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Square-wave oscillations exhibiting different plateau
lengths have been observed experimentally by investi-
gating an electro-optic oscillator. In a previous study,
we analysed the model delay differential equations
and determined an asymptotic approximation of the
two plateaus. In this paper, we concentrate on the
fast transition layers between plateaus and show
how they contribute to the total period. We also
investigate the bifurcation diagram of all possible
stable solutions. We show that the square waves
emerge from the first Hopf bifurcation of the basic
steady state and that they may coexist with stable low-
frequency periodic oscillations for the same value of
the control parameter.

1. Introduction

Relaxation oscillations with alternate fast and slow
phases appear in several areas of science from electronics
to neural modelling. They are described mathematically
as the solution of two or more nonlinear ordinary
differential equations that exhibit different time scales.
Over the years, reliable asymptotic techniques such as
the method of matched asymptotic expansions [1-3]
have been developed and successfully used to determine
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Figure 1. Nearly 2-periodic square-wave solution of equation (1.1) with f(x, 1) = —Xx + x*. The values of the parameters
are ¢ =0.02 and A =12. The two plateaus are close to the period 2 fixed points of the map (1.2) given by

X+ = £+/A — 1=0.45.The period P = 2 4 O(e) is slightly larger than 2 because of the time needed for the fast transition
layers.

analytical expressions of physical interest (amplitude and period). The van der Pol equation in
the large damping case is the reference problem for the analysis of relaxation oscillations [1-4]
but other problems have also emerged in the field of chemical and biological oscillations [5-7].

Analytical studies of relaxation oscillations that are solutions of delay differential equations
(DDEs) are however very rare. A notable exception is the analysis of a model for haematological
stem cell regulation by Fowler & Mackey [8] and Fowler [9]. The method of matched asymptotic
expansions is difficult to implement for DDEs because we often need to anticipate the response of
both the state and delayed variables. Much of the mathematical work that has been done [10-14]
is concerned with scalar nonlinear DDEs of the form

ex' = —x+f(x(s — 1),1), (1.1)

where x" denotes the derivative of x with respect to the dimensionless time s (s =t/tp where
t is the real time and fp is the delay of the feedback). f(x, ) is a nonlinear function of x and
A is a control parameter. ¢ = to/tp > 0, where {( is the linear decay time of x in the absence of
feedback. Equation (1.1) arises in a variety of applications, for example, physiological control
systems [15], the transmission of light through a ring cavity [16-18] and population biology [19].
Under particular conditions on f(x, 1), equation (1.1) may exhibit nearly 2-periodic square-wave
oscillations provided ¢ is sufficiently small (figure 1). More precisely, these oscillations consist of
sharp transition layers of size proportional to ¢ connecting plateaus that are close to the period 2
fixed points of the map

Xn=f(n-1,1), (1.2)

where x; =x(t) and x,_1 =x(t — 1). The period 2 fixed points of the map provide excellent
approximations of the extrema of the oscillations. The description of the fast transition layers and
the determination of the correction to the period are however much more delicate. Significant
contributions to the asymptotic relations between the solutions of the map (1.2) and the solutions
of the DDE (1.1) have been made by Chow & Mallet-Paret [10], Mallet-Paret & Nussbaum [11],
Chow et al. [12] and Hale & Huang [13,14]. In particular, the Hopf bifurcation to the 2-periodic
square-wave solutions has carefully been analysed. As the bifurcation parameter deviates from
its Hopf bifurcation value, the oscillations quickly change their shape from sinusoidal to square
waves [20].

Does equation (1.1) exhibit other types of square-wave oscillations? An analysis of the possible
Hopf bifurcation points of equation (1.1) indicates that nearly 1-periodic square-wave solutions
are possible but are unstable because they emerge from an unstable steady state [20]. Moreover,
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Figure 2. Experimental square-wave oscillations. By gradually changing the feedback phase @, the plateau lengths can be
tuned but the total period P =~ tp = 20 jus remains fixed. (Online version in colour.)

transient asymmetric square waves exhibiting different plateau lengths can be initiated by
choosing particular initial conditions but they disappear at finite time [21].

In the study of Weicker et al. [22], we addressed the question whether stable periodic
square-wave oscillations exhibiting different plateau lengths (called duty cycles) are possible
for problems modelled by second-order DDEs. The question has been raised by experiments
performed on electro-optic oscillators (EOOs), which are modelled mathematically in terms of
second-order DDEs [23,24]. An EOO typically incorporates a nonlinear (intensity) modulator, an
optical-fibre delay line, and an optical detector in a closed-loop resonating configuration. This
hybrid microwave source is capable of generating, within the same optoelectronic cavity, either an
ultra-low-jitter (low phase-noise) single-tone microwave oscillation, as used in radar applications
[25-27], or a broadband chaotic carrier typically intended for physical data encryption in high
bit rate optical communications [28]. For a specific range of values of the parameters, periodic
square-wave oscillations (figure 2) were found exhibiting a period P close to one delay fp as well
as different plateau lengths. It motivated an asymptotic analysis of the EOO equations in the limit
of large delays. We obtained a good approximation of the plateaus and were able to explain how
their respective lengths depend on the control parameters [22].

In this paper, we concentrate on three different issues that were omitted in [22]. First, We
analyse the fast transition layers and show how they contribute to the total period. Second, we
numerically investigate the bifurcation diagram of the square-wave oscillations and show how
they emerge from a particular Hopf bifurcation. Third, we numerically found another stable time-
periodic solution exhibiting a low frequency that may coexist with the square-wave solution. The
plan of the paper is as follows. In §2, we introduce the EOO equations and propose a complete
asymptotic description of the square-wave oscillations. In §24, the approximation of the slowly
varying plateaus is described in more detail than in [22]. The two fast transition layers are
examined in §2b. We show that they are described by the same equation which we analyse. In
§3, we numerically investigate the bifurcation diagram of the stable solutions using two different
methods. The main results are summarized in §4.

2. Asymptotic analysis

In dimensional form, the evolution equation for an EOO are (eqns (35) and (36) in [23] or eqns (3)
and (4) in [22])

y=x (2.1)

and

exX' = —x — 8y + Blcos®(x(s — 1) + @) — cos*(®)], (2.2)
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Figure 3. (a) Numerical square-wave solution of equations (2.1) and (2.2) during one period. The values of the parameters are
given by B =12 and (2.3) except & =5 x 1073 (this higher value of & provides a better illustration of the fast transition
layers). The two plateaus of the square-wave solution are of length sy and 1 — s, respectively. The fast transition layers
contribute to the total period by two corrections of size er. (b) The periodic solution is shown in the phase plane (x, 8y). The
S-shaped line is the function (2.9). The dot is the unique steady state (x, y) = (0, 0). The values of yg = —0.0192, Xy = —0.61,
X3 = —0.1and xy = 0.41are determined in §2a. (Online version in colour.)

where prime means differentiation with respect to s and s is time measured in units of the delay.
The parameters ¢, § and @ are fixed and given by [22]

£=10"3, §=843x10"% and &= —% + 0.1~ —0.69. (2.3)

The feedback amplitude g is our bifurcation parameter.

Equations (2.1) and (2.2) admit nearly 1-periodic square-wave oscillations exhibiting different
plateau lengths (figure 3). The slow—fast time behaviour of the solution is due to the small value
of £. As we shall later demonstrate, the relatively small change of y compared with x (figure 3b)
is the result of the small value of §. Furthermore, the asymmetry of the square-wave oscillations
(s0 < % in figure 3a) is related to the deviation @ + m/4. Experimentally, we may explore different
ranges of values of these parameters. In this paper, we shall keep § and @ fixed as given in
(2.3) and consider different small values of ¢ whenever it becomes appropriate for our numerical
illustrations or analysis.

We next propose to construct the square-wave solution in the limit ¢ — 0. Specifically, we seek
a P-periodic solution satisfying the condition

x(s — P) = x(s), (2.4)

where the period P is given by
P=1+2er, r=0(1). (2.5)

As shown in figure 3a, the solution consists of two slowly varying plateaus connected by fast
transition layers. We anticipate the analysis of the transition layers (see §2b) by assuming that the
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contribution from these layers to the period P is the same (¢7). We analyse the slow and fast parts
of the solution, separately.

(a) Slowly varying plateaus

The leading approximation is obtained by setting ¢ = 0 in equations (2.1) and (2.2). The reduced
equations with (2.4) and (2.5) are

Y =x (2.6)
O0=—x—-48y+ Blcos?(x + @) — cos?(®)] (2.7)
and x(s — 1) = x(s). (2.8)

From equation (2.7), we determine y = y(x) as

y= %{—x + Blcos?(x + @) — cos(P)]}. (2.9)

The function (2.9) is represented in figure 3b and exhibits three branches provided g > 1. The
evolution of x and y along the left and right branches corresponds to the evolution along the
plateaus of the square-wave periodic solution. They can be determined by inserting (2.9) into the
left-hand side of equation (2.6) and by solving the resulting first-order equation for x. However,
this solution is complicated and we may find simple analytical expressions by taking advantage
of the small value of §. Specifically, we seek a perturbation solution of equations (2.6) and (2.7) of
the form

y=58"y0(s) + y1j(s) + - - (2.10)
and
X = X()]'(S) + 83(1]'(5) + -, (211)
where j =1 or 2 refer to the time domains 0 <5 < sp and sy < s < 1, respectively (figure 4).
Inserting (2.10) and (2.11) into equations (2.6) and (2.7) and equating to zero the coefficients of

each power of § leads to a sequence of problems for the unknowns functions yo, y1;, Xo; and xy;.
The leading-order problem is O(1) and is given by

Yy =0 (2.12)
and
— X0 — Yo + Blcos®(xgj + @) — cos*(®)] =0. (2.13)

Equation (2.12) implies that yo is a constant. We already know that for a finite range of values of
Yo, equation (2.13) admits more than one root (figure 3b). The solutions corresponding to the left
and right branches are denoted by xg; < 0 and xg, > 0, respectively. We do not know the values of
Yo and analyse the O(8) problem for y1;(s) and xj(s). It is given by

0<s<sp, Yy =201, (2.14)
—x11 — Y11 — 2B sin(2xp1 + 2P)x11 =0, (2.15)
so<s<1l, yp=xp (2.16)
and — X12 — Y12 — 2B sin(2xp2 + 2@)x12 = 0. (2.17)

Figure 4 suggests the following initial conditions for y1; and y12:

y110)=yim  and  y12(s0) = Y1m, (2.18)
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Figure 4. Numerical square-wave solution of equations (2.1) and (2.2) during one period. The values of the parameters are the
same as for figure 3a except that ¢ =2 x 10~*is much smaller. (a) x(s) exhibits sharp jumps at times s = 0,5 = sy ands =1,
while y remains continuous at those points. We also determine x;; > (x — xq;)/6 and note that x;; and Xy, are continuous at
times 0, 5o, 1. (b) The square-wave periodic solution is shown in the phase-plane (x, 8y). Comparing with figure 3b, we note
that 8y = y, is now located slightly below the closed orbit. (Online version in colour.)

where y1) and y1,, correspond to the maximum of y11 and the minimum of y1,, respectively. The
solution of equations (2.14)-(2.18) is then

Y11 =Y1M + X018, (2.19)
Y12 =Y1m + X02(s — so), (2.20)
Y11
=- 221
= T 2B sin(2xg; + 20) @21)
and X1 = Y12 (2.22)

1+ 2B8sinQxpy + 29)
Continuity of i1 and yj» at times s = sy and 1 leads to the conditions

Y1M + X0150 = Y1m (2.23)
and

Yim + x02(1 = s0) = y1im, (2.24)

which are two equations for y1p1 — y1,,. A solution of equations (2.23) and (2.24) is possible only
if

x0150 + x02(1 — s9) =0. (2.25)
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Figure 5. Analytical bifurcation diagram of the square waves. (a) The numerically computed square wave is shown for § = 1.2
and the values of the parameters listed in (2.3). (b) Its extrema are in good agreement with the analytical predictions obtained
from the parametric solution (2.31)—-(2.33) (with xg; as the parameter). (c) The plateau lengths are so and 1 — s, respectively,
and the figure shows so. (Online version in colour.)

As for y11 and y12, we next assume that the corrections x11 and x1, are equal at s=sp and s =1
(figure 4a). From (2.21) and (2.22), we then obtain the condition

sin(2xg1 + 2®) = sin(2xp + 2®P), (2.26)

or equivalently,
cos(xp1 + xp2 + 2@) sin(xg1 — xg2) =0. (2.27)
Equation (2.27) admits multiple solutions. We specifically look for a solution of equation (2.27)
which satisfies the perfect square-wave condition xg; = —xqy if @ = —n /4. This solution is given

by
i

xX01 + X2 + 2@ = 7 (2.28)

Using (2.13), (2.28) allows one to determine ¥, xp1 and xpp. Substracting equation (2.13) with xp;
and equation (2.13) with x¢, gives

— (x01 — x02) — Bsin(xg1 + xp2 + 2&) sin(xg; — xg2) =0. (2.29)
Using (2.28) then allows one to eliminate xp; in equation (2.29). We find
7T . 7T
. <2x01 +20 + E) + Bsin <2x01 +20 + E) —0. (2.30)

Equation (2.30) provides the solution for xp; = xg1(8) in the implicit form

2 29 2
po Hout20tm/2 2.31)
sin(2xp1 + 29 + 7/2)

We obtain xpp and sg by using (2.28) and (2.25):
X0p = —% —2® —xp1 (2.32)

and
so= —2 >0 (2.33)
X02 — Xo1
In figure 5, we compare our approximations with the numerical solution obtained for 8 =1.2. The
expression for 1o as well as for xg3, defined as the third root of equation (2.13), are documented
in the appendix. In §3, we numerically analyse the bifurcation diagram of the possible stable
solutions and show that the square-wave oscillations emerge from a Hopf bifurcation.
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(b) The fast transition layers

The plateaus of the square wave are connected by fast transition layers on time intervals
proportional to ¢ (figure 3a).

(i) Jump down ats =0

We first consider the fast transition layer at s = 0 and introduce the inner variable ¢; =se~!. The
leading-order transition layer equations for y = Y1(¢1) and x = X;(¢1) are then given by

dYy
-0 2.34
do (239
and
dXy B
o =—X1—8Y1+ E[COS(2X1(§'1 + 27r) + 2®) — cos(2P)], (2.35)
1
where we have used the periodicity condition
x(s — 1) =x(s — P 4 2¢er) = x(s + 2¢er) = X1(¢1 + 27). (2.36)

Equation (2.34) implies that Y7 is a constant. It needs to match the constant determined in our
analysis of the slowly varying plateaus, i.e. Y1 = yos_l. Using the expression of g given by (A 2),
equation (2.35) can be rewritten as

dX;

T B b4
o Xi—e-—4+LC +2) 420 + = ). )
i X1 175 sin (2X1(§1 2r) +2 > ) (2.37)

This equation can be reformulated in a simpler form by introducing the deviation z; = X — xp3 =
X1+ @ + /4. From equation (2.37), we obtain

d

d—‘z -z 4 g sin(2z1(¢1 + 2r)). (2.38)
The boundary conditions for the jump down transition are X1(—00) =xgp and Xj(c0) =xp;. In
terms of z1, they take the simpler form

z1(—o0)=a and z1(co0)=—a, (2.39)

where
a=xp — Xo3 > 0. (2.40)

(i) Jumpupats =5y + er

We next consider the transition layer near s =sp + ¢r and introduce the inner variable ¢ = (s —
so — er)e L. The leading-order transition layer equations for y = Y>({2) and x = X»({p) are given

by

dY,
— =0 2.41
dg (24D
and
dx: + + +
Tz (g“z n BN sr) - % (Cz n So sr) 5y, <C2 n S0 sr)
9 & & e
+ g |:cos (2X2 (;2 poter, 2r) + 2<b) - cos(2¢)] ) (2.42)
e
where we have used the periodicity condition
X(s — 1) = x(s — P+ 2e7) = x(s + 267) = Xa (;2 Lorer 2r) . (2.43)
e

The constant solution for Y3 is again matching the value obtained from the analysis of slowly
varying plateaus, i.e. Y» =y08*1. Using the expression of yg given by (A 2), equation (2.42)
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simplifies as
dX, So + er s + er bid
a2 D7)\ _x 7)) _p_ =
iz (Cz + . ) 2 (Cz + . 1

Sg + er

+ g sin <2X2 (;2 + n Zr) 120+ %) . (2.44)

Introducing the deviation zo = X5 — x93 = X2 + @ + 7/4, equation (2.44) becomes

dz (s“z ot ”) =2 (;2 s ”) +Bsin (222 (;2 poter, 2r>). (2.45)
d§2 & & 2 &

We next note the following relations between the two inner variables:

+
p=g1— 2 . =8 (2.46)

Inserting (2.46) into equation (2.45), we formulate an equation for z»(¢1) of the form

)= —za(en) + § sinaaes +20) 47

The boundary conditions for the second transition layer are now
zp(—00)=—a and zp(c0)=a, (2.48)

where a is defined by (2.40). We realize that equations (2.47) and (2.48) are the same as
equations (2.38) and (2.39) except that the boundary conditions have been interchanged. This
implies that the solution of equations (2.47) and (2.48) is related to the solution of equations (2.38)
and (2.39) by

z2(61) = —z1(81)- (2.49)

In conclusion, we found the same DDE for the two fast transition layers. It is given by

z_
CTC =—z+ 5 sin(2z(¢ + 2r)) (2.50)

and
z(—o0)=a and z(o0)=—a, (2.51)

where we have omitted the subscript 1 for z; and ¢;. We next proceed as in [10]. We note that
by rescaling time ¢ as £ = —¢/2r, equation (2.50) can be rewritten as a DDE with delay 1 and
parameter r

dz B .

E =2r [z -5 sin(2z(& — 1))] (2.52)
and

z(—o0)=a and z(o0)= —a. (2.53)

z = =a are both critical points of equation (2.52). This means that we are looking for a heteroclinic
orbit for some value of r, that is, a trajectory joining these critical points as £ — +oco. The delay
parameter 7 is unknown a priori, and must be determined as part of the solution. We cannot solve
the problem analytically for arbitrary g (it is a nonlinear DDE).

(iii) Correction to the period

In this section, we solve equations (2.52) and (2.53) for g close to 1. Our objective is to demonstrate
that there is indeed a unique value of r such that equations (2.52) and (2.53) admit a solution. To
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this end, we introduce a small parameter u defined by

-1
nw= b , (2.54)
b
where b = £1 if g 2 1. We then expand the solution z and parameter r in power series of
2=pZi () + 12 Zp(v) + - (2.55)
and
r=ro+urg+---, (2.56)

where v = ué&. The motivation for introducing (2.54) comes from the fact that a=xp — xp3 =

\/ %(,3 — 1), in first approximation as g — 1, which implies that the amplitude of the solution scales
like /B — 1. After introducing (2.54)—(2.56) into (2.50), we equate to zero the coefficients of each
power of . The leading-order problem is O(u) and is given by

dz

(1 —2rp)—2L =0. (2.57)
dv

In order to have a non-constant solution for z1, we require that rg = % The next problem is O(u?)

and is given by

1422y 2,4 dZ,
~5q2 T34 bZy +2r1- - =0, (2.58)
with the boundary conditions
/3b b
Z1(—o0) = 3? and Zj(o0)=— % (2.59)

We choose b =1 and note that the damped Hamiltonian equation (2.58) has a unique solution
z1 = —+/3/2tanh(v) if r1 =0. We conclude that we have found an analytical expression for the
transition layer solution provided

p>1 and r=4+O0O((B—1). (2.60)

We have determined numerically the period of the square-wave oscillations with a high precision.
The values of § and @ are documented in (2.3), e =5 x 1072 and 8 = 1.2. We find P ~ 1.047. From
(2.5), we then compute 2er = 4.7 x 1072, which implies r = 0.47. The numerical value of r is close
to the analytical value r = 0.5 given in (2.60).

3. Numerical bifurcation diagrams

We consider g as our bifurcation parameter. All other parameters are documented in (2.3).
A linear stability analysis of the steady state (x,y) =(0,0) allows us to determine the primary
Hopf bifurcation points and Hopf frequencies. They satisfy the following equations:

2
tan(o) = — [8" G_ ‘S} (3.1)
and 1
p=- sin(2®) cos(o) (32)

The first Hopf bifurcation is located at =1 ~1.020 and exhibits a frequency close to 2w
(01 =6.28). Using a continuation method, we find a 1-periodic branch of periodic solutions
that connects the asymmetric square waves (figure 6a). More precisely, the Hopf bifurcation
branch is first subcritical and unstable and then folds back to a branch of stable square-wave
oscillations. There are many more Hopf bifurcation points as we further increase g from fj.
Using different initial conditions, we have integrated numerically equations (2.1) and (2.2), and
found another branch of stable periodic solutions. By contrast to the square-wave oscillations,
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Figure 6. (a) Bifurcation diagram of the T-periodic square waves obtained by a continuation method [29]. The values of the
parameters are listed in (2.3) except @ = —0.68 and & = 5.5 x 10>. Solid and dashed lines correspond to stable and
unstable solutions, respectively. The parabolic lines appearing at B = 0.008 are analytical approximations given by (2.31)—
(2.33). (b) Bifurcation diagram of the 1-periodic square waves obtained by numerical integration. The values of the parameters
are listed in (2.3). The parabolic lines appearing at 8 = 0.008 are analytical approximations given by (2.31)—(2.33). The squares
and the triangles denote stable periodic solutions obtained by integrating equations (2.1) and (2.2). The squares and the triangles
correspond to square-wave and low-frequency periodic solutions, respectively. The change of stability of the zero solution
occurs at 8 = B =~ 1.020 and corresponds to a Hopf bifurcation to the 1-periodic square-wave oscillations. The parabolic
lines connecting the triangles are curve fitting lines given by x = 4-1.3742,/8 — B, where B, = 1.025 is the primary Hopf
bifurcation point leading to the low-frequency oscillations. It has been obtained from the linearized theory. In figure 7, we show
the two stable solutions coexisting for 5 = 1.03 (this value of 3 is indicated by an arrow). (Online version in colour.)

the new oscillations exhibit a low frequency. We have found that it emerges from the primary
Hopf bifurcation point g = 8, ~1.025 as an unstable branch (as expected since this bifurcation
is from an unstable steady state) and then stabilizes as g >1.029. The frequency at the Hopf
bifurcation point is oo =0.09 meaning a period P=69.81 (numerically, we found P =69.12;
figure 7b).

The bifurcation diagrams shown in figure 6 illustrate the results of our simulations. The
first Hopf bifurcation leads to the asymmetric square-wave oscillations that we investigated
analytically in §2. Specifically, the extrema of x as a function of 8 are given by (2.31) and (2.33),
where xp1 > —n/4 — @ (full red line in figure 6a and full black line in figure 6b). In figure 6D,
the square dots are the solutions obtained numerically from simulating the full equations (2.1)
and (2.2). For each point, the initial conditions were x = -1 (-1 <s < —%), x=1 (—% <s<0)and
y(0) =0. The long-time solution was then analysed when s > 10000. For g < 1.009, the system
jumps to the zero solution. The stability of the zero solution was also tested by using the initial
conditions x=0 (-1 <s< —%), x=10"3 (—% <s<0) and y(0) =0. The long-time solution was
again analysed when s >10000. For g =1.020, x =0 is stable. For g =1.021, x =0 is unstable and
the system jumps to the 1-periodic asymmetric square wave. In addition to the 1-periodic square-
wave solution, a stable low-frequency periodic solution was determined as soon as g > 1.029.
The initial conditions were x = 0.1 cos(0.33s) (—1 < s < 0) and y(0) =0. At 8 =1.029, the frequency
of the oscillations is o =0.095 which is close to the Hopf frequency 0. The parabolic lines
given by x =+1.3742,/f — By are curve fitting the numerical data and strongly suggest that the
unstable branch of periodic solutions emerging at g = > = 1.025 stabilizes as soon as f > 1.029.
Similar responses (square-wave or low-frequency oscillations) have been found previously [23]
but not for the same values of the bifurcation parameter. Here, the two distinct regimes may
coexist (figure 7).
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Figure 7. Coexistence of two different stable periodic solutions. The values of the parameters are documented in (2.3) and
B =1.03. (a) The T-periodic square wave is obtained usingx = —1(—1< s < —%),x =1 (—% < s <0)and y(0) =0.
(b) The low-frequency oscillations are found using x = cos (0.33s) (—1 < s < 0) and y(0) = 0.

4. Discussion

In this paper, we investigated several issues that were missing in the study of Weicker et al. [22].
First, we concentrate on the fast transition layers between the plateaus of the square waves and
showed how they contribute to the correction of the total period. Second, we show numerically
that the square-wave oscillations are the result of a first Hopf bifurcation from the basic steady
state. The bifurcation is subcritical and allows for the coexistence of stable square waves with a
stable steady state. Experiments done on an EOO using quite different values of the parameters
[24] suggest that the same mechanism could be responsible for the onset of asymmetric square
waves. There are many other primary Hopf bifurcation points but we found only one leading
to stable oscillations. The new periodic solution exhibits a large period and smooth oscillations.
An asymptotic description of this solution is also possible [23]. Both the square-wave and the
large period oscillations are the result of the large delay. They are dominant attractors in our EOO
problem and motivate the investigation of other second-order nonlinear DDEs experiencing a
large delay.
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Appendix A

The plateaus of the square wave are x =xp; <0 and x = xq2 > 0, in first approximation. They are
defined as two roots of equation (2.13) for a fixed (. Figure 3b suggests that there is a third root.
In this appendix, we determine this third root and formulate an expression for yg.
Equations for xp; and xq are given by equations (2.28) and (2.30). From equation (2.30), we
determine B cos(2xg1 + 2®) as
B cos(2xg1 + 20) = 2x01 + 2@ + % (A1)
From (2.13) with j =1, we formulate an expression for yg given by

Yo =—xo1 + gcos(me +2®) — g cos(29).

Using (A1)
1 bd B
Yo=—%o1 + 5 <2x01 +20 + E> — 5 cos(2®)
— 4 % - gcos(2<1§). (A2)
In order to find the third root of equation (2.13), we introduce (A 2) into equation (2.13) and obtain
T B
D+ 1= —Xoj + > cos(2xq; + 2&). (A3)
This equation admits the solution
b4
x03:—(<1>+z). (A 4)
Using equation (2.28), we then obtain the relation
x01 + Xo2 = 2%03 (A5)
or equivalently,
X02 — X03 = X03 — X01- (A6)

The two extreme roots are at equal distance from the central root x(3. This symmetry property has
important consequences. In particular, the two fast transition layers admit the same equation and
they contribute in the same way to the correction of the period.
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