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We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs, obtained

through pumping an ultra-high Q-factor whispering-gallery mode resonator with a continuous-wave

laser. The Lugiato–Lefever model is used to build bifurcation diagrams with regards to the

parameters that are externally controllable, namely, the frequency and the power of the pumping

laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display

distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for

both cases, in excellent agreement with theoretical spectra. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4863298]

Optical Kerr frequency combs are sets of equidistant

spectral lines generated through pumping an ultra-high

Q whispering gallery mode resonator with a continuous

wave laser.
1–3

The Kerr nonlinearity inherent to the bulk

resonator induces a four-wave mixing (FWM) process,

enhanced by the long lifetime of the intra-cavity photons

which are trapped by total internal reflection in the

ultra-low loss medium. Four-wave mixing in this context

allows for the creation and mixing of new frequencies as

long as energy and momentum conservation laws are

respected.4,5 These Kerr combs are the spectral signa-

tures of the dissipative spatiotemporal structures arising

along the azimuthal direction of the disk-resonator.

When the resonator is pumped in the anomalous group-

velocity dispersion regime, various spatiotemporal pat-

terns can build up, namely, Turing patterns, bright soli-

tons, breathers, or spatiotemporal chaos.
6–8

In this work,

we investigate the evolution of the Kerr combs towards

spatiotemporal chaos when the frequency and the pump

power of the laser are varied. We evidence the key bifur-

cations leading to these chaotic states and also discuss

chaotic Kerr comb spectra obtained experimentally,

which display excellent agreement with their numerical

counterparts.

I. INTRODUCTION

It was recently shown in Refs. 9–11 that Kerr comb gen-

eration can be efficiently modelled using the Lugiato–Lefever

equation (LLE),12 which is a nonlinear Schr€odinger equation

with damping, detuning and driving. This partial differential

equation describes the dynamics of the complex envelope of

the total field inside the cavity.

Spatiotemporal chaos is generally expected to arise in

spatially extended nonlinear systems when they are submitted

to a strong excitation. In the context of Kerr combs genera-

tion, such chaotic states have been evidenced theoretically in

Ref. 4 using a modal expansion method, which allowed to

demonstrate that the Lyapunov exponent is positive under

certain circumstances. The experimental evidence of these

chaotic states was provided in the same reference and has

been analyzed in other works as well.13 In the present article,

we are focusing on the routes leading to spatiotemporal chaos.

To the best of our knowledge, the bifurcation scenario to

chaos in this system is to a large extent unexplored, despite

the dynamical richness of this system.

The plan of the article is the following. In Sec. II, we

present the experimental system and the model used to inves-

tigate its nonlinear dynamics. A brief overview of the vari-

ous dissipative structures is presented in Sec. III. Sec. IV is

devoted to the route to chaos based on the destabilization of

Turing patterns while Sec. V is focused on the second route

which relies on the destabilization of cavity solitons. The ex-

perimental results are presented in Sec. VI, and Sec. VII con-

cludes the article.

II. THE SYSTEM

The system under study consists of a sharply resonant

whispering-gallery mode cavity made of dielectric material,

pumped with a continuous-wave laser (see Fig. 1). The

coupled resonator can be characterized by its quality factor

Q¼x0/Dx where Dx is the spectral linewidth of the

(loaded) resonance at the angular frequency x0 of the reso-

nance. Typical values for Q-factors leading to the generation

of Kerr combs are in the range of 109. In whispering-gallery

mode (WGM) resonators, the eigenmodes of the fundamen-

tal family are quasi-equidistant, and these modes can be

excited by the pump excitation above a certain threshold.

Kerr comb generation in high-Q whispering-gallery

mode resonators can be described by two kinds of models.

The first kind describes the evolution of each resonant mode

in the cavity, producing a system of N ordinary differential

equations, with N being the number of modes to be taken

into consideration.4,5 While this modal model allows for the

easy determination of comb generation threshold, its compu-

tational cost makes it inappropriate for studying the evolu-

tion towards chaos of the system. Furthermore, only a finite,

arbitrary number of modes can be simulated with this model

which reduces the accuracy of the numerical results, espe-

cially for chaotic systems where a very large number ofa)Electronic mail: yanne.chembo@femto-st.fr
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modes is excited. While the modal description consisted in a

large set of ordinary differential equations, the spatiotempo-

ral formalism provides an unique partial differential equation

ruling the dynamics of the full intracavity field (see Refs.

9–11). From the numerical point of view, this latter descrip-

tion allows for easy and fast simulations using the split-step

Fourier algorithm, thus allowing the construction of bifurca-

tion diagrams in order to study the mechanisms that lead to

chaos in a highly resonant and nonlinear optical cavity.

In its normalized form, the LLE describing the spatio-

temporal dynamics of the intracavity field w explicitly

reads10

@w
@s
¼ �ð1þ iaÞwþ ijwj2w� i

b
2

@2w

@h2
þ F; (1)

where s¼ t/2sph is a dimensionless time (sph¼ 1/Dx being

the photon lifetime) and h is the azimuthal angle along the

circumference of the disk-resonator. The real-valued and

dimensionless parameters of the equation are the laser fre-

quency detuning a, the second-order dispersion b, and the

laser pump field F. The link between these dimensionless pa-

rameters and the physical features of the real system are ex-

plicitly discussed in Refs. 6 and 10.

Chaos preferably arises in the system in the regime of

anomalous dispersion, which corresponds to b< 0 (see Refs.

5 and 8). It is also important to note that the two parameters

of the system that can be controlled experimentally are

related to the pump signal. In particular, the laser pump

power is proportional to F2 and will be the scanned parame-

ter of our bifurcation diagrams. Intuitively, it can be under-

stood that the more energy is coupled inside the cavity, the

more frequencies will be created through the Kerr-induced

four-wave mixing, ultimately leading to chaotic behavior.

The other parameter accessible to the experiments is the

detuning frequency a between the pump laser and the reso-

nance. It is expressed in terms of modal linewidths, in the

sense that a¼�2(X0�x0)/Dx where X0 and x0 are the

laser and resonance angular frequencies, respectively.

At the experimental level, the most easily accessible

characteristic of the system is its optical spectrum.

Effectively, while the LLE model rules the dynamics of the

spatiotemporal variable w, the spectrum can be obtained by

performing the Fourier transform of the optical field in the

cavity. This duality is illustrated on Fig. 2, and we will use it

to compare our numerical simulations to the experimental

results.

III. DISSIPATIVE STRUCTURES

A stability analysis of the LLE in the a-F2 plane of pa-

rameters has shown that various regimes of Kerr combs can

be observed depending on the detuning and pump power.8

Figure 3 represents this a-F2 plane where the spatial stability

domain and some bifurcations lines of the stationary solu-

tions have been drawn. By setting all the derivatives to zero

in Eq. (1), we obtain the steady states we, which are some-

times referred to as “flat” states, because they are independ-

ent of time and space. Depending on the external parameters

a and F, there can be one, two of three flat-state solutions. In

particular, as it can be seen on the stability diagram in Fig. 3,

the value a ¼
ffiffiffi
3
p

is of singular interest. We will show that

the two cases a <
ffiffiffi
3
p

and a >
ffiffiffi
3
p

need to be addressed

separately.

On the one hand, for detunings a below
ffiffiffi
3
p

, the LLE

only has one flat-state solution we. It has previously been

shown that this constant solution becomes (modulationally)

unstable when the external pump F2 reaches a threshold

value F2
th ¼ 1þ ða� 1Þ2, and Turing patterns (rolls) are

formed. Due to the periodicity of the variable h, only integer

numbers of rolls can be found in the cavity, and a close

FIG. 1. Schematic representation of the Kerr comb generator. Continuous

laser light is coupled into an ultra-high Q whispering gallery-mode resonator

using a tapered fiber. Inside the cavity, and above a certain threshold power,

the four-wave mixing induced by the Kerr nonlinearity can excite several

eigenmodes, thereby leading to a chaotic spatiotemporal distribution of the

intra-cavity optical field.

FIG. 2. (a) 3D representation of the simulated optical intensity inside the

WGM resonator. In the chaotic regime, peaks of various amplitudes arise

and disappear in the cavity. (b) Corresponding optical spectrum. This spec-

trum is made of discrete and quasi-equidistant spectral lines and, for this rea-

son, is generally referred to as a Kerr optical frequency comb.

FIG. 3. Stability diagram of the Lugiato–Lefever equation for b< 0 in the

a-F2 plane.8 In between the two blue lines, three flat solutions exist while

only one is found outside this area, and two on the boundaries.

Characteristic bifurcations can be associated to each of these blue curves,

namely 02 and 02(ix) bifurcations.8 The red dashed lines correspond to the

flat solution jwej
2 ¼ 1. Note that the green vertical segments correspond to

the bifurcation diagrams simulated in Figs. 4 and 5. The thin gray curves

indicate the number of rolls contained in the cavity when the system is in the

Turing pattern regime.
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approximation of this number is given at threshold

(jwej
2 ¼ 1) by the relation

lth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

b
½a� 2�

s
: (2)

However, above threshold, we have jwej
2 > 1. The modes

for which the gain is maximal are referred to as the maximum
gain modes (MGM), and it can be shown8 that the corre-

sponding roll number is shifted as

lmgm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

b
½a� 2jwej

2�
s

: (3)

The iso-value lines for the rolls in the a-F2 plane are dis-

played in the bifurcation diagram of Fig. 3.

On the other hand, when a is greater than
ffiffiffi
3
p

, one to

three constant solutions can be found depending on the value

of F2. It is also in this area of the diagram that solitary waves

can be found, such as cavity solitons or soliton breathers.

Unlike the previous case of Turing patterns, solitons always

need an appropriate initial condition to be excited.

In order to investigate the route towards chaos in these

two cases, numerical simulations were performed using the

split-step Fourier method. The value for the loaded quality

factor was Q¼ 109, and a slightly negative dispersion parame-

ter was considered (b¼�0.0125). The evolution of the opti-

cal field in the cavity is simulated from the initial condition

and for a duration of 1 ms, which is more than one hundred

times longer than the photon lifetime sph¼Q/x0. The extrema

of the 100 last intensity profiles are recorded and plotted as a

function of the excitation F2, thereby yielding bifurcation dia-

grams. Note that in the bifurcation diagrams displayed in Figs.

4 and 5, the starting value for scanning parameter F2 is indi-

cated with a short and dashed gray segment. From that starting

value, the bifurcation diagrams are obtained by adiabatically

sweeping F2 in both left and right directions.

In Secs. IV and V, we present the results for the numeri-

cal simulations of the LLE in these two different regimes

(Turing patterns and solitons).

IV. DESTABILIZATION OF TURING PATTERNS

In the a <
ffiffiffi
3
p

region of the bifurcation diagram, the

starting point of the bifurcation diagram simulations is a

noisy background while the pump power is above the thresh-

old. In this condition, the flat solution is unstable if the bifur-

cation diagram specifically starts at a value a< 41/30, and

the noise allows the system to evolve toward stable rolls in

the cavity. After 1 ms of simulation, the pump power is

increased, and the system is simulated again, the previous

final state being the initial condition. In order to draw the

lower part of the diagram, the same methodology is used,

starting from the same initial point. The resulting diagrams

are presented in Fig. 4, for a¼�1 and 1.5.

FIG. 4. Bifurcation diagram in the case a¼�1 (a) and a¼ 1.5 (b). In both

cases, the initial condition is a small noisy background just above the bifur-

cation (ix)2. This first bifurcation leads to the formation of Turing patterns,

number of rolls given by 2. While the excitation is increased, these rolls

become unstable, and one or several more rolls appear abruptly in the cavity.

For higher gain, the amplitudes of the peaks oscillate, and finally, a chaotic

regime is reached. Note that the insets (in red) are snapshots displaying jwj2
in a range of [�p,p].

FIG. 5. Bifurcation diagram in the cases a¼ 2.5 (a) and a¼ 4 (b). In both

cases, the initial condition is chosen such that an unique soliton is present in

the cavity for excitations just above the 02(ix) bifurcation. When the 02

bifurcation is quickly reached (case a¼ 2.5), the soliton remains stable until

this bifurcation. At that point, other peaks are created that fill entirely the

cavity. For higher F2, their amplitudes vary in time, and finally, spatiotem-

poral chaos occurs. In the case a¼ 4, the 02 bifurcation happens at much

higher excitations, and the soliton becomes unstable and bifurcates to a

breather characterized by a temporally fluctuating amplitude. The system

becomes chaotic in the vicinity of the 02 bifurcation. The inserts (in red) are

snapshots displaying jwj2 in a range of [�p, p].
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The (ix)2 bifurcation appears clearly in these diagrams

and corresponds to the apparition of super-critical Turing

patterns when a< 41/30 and sub-critical Turing patterns

when a> 41/30 (see Ref. 12). At this point, the number of

rolls in the cavity is given by Eq. (2) and Fig. 3 gives the val-

ues of l above threshold. However, after further increase of

the excitation, the number of rolls in the cavity may not cor-

respond to this ideal number, and the pattern changes

abruptly when the number of rolls has to shift. This phenom-

enon is responsible for the discontinuities observed on the

bifurcation diagrams.

For very high excitation, the Turing patterns become

unstable, starting with oscillations in the amplitude of the

rolls’ peaks. These fluctuations become stronger as F2 is

increased, finally leading to a chaotic behavior with peaks of

diverse amplitudes.

V. DESTABILIZATION OF SOLITONS

In the case a >
ffiffiffi
3
p

, the initial condition is chosen such

that the system converges to an unique soliton located at

h¼ 0. At this point, the bifurcation diagram shows three

extrema corresponding to the soliton maximum, the continu-

ous background and the dips on each side of the soliton

(pedestals).

Since the soliton is a sub-critical structure6,10,12,14 linked

to a 02(ix) bifurcation,8 it is still present for F2 just below

the bifurcation value, as shown on Fig. 5. When the excita-

tion is increased, the soliton maintains its qualitative shape,

with the continuous background being increased while the

dips remain approximately at the same level.

When the 02 bifurcation is reached, the previously stable

continuous background becomes unstable, and the soliton

can no longer be unique: A train of identical pulses whose

shapes are similar to the initial soliton appear in the cavity.

These pulses fill entirely the cavity, in a similar fashion to

what was observed in the a <
ffiffiffi
3
p

case.

For relatively small detunings, the subsequent evolution

of the bifurcation diagram is similar to the a <
ffiffiffi
3
p

case,

with fluctuations of the pulses amplitudes ultimately leading

to a chaotic repartition of the energy in the cavity. For

greater detunings (a¼ 4 in Fig. 5), the 02 bifurcation happens

at very high excitations, and the soliton remains alone in the

cavity for a large range of pump power F2. This soliton

becomes unstable in the process and transforms into a soliton

breather whose peak amplitude oscillates periodically with

time. The amplitude of the oscillations increases with F2

until the system explodes to chaos in the vicinity of the 02

bifurcation.

VI. EXPERIMENTAL SPECTRA

In the experimental setup, a continuous-wave laser

beam is amplified and coupled to a WGM resonator using a

bi-conical tapered fiber, as portrayed in Fig. 1. The output

signal is collected at the other end of the same fiber and

monitored either in the spectral domain with a high-

resolution spectrum analyzer, or in the temporal domain with

a fast oscilloscope. It should be noted that this output signal

is the sum of both the continuous pump signal and the optical

field inside the cavity: The measured spectra will only differ

from the intra cavity spectra through an increased contribu-

tion from the pump laser.

The WGM resonator is made of magnesium fluoride

(MgF2) with group velocity refraction index ng¼ 1.37 at

1550 nm. This dielectric bulk material has been chosen for

two reasons. First, this crystal is characterized by very low

absorption losses, allowing for ultra-high Q-factors, equal to

2� 109 (intrinsic) in our case. Second, the second-order dis-

persion of MgF2 is anomalous at the pumping telecom wave-

length (k¼ 1552 nm), so that the waveguide dispersion is not

strong enough to change the regime dispersion; the overall

dispersion generally remains anomalous regardless of the cou-

pling. The diameter of the WGM resonator is d� 11.3 mm,

and its free-spectral range (FSR—also referred to as intermo-
dal frequency) is DxFSR=2p ¼ c=pngd ¼ 5:8 GHz, where c is

the velocity of light in vacuum.

Once an efficient coupling is achieved, the pump power

is increased to few hundreds of milliwatts, and the detuning

is adjusted so that Kerr frequency combs are generated.

Further adjustments of these two parameters allow us to

reach chaotic regimes where every mode of the fundamental

family in the WGM resonator is populated. In the example

of Figs. 6(a), 6(c), and 6(e), the pump power was fixed, and

the detuning was changed from a negative value to a positive

value by increasing the wavelength. The bump in the

FIG. 6. Experimental (left, a, c and e) and simulated (right, b, d and f) Kerr

combs obtained at same pump power and different detunings. Excellent

agreement is observed between experimental and theoretical results. The fre-

quency f is relative to the laser frequency. This frequency was decreased (a
increased) between the spectra (a), (c), and (e) while the pump power

remained unchanged (around 300 mW). The numerical simulations were

performed with F2¼ 12, b¼ 2.2� 10�3 and a¼ 0.3 for the (b) case, a¼ 1.8

for (d), and a¼ 2.7 for (f). While the first spectra (a) and (b) clearly arise

from destabilized Turing patterns (note the spectral modulation), the last

sets spectra originate from the destabilization of cavity solitons.

013113-4 A. Coillet and Y. K. Chembo Chaos 24, 013113 (2014)



background noise level is due to the unfiltered amplified

spontaneous emission (ASE) originating from the optical

amplifier used in the experiment. The comb (a) corresponds

to a destabilized Turing pattern where the so-called primary

and secondary combs5 have evolved by populating nearby

modes until every mode is filled. On the contrary, the struc-

ture of spectrum (e) is smooth and originates from the desta-

bilization of cavity solitons. The comb presented in (c)

stands in the transition between the two different regimes. In

each case, however, important fluctuations of the amplitude

of each mode are observed, confirming the chaotic nature of

these experimental Kerr combs. To obtain representative

spectra, the (a), (c) and (e) spectra were averaged over 30

consecutive measurements.

In Fig. 6, we also provide numerical simulations of the

optical spectra that qualitatively correspond to their experi-

mental counterparts. The dispersion parameter was deter-

mined using Eq. (2) and an experimental spectra with Turing

patterns near threshold, yielding b¼ 2.2� 10�3.

Similar to the experiments, the simulated combs were

obtained for a fixed pump power F2¼ 12 and three different

detunings. The first one, a¼ 0 correspond to the Turing pat-

tern case while the last one a¼ 2.7 is in the soliton regime.

The transition case was taken for a¼ 1.8, close to the a ¼ffiffiffi
3
p

limit. As stated previously, the power of the central

mode has been increased with 11.5 dBm to account for the

differences between the intra-cavity and output spectra. To

simulate the integration of the spectrum analyzer, the spectra

are averaged over the last 1000 iterations. The agreement

between numerical simulations and experiments is excellent:

It covers an impressive dynamical range of 80 dB, and a

spectral range of 2 THz which corresponds to more than 300

modes. This agreement also validates the interpretation of

these combs as the result of two different routes to spatio-

temporal chaos.

VII. CONCLUSION

In this work, we have investigated the generation of op-

tical Kerr combs in WGM resonators using the

Lugiato–Lefever equation to describe our experimental sys-

tem. Numerical simulations allowed us to draw bifurcation

diagrams of the system for various frequency detuning val-

ues. The natural scanning parameter in this case is the pump

power injected in the resonator. Depending on the value of

the detuning parameter, various routes to chaos have been

evidenced. In particular, for detunings a below
ffiffiffi
3
p

, the cha-

otic Kerr combs originate from destabilized Turing patterns.

In this case, the envelope of the corresponding Kerr comb

displays several maxima which are reminiscent of the pri-

mary and secondary combs encountered at lower excitation.

For a higher than
ffiffiffi
3
p

, the evolution of a soliton can either

lead to a set of unstable pulses filling the cavity or optical

breathers before reaching chaos. The optical spectrum in this

case is smooth, with a shape similar to the soliton’s spec-

trum. In both cases, the numerical spectra are in excellent

agreement with the experimental results obtained using an

ultra-high Q magnesium fluoride resonator, thereby provid-

ing a strong validation of the model and simulations.
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