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(Received 1 November 2011; published 15 June 2012)

We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer based

on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with randomly

defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired computa-

tional unit, intrinsically differing from Turing machines. This recent paradigm consists in expanding the

input information to be processed into a higher dimensional phase space, through the nonlinear transient

response of a complex dynamics excited by the input information. The computed output is then extracted

via a linear separation of the transient trajectory in the complex phase space. The hyperplane separation is

derived from a learning phase consisting of the resolution of a regression problem. The processing

capability originates from the nonlinear transient, resulting in nonlinear transient computing. The

computational performance is successfully evaluated on a standard benchmark test, namely, a spoken

digit recognition task.
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In early 2000, the brain research and neural network
computing communities independently proposed novel
computational principles [1] suspected to mimic actual
calculation and processing tasks that have been observed
and studied in the brain. These computational principles,
referred to as echo state network [2], liquid state machine
[3], and the generic term reservoir computing (RC), are
definitely different with respect to the standard Turing
machine principles widely implemented in electronic digi-
tal processors. Instead of processing the calculation tasks
step-by-step with static states stored in memories, this new
principle is based on computational power performed by
complex nonlinear transient motion developed in the high
dimensional phase space of a nonlinear system excited by
an input signal representing the information to be pro-
cessed. The complex dynamics is usually materialized by
a network of neurons (as in the brain) or by any spatially
extended network of coupled nonlinear dynamical nodes.

The corresponding generic architecture is depicted in
Fig. 1(a), where strong similarities can be seen compared
to standard recurrent neural networks (RNN): an input
layer is dedicated to the injection of the input information
(input connectivity matrix WI) into a complex intercon-
nected network of dynamical nodes (internal network con-
nectivity matrixWD); an output layer (readout matrixWR)
is dedicated to the extraction of the result, computed from
the nonlinear transient developed by the network dynamics
consequent to the injected input signal. Since one of our
aims is to transpose these concepts into physics and into a
real-world experimental demonstrator, our system will be
referred in the remaining part of the Letter as nonlinear
transient computing (NTC) [4]). NTC is suggested with the
intention to reflect more clearly the actual physical origin
of the approach, in a way which is expected to be more
meaningful for physicists and for the nonlinear dynamics

community, although historically the computer or brain
science community are referring to echo state network,
liquid state machine, or RC.
There are at least two strong differences in NTC com-

pared with RNN. (i) The internal network structure WD is
assumed to be fixed and not to be optimized according to a
learning procedure as it is for RNN. This feature is par-
ticularly suited to a physical implementation, since recon-
figuration flexibility typically brought by a numerical
implementation of the RNN is not required anymore.
(ii) A second difference compared with RNN consists in
the fact that the learning procedure in NTC is strongly
simplified. It is reduced to the determination of readout
coefficients (matrix WR), which can be easily calculated
from a simple regression technique.
A significant innovation in NTC was recently proposed

and implemented electronically [5] via the introduction of
a delay dynamics instead of the classical network of dy-
namical nodes. This implemented original theoretical so-
lution appeared also as a convenient technical one, since it
provides a simpler way for real-world physical implemen-
tation, compared to the usually adopted topology of a
network [6]. Such an approach can be justified by a known
analogy between delay dynamics and spatiotemporal dy-
namics (as a RNN). Both are infinite-dimensional, and the
space-time representation of a delay dynamics was already
proposed 20 years ago [7], introducing on the one hand a
discrete time variable corresponding to one delay step
forward and, on the other hand, a virtual continuous space
variable corresponding to the short time-scale fluctuations
within a time-delay interval. As illustrated in Fig. 1(b),
virtual nodes in delay dynamics can be defined as temporal
positions within a time-delay interval �D, which are sepa-
rated by a ‘‘node distance’’ �� [5]. This fixes the number of
virtual nodes within a time-delay interval, N ¼ �D=��
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(150 in our case). The connectivity of the resulting virtual
spatiotemporal network is achieved via two dynamical
mechanisms. The neighboring nodes are linearly coupled
via the characteristic time � of the oscillator impulse
response hðtÞ (�� ’ �=5 for an optimal adjacent node
spacing, as found in Ref. [5]). Additionally, to this
‘‘short-distance’’ coupling, long-distance ones are also
present. The proposed multiple-delay topology results in
a denser internal dynamics connectivity of the equivalent
network, with however still a sparse connectivity involving
only NI nodes among the N possible ones. Each node is
thus subject to a nonlinear transformation (function f½x�)
applied to a linear combination, with random weights wD

i ,

of a few NI ‘‘previous nodes’’ randomly defined among the
N possible ones. Each corresponding delay is defined as
ki��, ki 2 ½1; . . . ; N� for i ¼ 1 to NIð¼ N=10Þ.

Compared to the very recent NTC demonstrations with
delay dynamics [5,8,9], we propose an original photonic
implementation of RC where the dynamical variable is the
wavelength of a tunable laser, and also a multiple-delayed
feedback topology intended to enhance the internal con-
nectivity of the equivalent dynamical network. While eval-
uating the processing capability of our approach through
its performance on a standard benchmark test of spoken
digit classification, we found that our multiple-delay pho-
tonic system with a reduced number of nodes exhibits a
comparable computational efficiency, with word error rate
(WER) of the same order as the best results achieved so
far for the same test.

The operating principles of our NTC can be summarized
as follow [see Fig. 1(b)]. Input information to be processed
is exciting each virtual spatial node of the NTC dynamics;
this node addressing procedure is practically performed by
temporal division multiplexing, consisting of a random
spreading of each input sample over all the nodes within
a time-delay interval. The spreading is ruled by a sparse
and random input connectivity matrix WI applied to each
of the original information samples. Each sequence of a
spread input information undergoes (i) a nonlinear trans-
formation, operating on a randomly weighted linear com-
bination of NI delayed feedback, and (ii) a linear filtering
via an impulse response hðtÞ, which is limiting the rate of
change in the feedback loop. The computed output of the

NTC is obtained by a readout procedure, corresponding to
a linear separation of the transient motion in the ND-nodes
dynamics phase space. The readout coefficients wR

k are

determined according to a learning phase, which consists
of solving a regression problem from known pairs of
transient-output pairs.
The experimental setup is depicted in Fig. 2. It is based

on an optoelectronic architecture originally designed to
display an Ikeda-like nonlinear delay dynamics [10]. The
nonlinear function [f½x� ¼ sin2ðxþ�0Þ] is provided by a
tunable interference phenomena: an imbalanced birefrin-
gent interferometer is seeded by the light emitted at
�1:5 �m by a tunable two-electrode distributed Bragg
reflector (DBR) laser diode. The wavelength is varied
through an injection current IDBR thus changing the inter-
ference condition, while another electrode (current I)
serves as the usual input for setting the output power.
The interferometer output is detected by a photodiode,
and an electronic feedback circuit performs the bandpass
filtering ruling the dynamics of the oscillator [impulse
response hðtÞ]. This filtered signal is the one used for the
NTC readout. The input information is added to the filtered
signal, the resulting sum being nonlinearly transformed
through f½x�, and multiple-delayed by an FPGA (field
programmable gate array) board. The FPGA is pro-
grammed to perform a flexible and reconfigurable
multiple-delay line, in which several elementary first in
first out memories are implemented together with weights
wD

ki
for each delay. The weighted sum of the multiple

delayed signal is amplified, combined with an offset, and
serves finally as the input drive IDBR of the laser wave-
length tuning electrode. The normalized dynamics can be
written as follows:

1

�

Z t

t0

xð�Þd�þ xðtÞ þ �
dx

dt
ðtÞ

¼ x0 þ �sin2
�XNI

i¼1

wD
ki
½xðt� ki��Þ� þ uðtÞ þ�0

�
; (1)

where x is the output of the bandpass filter (also the signal
used for the readout), u is the input data, �0 is an offset

FIG. 2 (color online). Optoelectronic wavelength setup per-
forming an NTC as multiple-delay feedback dynamics.

FIG. 1 (color online). Principles of an NTC. (a) With a spa-
tially extended dynamical network. (b) With multiple delay
feedback dynamics.
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phase ruling the operating point along the nonlinear sin2

function, � is the loop gain set by the feedback amplifica-
tion, and x0 is a formal integration constant which guaran-
ties a zero mean value for the bandpass filter output. The
delayed feedback coefficients wD

ki
are programmed in the

FPGA and they are randomly defined from a uniform
distribution; as already stated, they are introduced for an
enhanced internal connectivity compared to the single-
delay case [5,8,9]. The response times � ¼ 1:59 ms and
� ¼ 7:95 �s are associated to the low and high cut-off
frequencies (100 Hz and 20 kHz) of the bandpass filter,
respectively, and �� ’ 1:59 �s is the elementary time
delay determining the spacing between two adjacent
virtual nodes. There are N ¼ 150 different nodes and
NI ¼ 15 randomly distributed delayed feedbacks, the larg-
est delay being N�� ’ 238 �s.

In order to ensure a stable fixed point solution in an
input-free operation, the feedback gain � has to be set
below the oscillation threshold defined as 1, calibrated
experimentally as the minimum gain leading to a rising
oscillation, while the nonlinear function is operating
around its maximum linear slope. In the experiment � is
set to ca. 0.5. The amplitude of the input information is set
so that it induces a large scan of the nonlinear function
(around 1–2 extrema, typically �u ’ �).

Each single input information consists of a sequence of
samples, each of which has to be spanned over all the nodes
within a time delay. The spanning is performed by an input
connectivity matrixWI, randomly but uniquely defined for
each input information. The temporal waveform to be in-
jected in the setup is derived from a computed matrix
product between WI and Mc, the latter being a 2D repre-
sentation of the input information (the digit cochleagram in
the case of the spoken digit recognition task, see below).
The resulting matrix, after being horizontally unfolded,
results in a 1D waveform uðtÞ, which is injected into the
multiple-delay dynamics via the programming of an arbi-
trary waveform generator (AWG, Lecroy ArbStudio 1102).
For each input information signal, the full transient re-
sponse is recorded by a digital scope. An off-line postpro-
cessing is then performed for both the training and testing
stages. The training consists in the resolution of a regression
problem and results in the definition of N readout coeffi-
cientswR

k that are leading to an optimally correct output, for

each input information belonging to a training subset. The
efficiency of such an optimal readout is finally evaluated on
a complementary subset of input-output pairs. In principle,
the FPGA could also be programmed to implement a direct
on-line readout, as soon as the coefficients are known. This
configuration would result in a real-time processing, for
which the processing time would be only limited by the
analogue bandwidth of the delay dynamical system. For the
sake of simplicity, this testing phase was fully processed
off-line, right after the training phase.

In order to evaluate the processing efficiency, we per-
formed a standard task typically used in other RNN or NTC

reports [5,8,9] and consisting of spoken digit recognition.
The main goal of this standard classification test is to
recognize a pronounced digit among the ten possible
ones from 0 to 9. The spoken digit database corresponds
to 500 digits extracted from the TI46 speech corpus [11].
The digits are pronounced by 10 different female speakers
uttering the 10 digits 5 times. Following a standard pre-
processing task typically performed in many similar acous-
tic speech recognition tasks, the 1D acoustic waveform
sampled at 12.5 kHz is transformed into a 2D frequency-
time representation (matrix Mc), a so-called cochleagram
(the Lyon ear model), which provides a monitoring of the
average acoustic spectrum (Nf ¼ 86 frequency channels)

evolving during the spoken digit pronunciation time (Ns is
typically 80 samples, varying between 32 and 130). The
cochleagram represents the input information signal to be
spread over the nodes of the NTC dynamics. This spread-
ing is achieved via a sparsely and randomly determined
connectivity matrix WI with dimensions N � Nf (sparsity

0.1, and non-zero elements being �1 randomly distrib-
uted). The 2D input data to be injected in the NTC thus
consists of an N � Ns matrix Mu (see Fig. 3), with a
number of columns representing the digit duration
(variable number of samples Ns). Each value of the N
elements (the index of a virtual node within �D) of a
column is thus built according to WI. The action of WI

on the cochleagram can be interpreted as a random con-
tribution of some selected frequency components at some
selected time. The resulting input matrix Mu ¼ WI �Mc

is converted in a 1D signal, uðtÞ (programmed in the
AWG), simply by unfolding horizontally each successive
column of Mu. The input uðtÞ in Eq. (1) thus consists of a
sequence of Ns time intervals of length �D, each of which
consisting of N samples defining the N virtual node
amplitudes to be addressed. The 1D transient xðtÞ of the
NTC, ruled by Eq. (1), can be represented in the same
2D way, with a matrixMx corresponding to the spatiotem-
poral response of the node amplitudes. The readout of
this transient response consists then of a matrix product
ðWRÞt �Mx ¼ B, expected to result in a target output

FIG. 3 (color online). Illustration of the NTC processing on the
spoken digits; example of the spatiotemporal representation for
the digit ‘‘seven.’’
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easily revealing the right digit (matrix B). The optimal
matrix WR

opt is calculated after a standard ridge-regression

procedure (regression parameter � ¼ 10�3),

WR
opt ¼ argminWR jjðWRÞtMx � Bjj2 þ �jjWRjj2; (2)

for which a training subset of 475 digits is used among the
500 available in the database. The complementary subset
of 25 digits is used to test the performance of the learnt
WR

opt. This training and testing procedure is repeated for the

20 different possible partitions (cross validation). This
results in the calculation of a WER, which is statistically
limited by the size of the 500 tests actually performed
during the cross validation.

Excellent performances (within the limit of statistical
significance of 0.2%) have been obtained in terms of WER
for such a complex classification test. Figure 4 displays the
theoretical and experimental transfer functions of our
multiple-delay feedback loops with random weights.
Their complex frequency dependence confirms that the
number of feedback loops, as well as the correct determi-
nation of the readout weighting coefficients is a critical
process for the classification task. As shown in Fig. 4, the
average WER performance of our setup is 0:6� 0:2%with
only 15 feedback delay lines, thereby implying that mul-
tiple feedbacks enable us to achieve performance compa-
rable to state-of-the-art systems with a relatively limited
number of readout parameters to compute. This result
validates the computational efficiency of our photonic
NTC setup performed by a multiple-delay wavelength
dynamics, and it opens the way to the future optimization
of delay dynamics NTC processors, via a more accurate
conceptual analogy between multiple-delay dynamics and
classical network dynamics.

We have demonstrated experimentally the efficiency of
a photonic neuromorphic processor. The proposed setup is
based on a multiple delayed feedback wavelength dynam-
ics providing an enhanced dynamical connectivity. In ad-
dition to the recent success in applications of complex
dynamics [12–14], photonic nonlinear delay dynamics

are confirmed as an efficient and flexible solution for the
practical implementation of NTC. Future work will be
devoted to ultrafast photonic versions making use of stan-
dard optical telecommunication devices and principles
[13]. Processing speed for the recognition of a single
spoken digit is around 20 ms, but this can be improved
down to 100 ns with telecom-grade devices. Photonic NTC
based on multiple-delay dynamics should offer an efficient
and ultrafast hardware solution for future neuromorphic
computers. Many fundamental issues still need to be ad-
dressed (quantitative connections between delay dynamics
features and computational power, or optimal topology and
system architecture for advanced functionalities such as
plasticity and integrated learning capability). We also an-
ticipate that information theory and nonlinear dynamics
should be explored together to provide a theoretical
framework capable of describing and optimizing the com-
putational efficiency provided by delay dynamics-based
NTC [15].
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FIG. 4 (color online). Experimental results. Left: Transfer
functions for 15 (red, thinner line) and 150 (black, thicker
line) delayed feedbacks with random weights (theoretical curves
in full lines, experimental data in symbols). Right: WER histo-
grams with 15 delayed feedbacks and a total of 120 cross
validations.
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