If ∂G/∂ρ < 0, then the eigenvalues have the form

(λ1,2; λ3,4) = (±a; ±ib) regardless of the sign of β (Type 6).

B. Second case: ρ = 1

Here, the characteristic equation has a double root:

λ2 = 2

β
[2 − α], (25)

and there are two subcases:
(1) If β < 0, the eigenvalues can be written as

(λ1,2; λ3,4) = (±ia; ±ia) when α < 2 (Type 7), as
(λ1,2; λ3,4) = (0; 0) when α = 2 (Type 2), and as
(λ1,2; λ3,4) = (±a; ±a) when α > 2 (Type 8).

(2) If β > 0, the eigenvalues are (λ1,2; λ3,4) = (±ia; ±ia)
when α > 2 (Type 7), as (λ1,2; λ3,4) = (0; 0) when α = 2 (Type
2), and as (λ1,2; λ3,4) = (±a; ±a) when α < 2 (Type 8).

C. Third case: ρ < 1

This case corresponds to the situation where the eigenvalues
are complex:

λ2 = 2

|β| [2ρ − α ± i
√

1 − ρ2]. (26)

This kind of eigenvalues will be referred to as of Type 9,
and they have the explicit form (λ1,2; λ3,4) = (a ± ib; c ± id)
regardless of the sign of β.

V. BIFURCATION MAPS

The stability analysis developed in Sec. IV enables us to
obtain bifurcation maps, which are presented in Figs. 4 and 5.

It is important to note that, in our case, the system has a
θ → −θ symmetry: as a consequence, the spatial bifurcations
that are arising in the system are necessarily reversible. Such
reversible bifurcations have been studied in detail in the fourth
chapter of Ref. [25], where a normal form characterization
is provided as well. This reversibility is essential because it
facilitates the study of the bifurcations. Another consequence
of this symmetry is that the eigenvalue spectrum is symmetrical
relatively to the imaginary axis, which in our system comes
along with a symmetry relatively to the real axis. This is
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FIG. 4. (Color online) Eigenvalue bifurcation diagram (not to scale) for the case of anomalous dispersion (β < 0). The areas are labeled
using Roman numerals (I, II, and III), and area I is subdivided into three subareas (I1, I2, and I3). The lines are labeled using capital letters,
with line A standing for the limit ρ = 1 (dashed line in the figure), B standing for F 2

+(α), and C standing for F 2
−(α). These lines can also

be subdivided as A1, A2, etc. The points are labeled using lower-case letters (a and b). It is important to remember that the system has three
equilibria in area I (between the two thick lines F 2

±) and has only one equilibrium in areas II and III. Therefore, there is a set of three quadruplets
of spatial eigenvalues in area I, two quadruplets at the boundaries F 2

±, and one quadruplet outside. The eigenvalue pictograms are in black when
they induce a bifurcation, and in gray when they do not.
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FIG. 5. (Color online) Eigenvalue bifurcation diagram (not to scale) for the case of normal dispersion (β > 0). The areas are labeled using
Roman numerals (I, II, and III). The lines are labeled using capital letters, and line A stands for the limit ρ = 1 (dashed line in the figure),
B stands for F 2

+(α), and C stands for F 2
−(α). The points are labeled using lower-case letters (a and b). Both areas and lines can be divided

into subdomains (I1, I2, A1, B1, etc.) The system has three equilibria (three quadruplets of eigenvalues) in area I, one equilibrium outside (one
quadruplet), and two at the boundaries (two quadruplets). Black eigenvalue pictograms denote a bifurcation according to Table I, while gray
pictograms do not.

why these eigenvalues are structurally similar to those of an
Hamiltonian system.

We list here the four reversible bifurcations that can be
identified in Figs. 4 and 5:

(1) 02 bifurcation: The 02 bifurcation, which is also
referred to as the “Takens-Bogdanov” bifurcation, arises when
a quadruplet of eigenvalues is of Type 4. Depending on the
system under study, both periodic and localized stationary
solutions can eventually be sustained in the vicinity of this
bifurcation.

(2) 02(iω) bifurcation: This bifurcation (also known as
the “Takens-Bogdanov-Hopf” bifurcation) corresponds to a
quadruplet of Type 5. Along this bifurcation, possible station-
ary states are periodic and quasiperiodic solutions. However,
localized solutions are typically unstable near this bifurcation.

(3) (iω)2 bifurcation: This bifurcation is sometimes re-
ferred to as the “1 : 1 resonance” or the “Hamiltonian-Hopf”
bifurcation. It arises when a quadruplet of eigenvalues is of
Type 7. Typical solutions around this bifurcation eventually
include quasiperiodic, periodic, and localized solutions.

(4) 04 bifurcation: This is a codimension-two bifurcation,
arising when a quadruplet of eigenvalues degenerates to the
origin (Type 2). For this reason it is also generally referred to
as a “quadruple-zero” bifurcation, around which a very large
variety of dynamics can a priori be observed.

It should be emphasized that, even though these same four
bifurcations are present in both the anomalous- and normal-
GVD cases, the eigenvalue structure is totally different: in fact,
all the eigenvalues are rotated by 90◦, because the eigenvalues
of the normal- and anomalous-GVD regimes only differ by
a multiplicative factor i = ei π

2 . This essential difference is
what explains the intrinsically different dynamics that can
be witnessed in both dispersion regimes: very limited in the
normal-dispersion case, and very rich when the dispersion is
anomalous, as we will see later.

It is also noteworthy that, since some eigenvalues are
located on the imaginary axis in the pictograms of Types 3
and 6, they also indeed correspond to bifurcations, respectively
referred to as (iω1)(iω2) and as (iω). However, the reversibility
of our system forces these eigenvalues to stay on the imaginary
axis, so that these bifurcations are not dynamically relevant in
our system (nonrespect of the transversality condition). This
is why they are not highlighted in Table I.

A. Bifurcation map for the case of anomalous dispersion

The line A1 corresponds to a (iω)2 (or Hamiltonian-Hopf)
bifurcation: this bifurcation at ρ = 1 = |ψth|2 has been studied
in much detail in Ref. [11] by using a modal-expansion
approach, and it was shown that it corresponded to the
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TABLE I. Nomenclature and pictograms for the various sets of eigenvalues. A set of four eigenvalues is attached to each equilibrium,
and some classified bifurcations are attached to certain configurations of eigenvalues. A dot stands for one (simple) eigenvalue, the cross
corresponds to a set of two degenerate eigenvalues (double nonsemisimple eigenvalue), and a circled cross stands for a set of four degenerate
eigenvalues (quadruple eigenvalue with a 4 × 4 Jordan bloc).

Eigenvalues and reversible spatial bifurcations in the Lugiato-Lefever model

Type Nomenclature Eigenvalues (λ1,2; λ3,4) Pictogram Bifurcation Location in Fig. 4 Location in Fig. 5

1 (±a; ±b)

2 Quadruple-zero (0; 0) 04 a a

3 (±ia; ±ib)

4 Takens-Bogdanov (±a; 0) 02 B1 B2, b, C1, c, C2

5 Takens-Bogdanov-Hopf (0; ±ib) 02(iω) B2, b, C1, c, C2 B1

6 (±a; ±ib)

7 Hamiltonian-Hopf (±ia; ±ia) (iω)2 A1, A2 A3

8 (±a; ±a)

9 (a ± ib; c ± id)

generation of the so-called primary comb. Further analysis
shows that this bifurcation corresponds in fact to modulational
instability and leads to azimuthal Turing patterns [17]. From
a more general perspective, it appears that, in the anomalous-
GVD regime, there is always a bifurcation which separates
the low-power area from the high-power area in the map,
and which leads to Kerr-comb generation. As a consequence,
for sufficiently high pump power, Kerr combs can always be
generated in the anomalous-GVD regime for any value α of
cavity detuning. The variety of solutions that can be obtained
depending on the parameters and on the initial conditions
is analyzed in detail in Sec. VI. This case of anomalous
dispersion has also been investigated in detail in Ref. [26].

B. Bifurcation map for case of normal dispersion

At the opposite of the case of anomalous GVD, the bound-
ary line ρ = |ψ |2 = 1 does not correspond to a bifurcation
when α < 2. In particular, for α <

√
3, we showed earlier

that there is only one equilibrium, which is necessary stable.
Hence, the bifurcation analysis indicates that increasing the
pump power in that case does not lead to any modification
since areas I and III do not differ structurally: this is why
Kerr-comb generation is impossible for α <

√
3 in the regime

of normal dispersion. It has been thought for long time that
Kerr-comb generation was absolutely impossible in the regime
of normal dispersion. Numerical evidence of normal-GVD
Kerr combs has in fact been obtained only very recently by
using a modal-expansion model [18], and their experimental
observation is fairly recent as well [9,17,27]. However, this
bifurcation analysis indicates that nontrivial solutions might
exist around the bifurcation lines that we have identified. We
will show in Sec. VII that both extended (Turing patterns) and

localized (dark solitons) dissipative structures can arise in the
system, thereby leading to complex patterns in both the time
and spectral domains.

VI. KERR-COMB GENERATION IN
ANOMALOUS-DISPERSION REGIME

A. Turing patterns (primary combs) via
modulational instability

Pattern formation in systems dynamically described by
partial differential equations was investigated for the first time
by Alan Turing in his seminal work of morphogenesis [28].

In our system, the so-called Turing patterns originate from
the (iω)2 (or Hamiltonian-Hopf) bifurcation arising at ρ = 1
for α < 2 (lines A1 and A2 in Fig. 4).

In this section, we will mainly focus for the sake of
simplification on the case α <

√
3 where this bifurcation is

the only one that can occur in the system (portion of line A1).
The emergence of Turing patterns was studied in Ref. [11] with
a modal-expansion approach (where they induced the so-called
primary combs) and compared to experimental measurements
in Ref. [17,29]. In the general case of pattern formation in
LLE equations, an abundant literature is indeed available,
mostly in a configuration where the Laplacian term stands
for diffraction instead of dispersion. Interesting references
include, for example, Refs. [30,31] (and references therein),
as well as Refs. [32–35] whose focus was the particular case
of spatial cavity solitons.

In our case, it can be shown that Turing patterns emerge fol-
lowing two different scenarios, either following a supercritical
bifurcation (soft excitation), or a subcritical bifurcation (hard
excitation), which are analyzed here.
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α < 41/30

Fth

(a) α > 41/30

Fth

(b)

FIG. 6. Diagram showing the difference between supercritical
(α < 41/30) and subcritical (α > 41/30) pitchfork bifurcation to-
ward Turing patterns. The continuous line denotes a stable amplitude
while the dashed line stands for an unstable steady state. (a) In the
supercritical case, no Kerr comb is possible below the threshold pump
power F 2

th. Above this threshold, the side modes of the Kerr comb can
continuously grow from infinitesimally small to significantly large as
the pump is increased. The stable equilibrium and the Turing pattern
are never simultaneously stable. This excitation mode is sometimes
referred to as soft. (b) In the subcritical case, a Kerr comb is possible
in a small interval below the threshold pump power F 2

th. Moreover,
in the small interval below F 2

th where the comb can be excited,
a stable Turing pattern does coexist with the equilibrium solution
(bistability). As a consequence, the transition from the flat state to
the Turing pattern is abrupt, and the side modes of the comb cannot
be infinitesimally small. This excitation mode is sometimes referred
to as hard.

1. Supercritical and subcritical Turing patterns

The super- or subcritical nature if the Turing patterns
originating form the LLE was already foreshadowed in the
original work of Lugiato and Lefever [16]. It was later
studied extensively by several research groups investigating
dissipative structures in nonlinear optical cavities, and two
recent noteworthy works on this topic are Refs. [36,37].
The essential difference between a super- and a subcritical
pitchfork in our context is explained in Fig. 6, and it depends
on how the comb emerges around the threshold pump power

F 2
th = 1 + (1 − α)2, (27)

which is obtained from Eq. (11) by setting ρ = |ψth|2 = 1. It
can be mathematically shown that, as the critical value αcr =
41/30 is crossed, the growth of the Turing rolls undergoes
a structural change which is mathematically explained by
the paradigm of super- and subcritical pitchfork bifurcations
[16,36,37]. The numerical simulation of the LLE permits us to
plot bifurcation diagrams such as in Fig. 7, where the difference
between these two regimes can made evident in terms of the
absence or presence of hysteresis.

On the one hand, a supercritical bifurcation in Turing
patterns occurs when α < 41/30. In this case, the unique
equilibrium ψe is stable when below the threshold pump power
F < Fth and unstable when F > Fth, leading to the emergence
of the Turing pattern (primary Kerr comb in the spectral
domain). Above the pump threshold Fth, the side modes of
the Kerr comb can continuously grow from infinitesimally
small to significantly large as the pump is increased. However,
the homogeneous equilibrium ψe and the Turing pattern are
never simultaneously stable. The temporal formation of these
supercritical patterns is displayed in Fig. 8. It is interesting
to note that the rolls are smooth and yield a Kerr comb
characterized by isolated spectral lines with multiple FSR
separation, the multiplicity being equal to the number of rolls.
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FIG. 7. (Color online) Numerical simulations showing the super-
critical and subcritical nature of the Turing patterns as the detuning
parameter α is varied across the critical value αcr = 41/30. The other
parameters are β = −0.04 and ρ = 1.2. (a) Growth of the pattern
for the supercritical case, where α < αcr. It can be seen that after
a critical value given by F 2

th = 1 + (1 − α)2, the amplitude of the
pattern grows smoothly. (b) Growth of the pattern in the subcritical
case, with α > αcr. Here, the hysteresis area can clearly be identified
when α is first smoothly swept upward, and then downward. Note
that the hysteresis area increases with the detuning α − αcr.

On the other hand, a subcritical bifurcation to Turing
patterns arises when α > 41/30. Here, as for the supercritical
case, the equilibrium ψe is stable for F < Fth and unstable
above. However, Kerr comb is possible in a small range
below the threshold pump power F 2

th. Hence, in the small
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FIG. 8. (Color online) Supercritical Turing patterns (so-called
soft excitation) generated from a small amplitude noise. The param-
eters are α = 1, β = −0.04, and ρ = 1.2 [the pumping power F 2

can be directly calculated by using Eq. (11)]. (a) Transient dynamics.
(b) Final pattern in the azimuthal direction. (c) Three-dimensional
representation. (d) Corresponding Kerr comb.
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FIG. 9. (Color online) Subcritical Turing patterns (so-called hard
excitation). The parameters are α = 1.5, β = −0.04, and ρ = 1.2
[the pumping power F 2 can be directly calculated by using Eq. (11)].
(a) Transient dynamics. (b) Final pattern in the azimuthal direction.
(c) Three-dimensional representation. (d) Corresponding Kerr comb.

interval below F 2
th where the comb can be excited, a stable

Turing pattern does coexist with the equilibrium solution. This
situation creates a bistability and also induces hysteresis, as
the dynamical state of the system will not be the same if
the pump is adiabatically increased comparatively to when
it is decreased. The consequence of this bistability is that
the transition from the equilibrium to the Turing pattern is
abrupt, and the side modes of the Kerr comb cannot be
infinitesimally small as was the case for the supercritical case.
Figure 9 shows the formation of these subcritical patterns.
At the opposite of the supercritical rolls, small pedestals can
be observed in this case, and the rolls also appear to be
sharper.

In the context of Kerr-comb generation, the super- and
subcritical bifurcation have sometimes been referred to as
soft and hard excitation modes, respectively [38]. It is also
noteworthy that the Turing patterns beyond α = √

3 are
still subcritical; however, the eigenvalue structure becomes
more complex because this area in the parameter space
α-F 2 can encompass multiple equilibria and the four types
of bifurcations listed in Sec. V. This is the area where
bright cavity solitons and related structures can emerge. We
will study these complex subcritical patterns in the next
sections.

2. Number of rolls in Turing patterns

The number of rolls in the Turing pattern arising from the
(iω)2 bifurcation at ρ = 1 necessarily requires accounting
for the boundary conditions. The reason is that, in this
case, the patterns fill the whole θ domain and the num-
ber of rolls along the azimuthal direction has to be an
integer. Hence, acknowledging for the modal structure of
the patterns is here particularly relevant to understand this
phenomenology.

According to the LLE, a perturbation δψ(θ,τ ) of the
equilibrium (flat solution) ψe obeys the linearized equation

∂

∂τ
[δψ] = −(1 + iα)δψ + 2i|ψe|2δψ + iψ2

e δψ∗

−i
β

2

∂2

∂θ2
[δψ]. (28)

Following Eq. (9), we can expand this perturbation according
to the ansatz

δψ(θ,τ ) =
∑

l

δ�l(τ )eilθ , (29)

where l ≡ � − �0 corresponds to the eigennumber of the
WGMs with respect to the pumped mode �0. The inter-
acting eigenmodes can therefore be synthetically labeled as
±1,±2, . . . ; the mode l = 0 being the central mode. After
inserting the ansatz of Eq. (29) into Eq. (28), we obtain
an equation which can be used to perform a Hermitian
projection in order to track the individual dynamics of the
modal perturbations δ�l . A projection onto a given mode l′
consists of multiplying the equation by eil′θ and integrating
the product from −π to π with respect to θ . The result of this
projection yields two equations for the modal perturbations,
which appear to be pairwise coupled according to[

˙δ�l

˙δ�
∗
−l

]
=

[
M N
N ∗ M∗

] [
δ�l

δ�∗
−l

]
, (30)

where the overdot stands for the derivative with respect to the
dimensionless time τ , while

M = −(1 + iα) + 2i|ψe|2 + i
β

2
l2,

(31)
N = iψ2

e .

The eigenvalues of the matrix in Eq. (30) define whether a
small signal perturbation (noise) in the modes ±l increases or
decreases with time. In particular, the real part of the leading
eigenvalue (the one with the largest real part) can be viewed
as the a gain parameter, which can be explicitly written as

�(l) = Re

⎧⎨
⎩−1 +

√
ρ2 −

[
α − 2ρ − 1

2
βl2

]2
⎫⎬
⎭ , (32)

where ρ = |ψe|2.
At the threshold, we have already demonstrated that ρ = 1.

On the other hand, a mode l is excited through MI when it
experiences positive gain: the threshold gain can therefore be
defined by � = 0. Hence, we deduce from the two preceding
relations that, at threshold, the two modes ±lth with

lth =
√

2

β
(α − 2) (33)

are excited through MI. This number also corresponds to the
number of rolls that will be observed in the temporal domain.
This analysis corresponds to the one that has been performed
in Ref. [11] to explain the emergence of the so-called primary
comb.

From a more general perspective, the modes l that can
be directly excited by the pump are such that �(l) > 0. The
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FIG. 10. (Color online) Determination of the parametric (or MI)
gain in the system, with the parameters α = 1 and β = −0.04. (a)
Positive gain is experienced in the system when the figurative point is
in the shaded area of the l-ρ plane, and negative gain is experienced
in the white area. The densely dotted line within the shaded area
indicates the location of the maximum gain. For a fixed value of ρ

(that is, of the pump power F 2), the corresponding horizontal line
intersects the gain area when ρ > 1 and thereby delimits the modes
±l which can grow through MI. (b) MI gain corresponding to the three
pump levels of panel (a). Note that, as the pump power is increased,
the maximum gain mode is shifted away from the pump, and the
MI-gain bandwidth is both shifted outward and increased as well.

modes ±lmgm for which the gain is maximal are referred to
as the maximum gain modes (MGMs), and they are found
through the condition ∂�/∂l = 0, which yields

lmgm =
√

2

β
(α − 2ρ). (34)

Figure 10 graphically displays how the MI gain leads to the
emergence of a Turing pattern. When the system is pumped
above threshold (ρ > 1), two symmetric spectral bands are
created around the pump. The modes that are the most likely
to arise from noise are those who have the largest gain;
namely ±lmgm. Near threshold, only two side modes (around
±lmgm � ±lth) are generated and in the temporal domain: the
flat background becomes unstable and leads to the emergence
of the rolls, which correspond here to a sinusoidal modulation
of the flat solution (from this phenomenology was coined
the term “modulational instability”). However, as the pump is
increased, |lmgm| increases as well, as can be seen in Fig. 10(b).
But more importantly, higher-order side modes (harmonics)
are generated at eigennumbers ±klmgm, where k is an integer
number. As a consequence, the modulation in the time domain
is not sinusoidal any more, but gradually morphs into a train
of sharply peaked pulses.

B. Bright cavity solitons

The existence of bright cavity solitons in nonlinear optical
cavities is a well-documented topic. They arise as a balance
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FIG. 11. (Color online) Formation of bright solitons. The param-
eters are α = 2, β = −0.004, and ρ = 0.7, and the initial condition is
a Gaussian pulse: ψ0 = 0.5 + exp[−(θ/0.1)2]. (a) Transient dynam-
ics. (b) Final pattern in the azimuthal direction. (c) Three-dimensional
representation. (d) Corresponding Kerr comb.

between nonlinearity and anomalous dispersion (which defines
their shape), and a balance between gain and dissipation (which
defines their amplitude).

Figure 11 displays the transient dynamics toward a cavity
soliton. The initial condition here is a very narrow and
small pulse, which grows and converges toward a soliton
characterized by a narrow pulse width and small pedestal
oscillations. This soliton is subcritical because it emerged
for a pump power for which the steady state is such that
ρ < 1; hence, it does not emerge for arbitrarily small (noisy)
perturbations of the intracavity background field. In fact, it
can be inferred that the soliton is a pulse that has been
“carved out” of a subcritical Turing pattern. This explains at
the same time the subcriticality and the pedestal oscillations,
which are indeed observable in subcritical Turing patterns
when the detuning α is not too close to the critical value
of 41/30. However, at the opposite of Turing patterns, the
bright soliton is a localized structure in the sense that it does
not feel the boundaries when they are at a distance that is
significantly larger than its pulse width. Hence, the soliton of
Fig. 11(c) dynamically behaves as if its background had an
infinite extension. The spectrum of this soliton as presented in
Fig. 11(d) has a single-FSR spacing and displays hundreds of
mode-locked WGMs. Such solitons have also been observed
experimentally in recent experiments [39]. It is also known
that the spectral extension of this comb becomes larger as the
pulses are narrower: this situation is observed when β → 0 as
discussed in Sec. VI F.

C. Bright soliton molecules

When the parameters lead to the formation of supercritical
Turing patterns, the final steady state is invariably the same
patterns regardless of the initial conditions (provided that there
is no zero-energy mode at τ = 0). For subcritical structures, the
situations is indeed very different, as the final output critically
depends on the initial conditions.
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FIG. 12. (Color online) Formation of a soliton molecule. The pa-
rameters are exactly those of Fig. 11, and only the initial condition has
changed (more powerful pulse): ψ0 = 0.5 + exp[−(θ/0.55)2]. It can
be inferred that a soliton is in fact a pulse isolated from a subcritical
Turing pattern, and that a soliton molecule corresponds to several of
such pulses. (a) Transient dynamics. (b) Final pattern in the azimuthal
direction. (c) Three-dimensional representation. (d) Corresponding
Kerr comb. (e) Soliton molecule formed with five solitons obtained
with ψ0 = 0.5 + exp[−(θ/0.85)2]. (f) Soliton molecule formed with
seven solitons obtained with ψ0 = 0.5 + exp[−(θ/1.05)2].

As far as solitons are concerned, the initial conditions can
lead to single-peaked pulses as displayed in Fig. 11. However,
more energetic initial conditions can lead to the formation
of multi-peaked solutions that are here referred to as soliton
molecules. These molecules can be considered as a limited
number of pulses carved out of a subcritical Turing pattern.
Figure 12 shows how the three-peaked soliton molecule is
formed. This dissipative structure is subcritical and localized,
exactly as the single soliton. The corresponding Kerr comb is
also characterized by a single-FSR spacing, but in this case, at
the opposite of what is observed in the single-peaked–soliton
case, the spectrum displays a slow modulation.

For a pulse-like excitation, the number of solitons in a
molecule can be controlled by the energy

E =
∫ π

−π

|ψ(θ,τ = 0)|2dθ, (35)

and it can be shown that the number of solitons in the molecule
is governed by a snaking bifurcation [40–42]. It should be
noted that these soliton molecules can also be analyzed from
the viewpoint of the collective dynamics of coupled solitons
[43]. Figures 12(e) and 12(f) display soliton molecules with
five and seven elements, respectively, and larger numbers can
be achieved as long as the molecule is blind to the finiteness
of the θ domain.
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FIG. 13. (Color online) Coexistence of two soliton molecules
in the resonator. The parameters are those of Fig. 11. (a) Initial
conditions and final state. (b) Corresponding Kerr comb.

It is also noteworthy that different soliton molecules can
coexist inside the disk. Such composite structures can be
obtained, for example, by using initial conditions as displayed
in Fig. 13(a). The corresponding Kerr combs look noisy, and
might even wrongfully be considered as “chaotic”; however,
in the time domain, the pattern is perfectly periodic and
deterministic. Genuinely chaotic spectra will be studied in
Sec. VI E.

Note that, if N individual and noninteracting bright solitons
are exactly separated by an angle of 2π/N in the θ domain,
the resulting Kerr comb will feature a multiple-FSR structure
(exactly like the spectra of Turing rolls). However, even though
the spectra will be similar, the dynamical states will be different
because, on the one hand, we have an extended structure while,
on the other hand, we have a metastable association of localized
structures.

D. Breathing solitons

An interesting solution that can be obtained in the LLE
is the breather soliton [44,45]. It consists of a soliton whose
amplitude varies periodically in time. However, this period of
the breathing is very low and is of the order of the photon
lifetime. In the spectral domain, the comb corresponding to a
single breathing soliton looks like that of a normal (steady)
soliton, except that there are modulation side bands inside the
modal resonance linewidths.

As displayed in Figs. 14(a) and 14(b), the breather soliton
oscillates in time and approximately keeps the same pulse
width. Figure 14(c) shows the oscillating behavior on a larger
timescale, and it can be observed that this breather soliton
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FIG. 14. (Color online) Soliton breathers. The parameters are
α = 4, β = −0.04, ρ = 0.6 (F 2 = 7.54), and ψ0 = 0.5 +
0.3 exp[−(θ/0.5)2]. (a) Time-domain dynamics. (b) Maximal and
minimal pulse shapes. (c) Color-coded visualization of the time-
domain dynamics of a soliton breather. (d) Color-coded visualization
of the time-domain dynamics of a complex structure corresponding
to a higher-order soliton breather. ψ0 = 0.5 + 2.5 exp[−(θ/1.5)2].

is a localized structure that is boundary blind. On the other
hand, Fig. 14(d) presents a higher-order breather soliton with
a complex structure consisting of multiple peaks that are not
oscillating in synchrony. Actually, these soliton breathers can
have a very wide variety of shapes and oscillation behaviors
depending on the initial conditions.

E. Chaos

It is well known that chaos can potentially arise in any
nonlinear system with at least three degrees of freedom. The
LLE is indeed a highly nonlinear and infinite-dimensional
system and, in fact, the phenomenology of interest (Kerr-comb
generation) for us essentially relies on the nonlinearity.

From a practical viewpoint, almost all high-dimensional
and nonlinear systems display chaos when they are strongly
excited. Chaos in Kerr combs has been unambiguously spotted
both theoretically and experimentally in Ref. [10], where the
Lyapunov exponent was computed and shown to be positive
under certain circumstances. Early studies on this topic of
chaos in dissipative optical cavities include references like
[46], while more recent research work in the context of Kerr-
comb generation include Ref. [47].

From the preceding sections, at least two routes to chaos
can be identified in this system [48].

The first route corresponds to unstable Turing patterns.
Figures 15(a) and 15(b) show that, in that case, the Kerr
comb is made of very strong spectral lines corresponding
to the primary comb and apparent spectral lines standing in
between, which are the signature to what was referred to as the
secondary comb in Refs. [10,11]. Hence, in this case, the route
to chaos as the pump power F 2 is increased is a sequence of
bifurcations starting with the primary comb which becomes
unstable and leads to the emergence of a secondary comb.
Later on, higher-order combs are sequentially generated until
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FIG. 15. (Color online) Chaos. (a) Three-dimensional (3D) snap-
shot of a chaotic state for α = 0, β = −0.04, and ρ = 1.9. (b)
Corresponding Kerr comb. (c) 3D snapshot of a chaotic state for
α = 0, β = −0.04, and ρ = 2.5. (d) Corresponding Kerr comb. (e)
3D snapshot of a chaotic state for α = 2, β = −0.04, and ρ = 3. (f)
Corresponding Kerr comb.

a fully developed chaotic state is reached, as can be seen in
Figs. 15(c) and 15(d).

The second route to chaos corresponds to unstable solitons.
Here, as the pump power is increased, the solitons become
unstable and the system enters into a “turbulent” regime
characterized by the pseudorandom emergence of sharp and
powerful peaks, as can be seen in Fig. 15(e). This kind of
chaos gives birth in the WGM resonator to the so-called rogue
waves [49]. It should be recalled that these waves are rare
events of extreme amplitudes, and they can arise in a very
wide variety of nonlinear physical systems [50]. They are
particularly ubiquitous in nonlinear photonics where they have
been studied extensively [51–57].

F. Influence of dispersion parameter β

The bifurcation map displayed in Fig. 16 in the α-F plane
disregards the effect of the magnitude of the dispersion. Indeed,
the effect induced by the value of |β| depends on the localized
or nonlocalized nature of solution under study.

More precisely, if we consider both super- and subcritical
Turing patterns (nonlocalized structures), the effect of decreas-
ing |β| is straightforward because it increases the number of
rolls according to Eq. (34) just above the pump. However,
because the pump is increased beyond the bifurcation, such a
decrease of |β| also reduces the pulse width of the individual
Turing rolls in the subcritical case. As far as solitons are
concerned (localized structures), the effect of reducing |β|
is essentially to decrease the pulse width of the solitons (see
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FIG. 16. (Color online) Bifurcation diagram to scale in the case of anomalous dispersion (β < 0), showing the parameters leading
to various stationary solutions. Besides equilibria (flat solutions, white area), the possible solutions are Turing patterns (super-
and subcritical, green area), solitons, soliton molecules, and breathers (blue area), and finally spatiotemporal chaos (red area). The
connection between solitons and subcritical Turing patterns appears clearly. Note that solitons and soliton complexes are localized
in the same area of this parameter space since only the initial conditions define if the final steady-state will be of one kind or
the other.

Fig. 17). Subcritical Turing patterns and solitons have the same
behavior in this regard, and this is a direct consequence of
the fact that they are intimately connected from a topological
point of view. It should be noted once again that reducing the
magnitude of second-order GVD to arbitrarily small values
can increase the relevance of higher-order dispersion terms in
the Lugiato-Lefever model [14].

A general consequence of a decrease in |β| is that, because
the patterns have a narrower pulse width, this will generally
allow for the excitation of a large number of solitons in the
cavity. Accordingly, the corresponding Kerr-comb spectra will
also display a higher complexity.

VII. KERR-COMB GENERATION IN
NORMAL-DISPERSION REGIME

A. Modulational instability and Turing patterns

In the bifurcation map, a (iω)2 (or Hamiltonian-Hopf)
bifurcation occurs at ρ = 1 for α > 2. This bifurcation
therefore occurs along the line A3 and, according to Eq. (11),
the corresponding threshold pump value is F 2

th = 1 + (α − 1)2.
As extensively explained in Sec. VI A, an extended dissipative
structure, sometimes referred to as a Turing pattern [28] or
a primary comb [10,11], is expected to arise beyond this
bifurcation line.

0

1

2

3

|ψ
|2

β = −0.004

β = −0.04

β = −0.4

(a)

−π −π/2 0 π/2 π
0

2

4

θ

|ψ
|2

β = −0.004

β = −0.04

β = −0.4

(b)

FIG. 17. (Color online) Influence of the magnitude of the disper-
sion parameter β. (a) Case of Turing patterns. The influence of β is
essentially to change the number or rolls. (b) Case of solitons. The
effect of β here is to change the pulse width.
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A central characteristic of Turing patterns is that they
emerge from noise. A flat solution becomes unstable, breaks
down, and converges toward an azimuthal roll pattern (concept
of modulational instability). In the context of Kerr frequency
combs, it has long been considered that modulational instabil-
ity could not arise in the normal-dispersion case. However,
the trivial fixed-point analysis led in Ref. [11] using the
modal-expansion model demonstrated that Turing patterns
(leading to primary Kerr combs) in the normal-GVD regime
can arise but are very difficult to observe. Recently, using a
truncated three-mode analysis, another theoretical proof for the
possibility of modulational instability was provided, as well as
numerical simulations that provided evidence of normal-GVD
Turing rolls in the regime of large detuning [19]. Earlier
works had also investigated the mechanisms of modulational
instability in dissipative ring cavities [58,59].

Here, we perform a detailed analysis that aims to provide
a clear understanding of Turing-roll formation in the normal-
GVD regime. In particular, we will explain here why Turing
rolls are observed for large detunings only, even though the
theory predicts that they arise as soon as α > 2.

Figure 18 explicitly shows the distribution of the various
equilibria ρ1, ρ2, and ρ3 and critical points ρ± as a function of
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FIG. 18. (Color online) Distribution of equilibria ρ1, ρ2, and ρ3

and critical points ρ± as a function of the detuning parameter α,
and influence on the stability of Turing patterns in the normal-GVD
regime. In the first case of small detuning (α = 3), the detuning
is still relatively close to the critical value α = 2. It can be seen
that the value ρ = 1 at threshold is still close to the critical point
ρ−. In particular, they corresponds to extremely closed value of the
pump (just above F 2

th = 5 � F 2
+). Turing patterns in this case are

very difficult to observe because once the pump value is fixed and the
modulational instability is triggered, the proximity of the unstable
fixed point ρ2 will repel the system toward the stable fixed point
ρ3. In the second case of large detuning (α = 8), the detuning is far
enough from the critical value α = 2. Here, the threshold critical
value ρ = 1 is very far from the unstable fixed point ρ2, and they
correspond to very-well-split values of the pump F 2

th < F 2
+. In this

case, the modulational instability around F 2 = 60 (for example) will
give rise to a stable Turing pattern.
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FIG. 19. (Color online) MI in the normal-GVD regime, starting
with random amplitude noise in the cavity. The parameters are α =
10, F 2 = 68.5, and β = 0.1.

the detuning parameter α. This repartition has a great influence
on the stability of Turing patterns, as explained below.

When the detuning is still relatively close to the critical
value α = 2, the splitting between the threshold pump value
F 2

th and the critical value F 2
+ is very small, while we need

F 2
th < F 2 < F 2

+. As a consequence, the critical power ρ = 1 is
very close to the unstable fixed point ρ2. Hence, the oscillation
induced by the modulational instability necessarily comes
very close to ρ2 and gets repelled to the other stable fixed
point; that is, to ρ3. On the other hand, when the detuning is
sufficiently large (that is, significantly larger than α = 2), the
pump value F 2 can be sufficiently far below F+ Here, the
threshold critical value ρ = 1 is very far from the unstable
fixed point ρ2, and they correspond to very-well-split values
of the pump, and the condition F 2

th < F 2 < F 2
+ can be fulfilled

much more comfortably. In this case, modulational instability
around F 2 = 60 (for example) will give rise to a stable Turing
pattern (see Fig. 19).

This phenomenology explains why Turing patterns do not
arise in the normal-GVD regime unless the detuning becomes
large (one has to keep in mind that the pump is out of the
cold-cavity resonance as soon as |α| >1). Turing patterns are
therefore significantly more relevant and stable in the regime
of anomalous dispersion.

The number of rolls in the pattern arising after the (iω)2

(Hamiltonian-Hopf) bifurcation can also be determined ana-
lytically, following exactly the main steps of the analysis used
in Sec. VI A 2. These theoretical developments show that this
number is equal to lth = [2(2 − α)/β]1/2 at threshold (ρ = 1);
above threshold (ρ > 1), this roll number is shifted with the
maximum gain mode as lmgm = [2(2ρ − α)/β]1/2 � lth.

B. Dark cavity solitons

Dark solitons are stable localized structures characterized
by a hole in a finite background (see review article [60]). In
our system, the formation of these solitons appears explicitly
in Fig. 20 where the temporal dynamics of the intracavity field
ψ is displayed. It can be seen that, depending on the initial
conditions, the final steady state of the field can either be a
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FIG. 20. (Color online) Numerical simulation of the temporal
dynamics of a pulse-like perturbation in the normal-dispersion
regime. The parameters are α = 2.5, β = 0.0125, and F 2 = 2.61. (a)
Initial condition ψ0 = 1.1 − exp[−(θ/0.9)2] leading to a constant so-
lution ρ1 = |ψdown|2. (b) Initial condition ψ0 = 1.7 − exp[−(θ/0.9)2]
leading to a constant solution ρ3 = |ψup|2. (c) Initial condition
ψ0 = 1.5 − exp[−(θ/0.9)2] leading to the formation of a stable dark
soliton.

stable equilibrium [that is, a stable solution of Eq. (11)] or a
dark soliton. We explained earlier that, in the three-solutions
area, the intermediate solution is generally unstable whereas
the extremal solutions are stable. We can see in Figs. 20(a) and
20(b) that, for the same sets of parameters, the systems may
converge to the lowermost or uppermost steady-state solution,
depending on the initial conditions. However, we can show
that a dark soliton can appear as a stable and robust solution
that is intermediate between the asymptotic levels of the two
extremal steady states, as made evident in Fig. 21(a). The
typical spectrum of a dark soliton is displayed in Fig. 21(c)
and shows a typical triangular-like decrease of modal power
away from the pump. It is noteworthy that, because there
is only one pulse inside the cavity, the corresponding comb
has a single-FSR spacing. These solitons have already been
observed experimentally [17].

Since dark solitons are intermediate solutions between the
stable equilibria in our system, they do exclusively appear in
area I, where these three equilibria actually exist. However,
the existence of multiple equilibria is a necessary but not
sufficient condition for the emergence of stable dark solitons.
As displayed in Fig. 22, our numerical simulations show that
they can be observed only for a restricted range of parameters
laying within a thin band inside the three-equilibrium area. A
direct consequence of this observation is that no Kerr-comb
generation is a priori possible in areas I and II, which are
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FIG. 21. (Color online) (a) Asymptotic steady state profiles of
the temporal dynamics presented in Fig. 20. Note that the power
profile |ψsol|2 of the dark soliton lies between the “up” and “down”
solutions. (b) Three-dimensional representation of a dark soliton of
Fig. 20(c). (c) Corresponding Kerr comb obtained using the fast
Fourier transform. The separation between the teeth corresponds to
1 FSR.
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FIG. 22. (Color online) Bifurcation diagram to scale in the
normal-dispersion case (β > 0), showing the parameters leading to
various stationary solutions for α < 5. Dark cavity solitons can be
observed in a thin band laying within the three-equilibrium area.
Out of this thin band (here approximated with straight lines), our
numerical simulations have only put in evidence the convergence
toward stable equilibria (flat solutions).
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characterized by single equilibria. Because fairly large (out
of resonance) detunings are required for the emergence of
dark solitons in Fig. 22, Kerr-comb generation is very difficult
to obtain experimentally in the normal-GVD regime. These
combs are also likely to be only weakly stable whenever
observed. Numerical simulations have also indicated that the
solitons loose their stability outside the thin band displayed in
Fig. 22, while one would expect the dark solitons to be stable
over the whole of area I. The reason for this reduced area of
stability is still unclear, but we think that it is the signature
of the unstable fixed point ρ2. Further studies are required in
order to elucidate their dynamical properties in this asymptotic
regime.

It is also important to note that the emergence of dark
solitons depends on the initial conditions. Actually, from an
experimental point of view, dark solitons will not naturally
arise from noise above a certain threshold. The most likely
outcome in that case would be a convergence toward the
nearest flat (constant) solution, which is ρ1 = |ψdown|2. Only a
compact (but continuous) set of initial conditions ψ(θ,τ = 0)
can lead to the dark soliton. From this standpoint, Fig. 21
can be viewed as the result of multistability, with each stable
solution ψdown, ψup, and ψsol having its own basin of attraction.

The dark soliton that can be excited here is intrinsically
different from the conservative dark soliton which is obtained
as an exact hyperbolic tangent solution of the nonlinear
Schrödinger equation with normal GVD [60]. However, in
this latter case, the boundary conditions are not periodic and
θ ∈] − ∞, + ∞[. In particular, the phase of this dark soliton
is a monotonic and odd function of θ : as a consequence,
this phase is null at θ = 0, and the phase values at θ = ±∞
are of opposite signs. This particular solution would then be
unstable in the case of periodic boundary conditions, unless
the phase jump is exactly null modulo 2π after one round trip.
Figure 23 shows that the phase shift is in fact null, because
the phase profile follows the pulse power profile in our
case. This singular specificity of the dissipative dark soliton
therefore justifies its existence in our case of periodic boundary
conditions.

So far, we have analyzed the bifurcation map with regards
to the two control parameters α and F . The dispersion
parameter β does actually not have a direct influence on
this map because we focused on localized structures and
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FIG. 23. (Color online) Phase of the dissipative dark soliton
(same parameters as in Fig. 20). It can be seen that the phase profile is
an even function which follows the power profile of pulse. The phase
jump from −π to π is null, thereby permitting the existence of this
dark soliton.
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FIG. 24. (Color online) Evidence of the effect of β, showing how
the soliton pulses become narrower as β → 0. The detuning and pump
parameters α = 2.5 and F 2 = 2.61 are fixed, while the dispersion
parameter is logarithmically varied as β = 0.00125, β = 0.0125
(same as in Fig. 20), and β = 0.125.

disregarded the boundaries. However, β has a direct influence
on the temporal profile of the pulses, and particularly on their
widths. Figure 24 shows that, as the dispersion decreases,
the pulse width decreases as well, and the spectral spread
increases accordingly. It should be noted that, from a physical
standpoint, higher-order dispersion has to be included into
the Lugiato-Lefever model when second-order dispersion
vanishes [14]. Since the pulses become narrower as β → 0,
it also becomes easier to excite a large number of solitons
in the cavity, following the scenario explained in Sec. VII C,
and the corresponding Kerr-comb spectra will also display
increasingly complicated patterns.

Figure 25 displays a global overview of the dynamical
behavior that can be observed in our system. It can be seen that,
when the detuning α is increased, the dark solitons become
distorted, and further increase leads to a breathing behavior.
For higher pump powers, Turing patterns can be excited just
above the Hamilonian-Hopf bifurcation an ρ = 1, provided
that the detuning is large enough, as explained in Fig. 18 and
Sec. VII A.

C. Coexistence of dark cavity solitons

The dark solitons that were investigated in the last section
are localized dissipative structures: they do not see the
boundary conditions and, actually, they could be observed
as well if the background support were extended to infinity.
Hence, multiple dark cavity solitons can coexist in the cavity
as long as they are far away from each other and cannot “feel”
each other’s influence (they are not bounded).

This situation is presented, for example, in Fig. 26 where
two solitons are excited inside the cavity with a double-
pulse initial condition. In this case, the solitons have been
evenly spaced (separation of π ) and, as a consequence,
the corresponding Kerr comb has a two FSR separation.
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FIG. 25. (Color online) Bifurcation diagram at scale in the normal-dispersion case (β > 0), showing the parameters leading to both localized
and extended dissipative structures. Dark cavity solitons can still be observed in a thin red band laying within the three-equilibrium area. As
the detuning is increased, the pulse profile gets distorted, and later on gives rise to breathers. Turing patterns with multi-FSR spacing arise via
modulational instability above the line ρ = 1 when the detuning is sufficiently large.

A more complex case is presented in Fig. 27, where three
unevenly spaced solitons are excited inside the cavity. The
corresponding spectra has single-FSR separation but displays
a very complex pattern. Indeed, if the pulses were equidistant,
the Kerr comb would have displayed a three-FSR separation.
These multiple-FSR combs will generally appear whenever
we have N identical dark solitons separated by a 2π/N angle.
However, this symmetry is fragile and will be broken by
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FIG. 26. (Color online) (a) Temporal dynamics leading to a the
formation of two solitons in the cavity. The pulses are evenly spaced in
this case (separated by π and dips at ±π/2). The parameters are those
of Fig. 20, which are α = 2.5, β = 0.0125, and F 2 = 2.61, so that
each pulse is identical to the isolated pulse presented in Figs. 20(c)
and 21(b) at τ = +∞. (b) Three-dimensional representation. (c)
Corresponding Kerr comb. Note that the separation between the teeth
corresponds to two FSRs.

nonidentical and/or nonequidistant pulses, yielding nontrivial
Kerr-comb spectra. Of course, these spectra should not be re-
ferred to as “chaotic” or “noisy,” since the corresponding time-
domain solutions are perfectly periodic and deterministic.

It is worth noting that, in the multiple-pulse regime, each
pulse is identical to the solitary pulse presented in Fig. 21(b).
Reaching the single- or multiple-soliton states only depends
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FIG. 27. (Color online) Coexistence of three solitons in the cav-
ity with α = 2.5, β = 0.0125, and F 2 = 2.61 (same as in Fig. 20). (a)
Temporal dynamics leading to a the formation of three solitons in the
cavity. Note that the solitons are not evenly spaced (dips at −2π/3, 0,
and π/2). (b) Three-dimensional representation. (c) Corresponding
Kerr comb. The separation between the teeth is equal to single FSR,
but because of the nonequidistance of the pulses (which are, however,
identical in shape), the comb looks “irregular.” A three-FSR comb
would have been obtained if the pulses (which are identical) were
also equidistant and separated by 2π/3.
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FIG. 28. (Color online) Complex dark soliton. The parame-
ters are α = 6, F 2 = 8.5 and the initial condition is ψ0 = 2 −
1.8 exp[−(θ/0.35)2].

on the initial condition. Therefore, these nonbounded multiple-
soliton states emerge in the shaded area of the parameter space
area in Fig. 22, exactly as single-pulse localized structures.

D. Nonsmooth and breather dark cavity solitons

Depending on the initial conditions, nontrivial dark solitons
can emerge as well.

Figures 28 and 29 display, for example, some typical
temporal profiles of dark solitons whose asymptotic profile is
stationary but not smooth. It can be noted that the asymptotic
value and the width of the nonsmooth soliton strongly depends
on the initial conditions. It is still to be investigated if this
complex dark soliton is actually a similariton [61] or a related
dissipative structure.
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FIG. 30. (Color online) Dark soliton breathers. (a) Breather gen-
erated with the same parameters as in Figs. 28 and 29, with initial
condition: ψ0 = 2 − 1.8 exp[−(θ/0.1)2]. (b) Extremal profiles of the
breather of panel (a). (c) Breather with α = 10, F 2 = 20, and initial
condition ψ0 = 2.6 − 1.4 exp(πθ/10). (d), (b) Extremal profiles of
the breather of panel (c).
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FIG. 29. (Color online) Complex dark soliton. The parameters
are the same as in Fig. 28, but the initial conditions have been changed
to ψ0 = 2 − 1.8 exp[−(θ )2].

These complex solitons can become breathers when the
laser pump is further detuned toward larger positive values of
α. Examples of such breathers are displayed in Fig. 30.

VIII. CONCLUSION

In this article, we investigated the bifurcation structure of
the Lugiato-Lefever equation which is used to model Kerr-
comb generation using WGM resonators.

In the regime of anomalous dispersion, our analysis has put
into evidence a plethora of possible steady states. Turing pat-
terns arise in the system through a super- or subcritical-nature
pitchfork bifurcation, which is here intrinsically associated
with a (iω)2 spatial bifurcation. The threshold for these patterns
can be analytically determined, as well as the number of rolls.
We were also able to determine analytically the parametric
gain allowing modulational instability. We also showed how
the super- or subcritical nature of the patterns affects their
temporal dynamics and the way they can be excited. Our
investigations also enabled us to analyze the formation of
solitons. We showed that more complex structures, referred
to as soliton molecules, can be generated as well in the system
and can eventually coexist along the azimuthal direction of
the resonator. Breather solitons were analyzed as well, and we
also investigated the emergence of chaos in the system. The
complexity of the related Kerr combs was also studied and
discussed.

In the regime of normal dispersion, the nontrivial solutions
we investigated are Turing patterns and dark cavity solitons. In
this regard, the single-equilibrium area (which encompasses
the in-resonance pumping regime) appeared to be unsuitable
for Kerr-comb generation. This analysis showed that Turing
patterns can hardly arise straightforwardly from noise in the
normal-GVD regime, because the Turing patterns are stable
only for large frequency detunings. On the other hand, dark
solitons are preferably excited for suitable initial conditions
only, so that they are not easy to excite either. However, we
showed that, whenever they can be excited, dark solitons can
coexist in the cavity as long as they do not interact with each
other. We also showed that the dark solitons can display a
breathing time-domain dynamics.
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Future work will be devoted to the investigation of the
effect of higher-order nonlinearity and dispersion [14,62–65],
and to the tailoring of the spectral characteristics of the combs
for various technological applications [66–70]. A particularly
promising perspective would be to use the WGM resonator in
optoelectronics applications or microwave photonics systems
where its storage capacities would be an asset, along with
the frequency-conversion capability provided by the Kerr
nonlinearity [71–75].
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