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Square-wave oscillations exhibiting different plateau
lengths have been observed experimentally by investi-
gating an electro-optic oscillator. In a previous study,
we analysed the model delay differential equations
and determined an asymptotic approximation of the
two plateaus. In this paper, we concentrate on the
fast transition layers between plateaus and show
how they contribute to the total period. We also
investigate the bifurcation diagram of all possible
stable solutions. We show that the square waves
emerge from the first Hopf bifurcation of the basic
steady state and that they may coexist with stable low-
frequency periodic oscillations for the same value of
the control parameter.

1. Introduction
Relaxation oscillations with alternate fast and slow
phases appear in several areas of science from electronics
to neural modelling. They are described mathematically
as the solution of two or more nonlinear ordinary
differential equations that exhibit different time scales.
Over the years, reliable asymptotic techniques such as
the method of matched asymptotic expansions [1–3]
have been developed and successfully used to determine

2013 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Nearly 2-periodic square-wave solution of equation (1.1) with f (x, λ)= −λx + x3. The values of the parameters
are ε = 0.02 and λ = 1.2. The two plateaus are close to the period 2 fixed points of the map (1.2) given by
x± = ±√

λ − 1= 0.45. The period P = 2 + O(ε) is slightly larger than 2 because of the time needed for the fast transition
layers.

analytical expressions of physical interest (amplitude and period). The van der Pol equation in
the large damping case is the reference problem for the analysis of relaxation oscillations [1–4]
but other problems have also emerged in the field of chemical and biological oscillations [5–7].

Analytical studies of relaxation oscillations that are solutions of delay differential equations
(DDEs) are however very rare. A notable exception is the analysis of a model for haematological
stem cell regulation by Fowler & Mackey [8] and Fowler [9]. The method of matched asymptotic
expansions is difficult to implement for DDEs because we often need to anticipate the response of
both the state and delayed variables. Much of the mathematical work that has been done [10–14]
is concerned with scalar nonlinear DDEs of the form

εx′ = −x + f (x(s − 1), λ), (1.1)

where x′ denotes the derivative of x with respect to the dimensionless time s (s ≡ t/tD where
t is the real time and tD is the delay of the feedback). f (x, λ) is a nonlinear function of x and
λ is a control parameter. ε ≡ t0/tD > 0, where t0 is the linear decay time of x in the absence of
feedback. Equation (1.1) arises in a variety of applications, for example, physiological control
systems [15], the transmission of light through a ring cavity [16–18] and population biology [19].
Under particular conditions on f (x, λ), equation (1.1) may exhibit nearly 2-periodic square-wave
oscillations provided ε is sufficiently small (figure 1). More precisely, these oscillations consist of
sharp transition layers of size proportional to ε connecting plateaus that are close to the period 2
fixed points of the map

xn = f (xn−1, λ), (1.2)

where xn ≡ x(t) and xn−1 ≡ x(t − 1). The period 2 fixed points of the map provide excellent
approximations of the extrema of the oscillations. The description of the fast transition layers and
the determination of the correction to the period are however much more delicate. Significant
contributions to the asymptotic relations between the solutions of the map (1.2) and the solutions
of the DDE (1.1) have been made by Chow & Mallet-Paret [10], Mallet-Paret & Nussbaum [11],
Chow et al. [12] and Hale & Huang [13,14]. In particular, the Hopf bifurcation to the 2-periodic
square-wave solutions has carefully been analysed. As the bifurcation parameter deviates from
its Hopf bifurcation value, the oscillations quickly change their shape from sinusoidal to square
waves [20].

Does equation (1.1) exhibit other types of square-wave oscillations? An analysis of the possible
Hopf bifurcation points of equation (1.1) indicates that nearly 1-periodic square-wave solutions
are possible but are unstable because they emerge from an unstable steady state [20]. Moreover,
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Figure 2. Experimental square-wave oscillations. By gradually changing the feedback phase Φ , the plateau lengths can be
tuned but the total period P � tD = 20µs remains fixed. (Online version in colour.)

transient asymmetric square waves exhibiting different plateau lengths can be initiated by
choosing particular initial conditions but they disappear at finite time [21].

In the study of Weicker et al. [22], we addressed the question whether stable periodic
square-wave oscillations exhibiting different plateau lengths (called duty cycles) are possible
for problems modelled by second-order DDEs. The question has been raised by experiments
performed on electro-optic oscillators (EOOs), which are modelled mathematically in terms of
second-order DDEs [23,24]. An EOO typically incorporates a nonlinear (intensity) modulator, an
optical-fibre delay line, and an optical detector in a closed-loop resonating configuration. This
hybrid microwave source is capable of generating, within the same optoelectronic cavity, either an
ultra-low-jitter (low phase-noise) single-tone microwave oscillation, as used in radar applications
[25–27], or a broadband chaotic carrier typically intended for physical data encryption in high
bit rate optical communications [28]. For a specific range of values of the parameters, periodic
square-wave oscillations (figure 2) were found exhibiting a period P close to one delay tD as well
as different plateau lengths. It motivated an asymptotic analysis of the EOO equations in the limit
of large delays. We obtained a good approximation of the plateaus and were able to explain how
their respective lengths depend on the control parameters [22].

In this paper, we concentrate on three different issues that were omitted in [22]. First, We
analyse the fast transition layers and show how they contribute to the total period. Second, we
numerically investigate the bifurcation diagram of the square-wave oscillations and show how
they emerge from a particular Hopf bifurcation. Third, we numerically found another stable time-
periodic solution exhibiting a low frequency that may coexist with the square-wave solution. The
plan of the paper is as follows. In §2, we introduce the EOO equations and propose a complete
asymptotic description of the square-wave oscillations. In §2a, the approximation of the slowly
varying plateaus is described in more detail than in [22]. The two fast transition layers are
examined in §2b. We show that they are described by the same equation which we analyse. In
§3, we numerically investigate the bifurcation diagram of the stable solutions using two different
methods. The main results are summarized in §4.

2. Asymptotic analysis
In dimensional form, the evolution equation for an EOO are (eqns (35) and (36) in [23] or eqns (3)
and (4) in [22])

y′ = x (2.1)

and

εx′ = −x − δy + β[cos2(x(s − 1) + Φ) − cos2(Φ)], (2.2)
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Figure 3. (a) Numerical square-wave solution of equations (2.1) and (2.2) during one period. The values of the parameters are
given by β = 1.2 and (2.3) except ε = 5 × 10−3 (this higher value of ε provides a better illustration of the fast transition
layers). The two plateaus of the square-wave solution are of length s0 and 1 − s0, respectively. The fast transition layers
contribute to the total period by two corrections of size εr. (b) The periodic solution is shown in the phase plane (x, δy). The
S-shaped line is the function (2.9). The dot is the unique steady state (x, y)= (0, 0). The values of y0 = −0.0192, x01 = −0.61,
x03 = −0.1 and x02 = 0.41 are determined in §2a. (Online version in colour.)

where prime means differentiation with respect to s and s is time measured in units of the delay.
The parameters ε, δ and Φ are fixed and given by [22]

ε = 10−3, δ = 8.43 × 10−3 and Φ = −π

4
+ 0.1 � −0.69. (2.3)

The feedback amplitude β is our bifurcation parameter.
Equations (2.1) and (2.2) admit nearly 1-periodic square-wave oscillations exhibiting different

plateau lengths (figure 3). The slow–fast time behaviour of the solution is due to the small value
of ε. As we shall later demonstrate, the relatively small change of y compared with x (figure 3b)
is the result of the small value of δ. Furthermore, the asymmetry of the square-wave oscillations
(s0 < 1

2 in figure 3a) is related to the deviation Φ + π/4. Experimentally, we may explore different
ranges of values of these parameters. In this paper, we shall keep δ and Φ fixed as given in
(2.3) and consider different small values of ε whenever it becomes appropriate for our numerical
illustrations or analysis.

We next propose to construct the square-wave solution in the limit ε → 0. Specifically, we seek
a P-periodic solution satisfying the condition

x(s − P) = x(s), (2.4)

where the period P is given by
P = 1 + 2εr, r = O(1). (2.5)

As shown in figure 3a, the solution consists of two slowly varying plateaus connected by fast
transition layers. We anticipate the analysis of the transition layers (see §2b) by assuming that the
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contribution from these layers to the period P is the same (εr). We analyse the slow and fast parts
of the solution, separately.

(a) Slowly varying plateaus
The leading approximation is obtained by setting ε = 0 in equations (2.1) and (2.2). The reduced
equations with (2.4) and (2.5) are

y′ = x, (2.6)

0 = −x − δy + β[cos2(x + Φ) − cos2(Φ)] (2.7)

and x(s − 1) = x(s). (2.8)

From equation (2.7), we determine y = y(x) as

y = 1
δ
{−x + β[cos2(x + Φ) − cos2(Φ)]}. (2.9)

The function (2.9) is represented in figure 3b and exhibits three branches provided β > 1. The
evolution of x and y along the left and right branches corresponds to the evolution along the
plateaus of the square-wave periodic solution. They can be determined by inserting (2.9) into the
left-hand side of equation (2.6) and by solving the resulting first-order equation for x. However,
this solution is complicated and we may find simple analytical expressions by taking advantage
of the small value of δ. Specifically, we seek a perturbation solution of equations (2.6) and (2.7) of
the form

y = δ−1y0(s) + y1j(s) + · · · (2.10)

and

x = x0j(s) + δx1j(s) + · · · , (2.11)

where j = 1 or 2 refer to the time domains 0 < s < s0 and s0 < s < 1, respectively (figure 4).
Inserting (2.10) and (2.11) into equations (2.6) and (2.7) and equating to zero the coefficients of

each power of δ leads to a sequence of problems for the unknowns functions y0, y1j, x0j and x1j.
The leading-order problem is O(1) and is given by

y′
0 = 0 (2.12)

and

− x0j − y0 + β[cos2(x0j + Φ) − cos2(Φ)] = 0. (2.13)

Equation (2.12) implies that y0 is a constant. We already know that for a finite range of values of
y0, equation (2.13) admits more than one root (figure 3b). The solutions corresponding to the left
and right branches are denoted by x01 < 0 and x02 > 0, respectively. We do not know the values of
y0 and analyse the O(δ) problem for y1j(s) and x1j(s). It is given by

0 ≤ s < s0, y′
11 = x01, (2.14)

− x11 − y11 − 2β sin(2x01 + 2Φ)x11 = 0, (2.15)

s0 ≤ s < 1, y′
12 = x02 (2.16)

and − x12 − y12 − 2β sin(2x02 + 2Φ)x12 = 0. (2.17)

Figure 4 suggests the following initial conditions for y11 and y12:

y11(0) = y1M and y12(s0) = y1m, (2.18)
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Figure 4. Numerical square-wave solution of equations (2.1) and (2.2) during one period. The values of the parameters are the
same as for figure 3a except thatε = 2 × 10−4 ismuch smaller. (a) x(s) exhibits sharp jumps at times s= 0, s= s0 and s= 1,
while y remains continuous at those points. We also determine x1j � (x − x0j)/δ and note that x11 and x12 are continuous at
times 0, s0, 1. (b) The square-wave periodic solution is shown in the phase-plane (x, δy). Comparing with figure 3b, we note
that δy = y0 is now located slightly below the closed orbit. (Online version in colour.)

where y1M and y1m correspond to the maximum of y11 and the minimum of y12, respectively. The
solution of equations (2.14)–(2.18) is then

y11 = y1M + x01s, (2.19)

y12 = y1m + x02(s − s0), (2.20)

x11 = − y11

1 + 2β sin(2x01 + 2Φ)
(2.21)

and x12 = − y12

1 + 2β sin(2x02 + 2Φ)
. (2.22)

Continuity of y11 and y12 at times s = s0 and 1 leads to the conditions

y1M + x01s0 = y1m (2.23)

and

y1m + x02(1 − s0) = y1M, (2.24)

which are two equations for y1M − y1m. A solution of equations (2.23) and (2.24) is possible only
if

x01s0 + x02(1 − s0) = 0. (2.25)
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Figure 5. Analytical bifurcation diagram of the square waves. (a) The numerically computed square wave is shown forβ = 1.2
and the values of the parameters listed in (2.3). (b) Its extrema are in good agreement with the analytical predictions obtained
from the parametric solution (2.31)–(2.33) (with x01 as the parameter). (c) The plateau lengths are s0 and 1 − s0, respectively,
and the figure shows s0. (Online version in colour.)

As for y11 and y12, we next assume that the corrections x11 and x12 are equal at s = s0 and s = 1
(figure 4a). From (2.21) and (2.22), we then obtain the condition

sin(2x01 + 2Φ) = sin(2x02 + 2Φ), (2.26)

or equivalently,

cos(x01 + x02 + 2Φ) sin(x01 − x02) = 0. (2.27)

Equation (2.27) admits multiple solutions. We specifically look for a solution of equation (2.27)
which satisfies the perfect square-wave condition x01 = −x02 if Φ = −π/4. This solution is given
by

x01 + x02 + 2Φ = −π

2
. (2.28)

Using (2.13), (2.28) allows one to determine y0, x01 and x02. Substracting equation (2.13) with x01
and equation (2.13) with x02 gives

− (x01 − x02) − β sin(x01 + x02 + 2Φ) sin(x01 − x02) = 0. (2.29)

Using (2.28) then allows one to eliminate x02 in equation (2.29). We find

−
(

2x01 + 2Φ + π

2

)
+ β sin

(
2x01 + 2Φ + π

2

)
= 0. (2.30)

Equation (2.30) provides the solution for x01 = x01(β) in the implicit form

β = 2x01 + 2Φ + π/2
sin(2x01 + 2Φ + π/2)

. (2.31)

We obtain x02 and s0 by using (2.28) and (2.25):

x02 = −π

2
− 2Φ − x01 (2.32)

and

s0 = x02

x02 − x01
≥ 0. (2.33)

In figure 5, we compare our approximations with the numerical solution obtained for β = 1.2. The
expression for y0 as well as for x03, defined as the third root of equation (2.13), are documented
in the appendix. In §3, we numerically analyse the bifurcation diagram of the possible stable
solutions and show that the square-wave oscillations emerge from a Hopf bifurcation.
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(b) The fast transition layers
The plateaus of the square wave are connected by fast transition layers on time intervals
proportional to ε (figure 3a).

(i) Jump down at s= 0

We first consider the fast transition layer at s = 0 and introduce the inner variable ζ1 ≡ sε−1. The
leading-order transition layer equations for y = Y1(ζ1) and x = X1(ζ1) are then given by

dY1

dζ1
= 0 (2.34)

and
dX1

dζ1
= −X1 − δY1 + β

2
[cos(2X1(ζ1 + 2r) + 2Φ) − cos(2Φ)], (2.35)

where we have used the periodicity condition

x(s − 1) = x(s − P + 2εr) = x(s + 2εr) = X1(ζ1 + 2r). (2.36)

Equation (2.34) implies that Y1 is a constant. It needs to match the constant determined in our
analysis of the slowly varying plateaus, i.e. Y1 = y0δ

−1. Using the expression of y0 given by (A 2),
equation (2.35) can be rewritten as

dX1

dζ1
= −X1 − Φ − π

4
+ β

2
sin

(
2X1(ζ1 + 2r) + 2Φ + π

2

)
. (2.37)

This equation can be reformulated in a simpler form by introducing the deviation z1 ≡ X1 − x03 =
X1 + Φ + π/4. From equation (2.37), we obtain

dz1

dζ1
= −z1 + β

2
sin(2z1(ζ1 + 2r)). (2.38)

The boundary conditions for the jump down transition are X1(−∞) = x02 and X1(∞) = x01. In
terms of z1, they take the simpler form

z1(−∞) = a and z1(∞) = −a, (2.39)

where
a ≡ x02 − x03 > 0. (2.40)

(ii) Jump up at s= s0 + εr

We next consider the transition layer near s = s0 + εr and introduce the inner variable ζ2 ≡ (s −
s0 − εr)ε−1. The leading-order transition layer equations for y = Y2(ζ2) and x = X2(ζ2) are given
by

dY2

dζ2
= 0 (2.41)

and

dX2

dζ2

(
ζ2 + s0 + εr

ε

)
= −X2

(
ζ2 + s0 + εr

ε

)
− δY2

(
ζ2 + s0 + εr

ε

)

+ β

2

[
cos

(
2X2

(
ζ2 + s0 + εr

ε
+ 2r

)
+ 2Φ

)
− cos(2Φ)

]
, (2.42)

where we have used the periodicity condition

x(s − 1) = x(s − P + 2εr) = x(s + 2εr) = X2

(
ζ2 + s0 + εr

ε
+ 2r

)
. (2.43)

The constant solution for Y2 is again matching the value obtained from the analysis of slowly
varying plateaus, i.e. Y2 = y0δ

−1. Using the expression of y0 given by (A 2), equation (2.42)
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simplifies as

dX2

dζ2

(
ζ2 + s0 + εr

ε

)
= −X2

(
ζ2 + s0 + εr

ε

)
− Φ − π

4

+ β

2
sin

(
2X2

(
ζ2 + s0 + εr

ε
+ 2r

)
+ 2Φ + π

2

)
. (2.44)

Introducing the deviation z2 ≡ X2 − x03 = X2 + Φ + π/4, equation (2.44) becomes

dz2

dζ2

(
ζ2 + s0 + εr

ε

)
= −z2

(
ζ2 + s0 + εr

ε

)
+ β

2
sin

(
2z2

(
ζ2 + s0 + εr

ε
+ 2r

))
. (2.45)

We next note the following relations between the two inner variables:

ζ2 = ζ1 − s0 + εr
ε

. (2.46)

Inserting (2.46) into equation (2.45), we formulate an equation for z2(ζ1) of the form

dz2

dζ1
(ζ1) = −z2(ζ1) + β

2
sin(2z2(ζ1 + 2r)). (2.47)

The boundary conditions for the second transition layer are now

z2(−∞) = −a and z2(∞) = a, (2.48)

where a is defined by (2.40). We realize that equations (2.47) and (2.48) are the same as
equations (2.38) and (2.39) except that the boundary conditions have been interchanged. This
implies that the solution of equations (2.47) and (2.48) is related to the solution of equations (2.38)
and (2.39) by

z2(ζ1) = −z1(ζ1). (2.49)

In conclusion, we found the same DDE for the two fast transition layers. It is given by

dz
dζ

= −z + β

2
sin(2z(ζ + 2r)) (2.50)

and

z(−∞) = a and z(∞) = −a, (2.51)

where we have omitted the subscript 1 for z1 and ζ1. We next proceed as in [10]. We note that
by rescaling time ζ as ξ ≡ −ζ/2r, equation (2.50) can be rewritten as a DDE with delay 1 and
parameter r

dz
dξ

= 2r
[

z − β

2
sin(2z(ξ − 1))

]
(2.52)

and

z(−∞) = a and z(∞) = −a. (2.53)

z = ±a are both critical points of equation (2.52). This means that we are looking for a heteroclinic
orbit for some value of r, that is, a trajectory joining these critical points as ξ → ±∞. The delay
parameter r is unknown a priori, and must be determined as part of the solution. We cannot solve
the problem analytically for arbitrary β (it is a nonlinear DDE).

(iii) Correction to the period

In this section, we solve equations (2.52) and (2.53) for β close to 1. Our objective is to demonstrate
that there is indeed a unique value of r such that equations (2.52) and (2.53) admit a solution. To
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this end, we introduce a small parameter μ defined by

μ ≡
√

β − 1
b

, (2.54)

where b = ±1 if β ≷ 1. We then expand the solution z and parameter r in power series of μ

z = μZ1(ν) + μ2Z2(ν) + · · · (2.55)

and
r = r0 + μr1 + · · · , (2.56)

where ν ≡ μξ . The motivation for introducing (2.54) comes from the fact that a ≡ x02 − x03 =√
3
2 (β − 1), in first approximation as β → 1, which implies that the amplitude of the solution scales

like
√

β − 1. After introducing (2.54)–(2.56) into (2.50), we equate to zero the coefficients of each
power of μ. The leading-order problem is O(μ) and is given by

(1 − 2r0)
dZ1

dν
= 0. (2.57)

In order to have a non-constant solution for z1, we require that r0 = 1
2 . The next problem is O(μ2)

and is given by

− 1
2

d2Z1

dν2 + 2
3

Z3
1 − bZ1 + 2r1

dZ1

dν
= 0, (2.58)

with the boundary conditions

Z1(−∞) =
√

3b
2

and Z1(∞) = −
√

3b
2

. (2.59)

We choose b = 1 and note that the damped Hamiltonian equation (2.58) has a unique solution
z1 = −√

3/2 tanh(ν) if r1 = 0. We conclude that we have found an analytical expression for the
transition layer solution provided

β > 1 and r = 1
2 + O((β − 1)). (2.60)

We have determined numerically the period of the square-wave oscillations with a high precision.
The values of δ and Φ are documented in (2.3), ε = 5 × 10−2 and β = 1.2. We find P � 1.047. From
(2.5), we then compute 2εr = 4.7 × 10−2, which implies r = 0.47. The numerical value of r is close
to the analytical value r = 0.5 given in (2.60).

3. Numerical bifurcation diagrams
We consider β as our bifurcation parameter. All other parameters are documented in (2.3).
A linear stability analysis of the steady state (x, y) = (0, 0) allows us to determine the primary
Hopf bifurcation points and Hopf frequencies. They satisfy the following equations:

tan(σ ) = −
[

εσ 2 − δ

σ

]
(3.1)

and

β = − 1
sin(2Φ) cos(σ )

. (3.2)

The first Hopf bifurcation is located at β = β1 � 1.020 and exhibits a frequency close to 2π

(σ1 = 6.28). Using a continuation method, we find a 1-periodic branch of periodic solutions
that connects the asymmetric square waves (figure 6a). More precisely, the Hopf bifurcation
branch is first subcritical and unstable and then folds back to a branch of stable square-wave
oscillations. There are many more Hopf bifurcation points as we further increase β from β1.
Using different initial conditions, we have integrated numerically equations (2.1) and (2.2), and
found another branch of stable periodic solutions. By contrast to the square-wave oscillations,
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Figure 6. (a) Bifurcation diagram of the 1-periodic square waves obtained by a continuation method [29]. The values of the
parameters are listed in (2.3) except Φ = −0.68 and ε = 5.5 × 10−3. Solid and dashed lines correspond to stable and
unstable solutions, respectively. The parabolic lines appearing at β = 0.008 are analytical approximations given by (2.31)–
(2.33). (b) Bifurcation diagram of the 1-periodic square waves obtained by numerical integration. The values of the parameters
are listed in (2.3). The parabolic lines appearing atβ = 0.008 are analytical approximations given by (2.31)–(2.33). The squares
and the triangles denote stableperiodic solutions obtainedby integratingequations (2.1) and (2.2). The squares and the triangles
correspond to square-wave and low-frequency periodic solutions, respectively. The change of stability of the zero solution
occurs at β = β1 � 1.020 and corresponds to a Hopf bifurcation to the 1-periodic square-wave oscillations. The parabolic
lines connecting the triangles are curve fitting lines given by x = ±1.3742

√
β − β2 where β2 = 1.025 is the primary Hopf

bifurcation point leading to the low-frequency oscillations. It has been obtained from the linearized theory. In figure 7, we show
the two stable solutions coexisting forβ = 1.03 (this value ofβ is indicated by an arrow). (Online version in colour.)

the new oscillations exhibit a low frequency. We have found that it emerges from the primary
Hopf bifurcation point β = β2 � 1.025 as an unstable branch (as expected since this bifurcation
is from an unstable steady state) and then stabilizes as β ≥ 1.029. The frequency at the Hopf
bifurcation point is σ2 = 0.09 meaning a period P = 69.81 (numerically, we found P = 69.12;
figure 7b).

The bifurcation diagrams shown in figure 6 illustrate the results of our simulations. The
first Hopf bifurcation leads to the asymmetric square-wave oscillations that we investigated
analytically in §2. Specifically, the extrema of x as a function of β are given by (2.31) and (2.33),
where x01 ≥ −π/4 − Φ (full red line in figure 6a and full black line in figure 6b). In figure 6b,
the square dots are the solutions obtained numerically from simulating the full equations (2.1)
and (2.2). For each point, the initial conditions were x = −1 (−1 ≤ s < − 1

3 ), x = 1 (− 1
3 ≤ s < 0) and

y(0) = 0. The long-time solution was then analysed when s > 10 000. For β < 1.009, the system
jumps to the zero solution. The stability of the zero solution was also tested by using the initial
conditions x = 0 (−1 ≤ s < − 1

3 ), x = 10−3 (− 1
3 ≤ s < 0) and y(0) = 0. The long-time solution was

again analysed when s >10 000. For β = 1.020, x = 0 is stable. For β = 1.021, x = 0 is unstable and
the system jumps to the 1-periodic asymmetric square wave. In addition to the 1-periodic square-
wave solution, a stable low-frequency periodic solution was determined as soon as β ≥ 1.029.
The initial conditions were x = 0.1 cos(0.33s) (−1 ≤ s < 0) and y(0) = 0. At β = 1.029, the frequency
of the oscillations is σ = 0.095 which is close to the Hopf frequency σ2. The parabolic lines
given by x = ±1.3742

√
β − β2 are curve fitting the numerical data and strongly suggest that the

unstable branch of periodic solutions emerging at β = β2 = 1.025 stabilizes as soon as β ≥ 1.029.
Similar responses (square-wave or low-frequency oscillations) have been found previously [23]
but not for the same values of the bifurcation parameter. Here, the two distinct regimes may
coexist (figure 7).
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Figure 7. Coexistence of two different stable periodic solutions. The values of the parameters are documented in (2.3) and
β = 1.03. (a) The 1-periodic square wave is obtained using x = −1 (−1< s≤ − 2

3 ), x = 1 (− 2
3 < s≤ 0) and y(0)= 0.

(b) The low-frequency oscillations are found using x = cos (0.33s) (−1< s≤ 0) and y(0)= 0.

4. Discussion
In this paper, we investigated several issues that were missing in the study of Weicker et al. [22].
First, we concentrate on the fast transition layers between the plateaus of the square waves and
showed how they contribute to the correction of the total period. Second, we show numerically
that the square-wave oscillations are the result of a first Hopf bifurcation from the basic steady
state. The bifurcation is subcritical and allows for the coexistence of stable square waves with a
stable steady state. Experiments done on an EOO using quite different values of the parameters
[24] suggest that the same mechanism could be responsible for the onset of asymmetric square
waves. There are many other primary Hopf bifurcation points but we found only one leading
to stable oscillations. The new periodic solution exhibits a large period and smooth oscillations.
An asymptotic description of this solution is also possible [23]. Both the square-wave and the
large period oscillations are the result of the large delay. They are dominant attractors in our EOO
problem and motivate the investigation of other second-order nonlinear DDEs experiencing a
large delay.
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Appendix A
The plateaus of the square wave are x = x01 < 0 and x = x02 > 0, in first approximation. They are
defined as two roots of equation (2.13) for a fixed y0. Figure 3b suggests that there is a third root.
In this appendix, we determine this third root and formulate an expression for y0.

Equations for x01 and x02 are given by equations (2.28) and (2.30). From equation (2.30), we
determine β cos(2x01 + 2Φ) as

β cos(2x01 + 2Φ) = 2x01 + 2Φ + π

2
. (A 1)

From (2.13) with j = 1, we formulate an expression for y0 given by

y0 = −x01 + β

2
cos(2x01 + 2Φ) − β

2
cos(2Φ).

Using (A 1)

y0 = −x01 + 1
2

(
2x01 + 2Φ + π

2

)
− β

2
cos(2Φ)

= Φ + π

4
− β

2
cos(2Φ). (A 2)

In order to find the third root of equation (2.13), we introduce (A 2) into equation (2.13) and obtain

Φ + π

4
= −x0j + β

2
cos(2x0j + 2Φ). (A 3)

This equation admits the solution

x03 = −
(
Φ + π

4

)
. (A 4)

Using equation (2.28), we then obtain the relation

x01 + x02 = 2x03 (A 5)

or equivalently,
x02 − x03 = x03 − x01. (A 6)

The two extreme roots are at equal distance from the central root x03. This symmetry property has
important consequences. In particular, the two fast transition layers admit the same equation and
they contribute in the same way to the correction of the period.

References
1. Kevorkian J, Cole JD. 1981 Perturbation methods in applied mathematics, vol. 34. Applied

Mathematical Sciences. New York, NY: Springer.
2. Kevorkian J, Cole JD. 1996 Multiple scale and singular perturbation methods, vol. 114. Applied

Mathematical Sciences. New York, NY: Springer.
3. Grasman J. 1987 Asymptotic methods of relaxation oscillations and applications, vol. 63. Applied

Mathematical Sciences. New York, NY: Springer.
4. Bender CM, Orszag SA. 1978 Advanced mathematical methods for scientists and engineers. New

York, NY: McGraw Hill.
5. Fowler AC. 1997 Mathematical models in the applied sciences. Cambridge Texts in Applied

Mathematics. Cambridge, UK: Cambridge University Press.
6. Keener J, Sneyd J. 1998 Mathematical physiology. New York, NY: Springer.
7. Murray JD. 2002 Mathematical biology I: an introduction, 3rd edn, vol. 17. International Applied

Mathematics. Berlin, Germany: Springer.
8. Fowler AC, Mackey MC. 2002 Relaxation oscillations in a class of delay differential equations.

SIAM J. Appl. Math. 63, 299–323. (doi:10.1137/S0036139901393512)

 on August 19, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1137/S0036139901393512
http://rsta.royalsocietypublishing.org/


14

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120459

......................................................

9. Fowler AC. 2005 Asymptotic methods for delay equations. J. Eng. Math. 53, 271–290.
(doi:10.1007/s10665-005-9016-z)

10. Chow SN, Mallet-Paret J. 1983 Singularly perturbed delay differential equations. In Coupled
Nonlinear Oscillators, Proc. Joint US Army—Center for Nonlinear Studies Workshop, Los
Alamos, NM, USA. North-Holland Mathematics Studies, vol. 80, pp. 7–12. Amsterdam, The
Netherlands: Elsevier.

11. Mallet-Paret J, Nussbaum RD. 1986 Global continuation and asymptotic behavior for periodic
solutions of a differential-delay equation. Ann. Mat. Pura Appl. 145, 33–28. (doi:10.1007/
BF01790539)

12. Chow SN, Hale JK, Huang W. 1992 From sine waves to square waves in delay equations. Proc.
R. Soc. Edinburgh A 120, 223–229. (doi:10.1017/S0308210500032108)

13. Hale JK, Huang WZ 1994 Period-doubling in singularly perturbed delay equations. J. Differ.
Equ. 114, 1–23. (doi:10.1006/jdeq.1994.1138)

14. Hale JK, Huang WZ. 1996 Periodic solutions of singularly perturbed delay equations.
Z. Angew. Math. Phys. 47, 57–88. (doi:10.1007/BF00917574)

15. Mackey MC, Glass L. 1977 Oscillation and chaos in physiological control systems. Science 197,
287–288. (doi:10.1126/science.267326)

16. Ikeda K. 1979 Multiple-valued stationary state and its instability of the transmitted light by a
ring cavity system. Opt. Commun. 30, 257–261. (doi:10.1016/0030-4018(79)90090-7)

17. Ikeda K, Akimoto O. 1982 Successive bifurcations and dynamical multi-stability in a bistable
optical system: a detailed study of the transition to chaos. Appl. Phys. B 28, 170–171.

18. Ikeda K, Daido H, Akimoto O. 1980 Optical turbulence—chaotic behavior of transmitted light
from a ring cavity. Phys. Rev. Lett. 45, 709–712. (doi:10.1103/PhysRevLett.45.709)

19. Gurney WSC, Blythe SP, Nisbet RM. 1980 Nicholson’s blowflies revisited. Nature 287, 17–21.
(doi:10.1038/287017a0)

20. Erneux T, Larger L, Lee MW, Goedgebuer J-P. 2004 Ikeda Hopf bifurcation revisited. Physica
D 194, 49–64. (doi:10.1016/j.physd.2004.01.038)

21. Erneux T, 2009 Applied delay differential equations. Berlin, Germany: Springer.
22. Weicker L, Erneux T, d’Huys O, Danckaert J, Jacquot M, Chembo Y, Larger L. 2012

Strongly asymmetric square-waves in a time delayed system. Phys. Rev. E 86, 055201(R).
(doi:10.1103/PhysRevE.86.055201)

23. Peil M, Jacquot M, Chembo YK, Larger L, Erneux T. 2009 Routes to chaos and multiple time
scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. Phys. Rev. E
79, 026208. (doi:10.1103/PhysRevE.79.026208)

24. Rosin DP, Callan KE, Gauthier DJ, Schöll E. 2011 Pulse-train solutions and excitability in an
optoelectronic oscillator. Eur. Phys. Lett. 96, 34001. (doi:10.1209/0295-5075/96/34001)

25. Lasri J, Devgan P, Tang R, Kumar P. 2003 Self-starting optoelectronic oscillator for
generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses. Opt. Exp. 11, 1430–1435.
(doi:10.1364/OE.11.001430)

26. Lasri J, Devgan P, Tang R, Kumar P. 2004 Ultralow timing jitter 40-Gb/s clock recovery. IEEE
Photonics Technol. Lett. 16, 263–265. (doi:10.1109/LPT.2003.819370)

27. Chembo YK, Hmima A, Lacourt PA, Larger L, Dudley JM. 2009 Generation of ultralow jitter
optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression.
J. Lightwave Technol. 27, 5160–5167. (doi:10.1109/JLT.2009.2028033)

28. Larger L, Goedgebuer J-P. 2004 Encryption using chaotic dynamics for optical
telecommunications. Comptes Rendus Phys. 5, 609–611. (doi:10.1016/j.crhy.2004.05.004)

29. Engelborghs K, Luzyanina T, Roose D. 2002 Numerical bifurcation analysis of delay
differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28, 1–21. (doi:10.1145/
513001.513002)

 on August 19, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1007/s10665-005-9016-z
http://dx.doi.org/doi:10.1007/BF01790539
http://dx.doi.org/doi:10.1007/BF01790539
http://dx.doi.org/doi:10.1017/S0308210500032108
http://dx.doi.org/doi:10.1006/jdeq.1994.1138
http://dx.doi.org/doi:10.1007/BF00917574
http://dx.doi.org/doi:10.1126/science.267326
http://dx.doi.org/doi:10.1016/0030-4018(79)90090-7
http://dx.doi.org/doi:10.1103/PhysRevLett.45.709
http://dx.doi.org/doi:10.1038/287017a0
http://dx.doi.org/doi:10.1016/j.physd.2004.01.038
http://dx.doi.org/doi:10.1103/PhysRevE.86.055201
http://dx.doi.org/doi:10.1103/PhysRevE.79.026208
http://dx.doi.org/doi:10.1209/0295-5075/96/34001
http://dx.doi.org/doi:10.1364/OE.11.001430
http://dx.doi.org/doi:10.1109/LPT.2003.819370
http://dx.doi.org/doi:10.1109/JLT.2009.2028033
http://dx.doi.org/doi:10.1016/j.crhy.2004.05.004
http://dx.doi.org/doi:10.1145/513001.513002
http://dx.doi.org/doi:10.1145/513001.513002
http://rsta.royalsocietypublishing.org/

	Introduction
	Asymptotic analysis
	Slowly varying plateaus
	The fast transition layers

	Numerical bifurcation diagrams
	Discussion
	References

