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Abstract. We theoretically and experimentally investigate some effects related to the Kerr optical frequency
comb generation, using a millimeter-size magnesium fluoride ultrahigh quality disk resonator. We show that
the Kerr comb tunability can be extremely wide in the Turing pattern (or primary comb) regime, with an intermodal
frequency that can be tuned from 4 to 229 multiple free spectral ranges (corresponding to a frequency spacing
ranging from 24 GHz to 1.35 THz). We also discuss the role played by thermal locking while pumping the res-
onator, as well as the effect of modal crossing when broadband combs are generated. © 2014 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.53.12.122602]
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1 Introduction
Monolithic ultrahigh quality (Q) factor optical resonators
with small mode volumes have been used for the study of
various nonlinear optical phenomena in the continuous-
wave (CW) low pump power regime. Kerr nonlinearity-
based hyperparametric oscillations have been investigated
along that line.1,2 The interplay of Kerr nonlinearity and
group-velocity dispersion in these solid-state resonators fur-
ther results in the formation of interesting optical frequency
combs through a cascaded four-wave mixing process. Since
the demonstration of the first extended Kerr frequency comb
generation in an on-chip silica microtoroid resonator,3 an
intensive amount of work has been carried out to further
understand this phenomenon. This interest has been driven
by the fact that compared with mode-locked laser-based fre-
quency combs, Kerr combs feature a compact size and con-
sume less power.

Up to now, Kerr frequency combs have been demon-
strated in various materials and resonator geometries. They
usually include fused silica microtoroids,3,4 microrods,5–7

silica microdisks,8 on-chip microring structures using
high-index glass,9 silicon nitride,10–15 aluminum nitride,16

and disk resonators made of magnesium fluoride12,17–22

and calcium fluoride crystals.20,23–26 The integrated high-Q
microring structure enables full chip-scale integration with
waveguides. On the other hand, crystalline disk resonators
can feature ultrahigh Q factors (>109). Thus, they help to
reduce the required pump power for comb generation, and
they have the potential to produce low-phase noise micro-
wave signals. Theoretically, better understanding of Kerr fre-
quency combs has also been emerging. A modal expansion
approach was recently derived,27,28 and more recently, a nor-
malized Lugiato-Lefever formalism has been applied on sim-
ulating microresonator-based Kerr combs.29–31 As a result,

the formation of Turing patterns, solitons, and their stability
analysis have been studied.19,32–34

From the application point of view, the potential applica-
tion of Kerr frequency combs has been demonstrated in
many fields, such as multiwavelength high-speed coherent
data transmission with advanced modulation formats,13 ultra-
short pulse generation,15,22 low-phase noise microwave gen-
eration,8,20,23 and so on. Considering the stable and spectrally
pure microwave signal, many advanced techniques have
been recently applied for stabilizing combs, such as self-
injection locking,7 interleaved electro-optical comb stabiliza-
tion,5,35 Pound-Drever-Hall locking (PDH),20,23 and atomic
Rb transitions referencing.20 However, many studies have
shown that the formulation of full Kerr frequency combs
may involve many stages and could feature multiple radio
frequency (RF) beatnotes and relatively high phase
noise.8,12,14 Recently, studies propose that the initial stage
of Kerr combs, the primary combs, or Turing patterns, is
strongly phase-locked and could be ideal for a secondary fre-
quency reference,21 similar to hyperparmetric oscillations.2,36

In this work, we investigate Kerr frequency comb gener-
ation in an overmoded MgF2 whispering gallery mode
(WGM) resonator. We achieve wide tunability in the Turing
pattern regime when the resonator is pumped with fixed
external pump power. We also discuss the thermal effects,
as well as the asymmetric combs obtained owing to the in-
fluence of mode-crossing.

2 Experimental Setup
The experimental setup is illustrated schematically in Fig. 1.
The WGM resonator used in this experiment is fabricated
from a commercially available MgF2 disk with a radius of
∼6 mm. The disk is later centered and mounted on a home-
made high-speed lathe. The edge of the disk is then carefully
shaped and polished to create an optically smooth surface.
The final disk features an intrinsic Q factor >109 at
1550 nm. A tunable CW semiconductor laser with few
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kilohertz spectral linewidth is used as a pump source. The
laser power is then further amplified by an erbium-doped
fiber amplifier. The final pump power can reach a few hun-
dred milliwatts. In order to evanescently couple light in and
out of the cavity, a fiber taper with a micrometer-size waist is
used. The throughput of the fiber is then connected to a 3 dB
1 × 2 fiber coupler. The split output signals are monitored
with a photodetector and a high-resolution optical spectrum
analyzer (APEX 2440B) separately.

3 Results and Discussion

3.1 Primary Combs with Spacing from Gigahertz to
Terahertz

The formation of single free spectral range (FSR) Kerr
combs could involve many stages and produces wide band-
width and multiple RF beatnotes.8,12,14 Recent theoretical
work has also shown that chaotic behavior of Kerr
combs27,37,38 exists when the pumping is sufficiently high.
Primary Kerr combs or Turing patterns, as the first stage
of the full comb, shows a strong phase-locked behavior com-
pared with other combs.21 Experimentally, we demonstrate
primary combs generation with 4-FSR, 44-FSR, and 229-
FSR spacing in the same resonator. The corresponding
frequencies are 23.7, 260.0, and 1351.0 GHz as shown
in Fig. 2.

The theoretical model used to analyze comb generation
here is a normalized Lugiato-Lefever equation with periodic
boundary conditions30,32

∂ψ
∂τ

¼ −ð1þ iαÞψ þ ijψ j2ψ − i
β

2

∂2ψ
∂θ2

þ F; (1)

where ψðθ; τÞ is the total intracavity field in the moving
frame, θ ∈ ½−π; π� is the azimuthal angle along the circum-
ference of the disk, and τ ¼ Δωt∕2 is the dimensionless
time, with Δω being the loaded mode linewidth. The dimen-
sionless parameters in this equation are the frequency

detuning α ¼ −2ðωL − ωRÞ∕Δω, which is the frequency
detuning between the laser frequency ωL and the pumped
mode resonance position ωR, the dispersion β ¼ −2ζ2∕
Δω, with ζ2 being the second-order Taylor coefficient of
the eigenfrequency expansion and F2 being proportional
to the external pump power.

In order to simulate similar primary combs, very different
dispersion parameters are chosen for these three primary
combs as shown in Fig. 2. It should be noted that the spec-
trum analyzer detects both the outcoupled intracavity field
and the remaining pump field. This has to be taken into
account when comparing the experimental and theoretical
spectra. Although there are other different detuning and
pump parameters to generate similar spectra, we believe
that the main reason causing these significant different
comb lines would be the various dispersion parameters in
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Fig. 1 Schematic view of the experimental setup. EDFA, erbium-doped fiber amplifier; WGMR, MgF2
whispering gallery mode resonator; PD, photodetector; OSA, high-resolution optical spectrum analyzer;
VOA, variable optical attenuator; C3 dB, 3 dB 1 × 2 optical coupler.
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Fig. 2 Left column: the experimentally obtained spectra for three dif-
ferent primary combs with 4-FSR, 44-FSR, and 229-FSR spacing,
respectively (from top to bottom). Right column: The corresponding
numerical simulation. 4-FSR: α ¼ −0.2, β ¼ 0.4, F 2 ¼ 6; 44-FSR:
α ¼ −1, β ¼ 0.003, F 2 ¼ 6; 229-FSR: α ¼ −1.2, β ¼ 0.0012, F 2 ¼ 6.
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an overmoded resonator. These theoretical spectra are, how-
ever, in excellent agreement with those that can be obtained
experimentally.

3.2 Thermal Noise and Kerr Combs

Figure 3(a) shows a typical thermally broadened WGM res-
onance spectrum in the throughput of the fiber taper. It
results from the so-called thermal bistability in ultrahigh
Q resonators.39 In this experiment, the CW pump laser
was detuned from the blue side of the resonances. Thus,
the positive thermal coefficient of refractive index and ther-
mal expansion then cause the red shift of the cold cavity res-
onance when it is continuously heated up by the pump laser.
This feature has also been reported for the use of fast micro-
laser characterization.40 On the other hand, rich mode struc-
tures can be clearly seen in Fig. 3(a). It is expected that
different families of modes feature different mode volumes,
Q factors, and coupling efficiencies. As a result, they usually
experience different thermal behaviors as shown in Fig. 3(a).
There have been efforts to achieve single-mode ultrahigh Q
WGM resonators.18,41 However, this task proves to be very
difficult.

As one can see, noise structures are observed on the blue
side of the resonances. With increasing pump wavelength,
the heating causes the shift of the resonance in the same
direction. It slows down the relative detuning on the blue
side of the resonance and makes the noise structure observ-
able. On the red side of the resonance, the decreased coupled
pump power no longer can overcome the heat dissipation.
The temperature starts to decrease and, thus, the resonance
shifts in the opposite direction of the laser scan, which leads
to a strongly reduced scan time for this side. It should be
noted that these noises are easily missed when advance func-
tions like averaging or high resolution in the oscilloscope are
used. Noises have been seen even without Kerr comb gen-
eration as shown in Fig. 3(b). When the pump laser is
coupled into an optical resonance with a very narrow line-
width, a small relative frequency fluctuation between the

pump and the resonance frequency will be transformed
into the amplitude noise and can be easily observed.
Pump laser power, frequency, and cavity resonance jitter
can result in this noise. The latter one is usually related to
the fluctuation of the environmental temperature, the heating,
and the Kerr shift induced by the absorbed pump laser. These
fluctuations can be substantially attenuated using well-
known laser-locking techniques.

An example of the thermal noise in the transmission spec-
trum with fixed pump frequency is shown in Fig. 3(b). We
manually decrease the frequency of the pump laser until a
WGM is excited, symbolized by a clearly increased noise
amplitude. In each step, we need to wait a few seconds
for the diffusive cooling and laser heating to reach an equi-
librium. This timing depends on the disk size, Q factors, and
the detuning step. Beside the eventual chaotic characteristics
of the comb,27,37,38 we believe that the thermal noise shown
here is one of the main reasons why RF beatnote linewidths
are of the order of (sub-)megahertz level when using free
running pump laser with the self-thermally locking tech-
nique. However, this problem can be overcome by using
PDH technique to lock the pump laser frequency to the cor-
responding optical modes. It has recently been successfully
demonstrated and results in low phase noise RF beatnotes
with the linewidth in near hertz level.23

3.3 Mode-Crossing Effects on Kerr Combs

In an ultrahigh Q resonator coupled with a fiber taper, very
complicated mode structures can be easily observed.
Here, we put the taper in contact with the resonator to further
excite higher-order modes and increase the mode-crossing
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Fig. 3 (a) Typical transmission spectrum with thermally broadened
WGM resonances dips. The wavelength of the pump laser is increas-
ing with time. (b) Transmission curve with fixed pump frequency
where self-thermally stabilized state is achieved.

Fig. 4 Spectra of symmetric and asymmetric Kerr frequency combs
with single-FSR spacing when arbitrary WGMs are pumped.
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probability. Figure 4 presents a Kerr comb spectra obtained
when arbitrary modes are pumped. In comparison, a sym-
metric comb spectrum is presented in Fig. 4(a). As can be
seen, Figs. 4(b) and 4(c) show asymmetric combs with
locally weakened comb lines in either smaller or larger fre-
quency regimes within 500 GHz offset from the pump. The
enhanced comb lines are also observed in Fig. 4(d). These
effects could result from the mode-crossing and possibly
higher-order dispersion.19,42 The small spectra spanning
range could result from the high-order mode excitation
and low coupling efficiency.

4 Conclusion
In conclusion, we have shown that a generation of primary
combs with line spacings ranging from gigahertz to terahertz
in a single resonator is possible. It is known that it is gen-
erally difficult to obtain primary combs with low multiple-
FSR spacing (<10). The present work thereby proves that
combs with a stable frequency spacing of 24 GHz can be
generated, thereby allowing the achievement of ultrastable
microwave generation in frequency bands of interest for
aerospace technology. We have also presented experimental
evidence of thermal locking effects on various families of
modes, as well as the asymmetric combs that arise from a
mode-crossing effect in an overmoded resonator. Future
work would include a necessary pump-resonance locking
technique to avoid thermal noises and better study of Kerr
combs for low phase noise microwave generation.
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