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Optical frequency comb generation in whispering gallery mode resonators has been demonstrated in

several experiments. The spectra of the combs exhibit a wide variety of complex profiles that are not fully

understood. We report a detailed study on frequency comb generation in whispering gallery mode

resonators including a complete stability analysis and numerical simulations. We show that the interaction

of dispersion and nonlinearity is the key in determining the stability of the comb, the complex character-

istics of its spectral profile, and its frequency span. The results will be important for understanding the

essential physical processes leading to efficient comb generation.
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Spectrally coherent optical frequency combs find ever
increasing applications in time-frequency metrology, spec-
troscopy, sensing, and ultrastable microwave and terahertz
generation [1–3]. These combs have been successfully
generated with ultrafast mode-locked lasers in the past.
However, it has recently been shown that they can also be
generated using the whispering gallery modes (WGMs) of
a nonlinear monolithic resonator pumped with continuous-
wave laser light [4–6]. The strong confinement and high
optical quality factor, respectively, lead to high photon
density and long photon storage time. Four-wave mixing
(FWM) interactions are thereby efficiently enhanced, and
lead to comb generation.

The WGM frequency combs show rich spectral charac-
ters. In particular, they display certain structure profiles
that are not totally intuitive and well understood. The
nonlinear interactions inside these resonators are indeed
very complex, and have been subject of some extensive
studies [7]. Comb generation in WGM resonators has also
been discussed and analyzed earlier in the literature. For
example, Ref. [8] discussed the threshold behavior in para-
metric sideband generation. A numerical approach was
proposed in Ref. [9], where the light beam in the resonator
was analyzed as if propagating along an unfolded periodic
trajectory.

These previous studies provided some initial under-
standing of the comb generation process. However, the
spectral profiles and the limited number of generated
comb lines remain unclear. In order to provide insight
into these critical aspects, we report in this letter a study
of the spectrum and dynamics of the comb generation
process using a nonlinear dynamics approach. We provide
for the first time a complete stability analysis illustrating
exactly how the energy from the pump sequentially cas-
cades in the resonator, and excites as much as several
hundreds of WGMs. We show that the interaction of the
resonator dispersion and nonlinear phase modulation is the
key in determining the stability of the comb generation, its

spectral profile, and its frequency span. The results are
important for understanding the underlying physical pro-
cesses and limiting factors that are key for wider spectral
span and better stability.
The experimental setup under study is shown in Fig. 1. A

millimeter-size calcium fluoride resonator is pumped near
1560 nm by a narrow linewidth (<5 kHz) cw laser. After
polarization control, the laser light is coupled into the
resonator using an angle-polished optical fiber. The re-
flected beam at the rim of the resonator is collected by a
photodetector to monitor experimentally its Q factor
through a ramp modulation of the laser wavelength.
Another angle-polished fiber is used to extract the optical
frequency comb from the cavity, whose free-spectral range
(FSR) is 14.5 GHz. To study the system described above,
we will first build a set of coupled rate equations using the
slowly-varying amplitude approximation. Then, stability
diagrams will be established and numerical simulations
performed in order to provide better insight into the
comb generation phenomenon.
The nonlinear model.—The orthonormal eigenmodes of

a spherical resonator of radius a depend exclusively on the
degenerated angular eigennumber ‘, and on the polariza-
tion p (TE or TM). Hence, the eigenmodes �‘pðrÞ can be

FIG. 1 (color online). Experimental setup. cw: con-
tinuous wave; ESA, OSA: electrical, optical spectrum analyzer;
PC: polarization controller. The OSA displays the output comb.
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explicitly written as �‘;TEðrÞ ’ i�‘;TEðr; �; �Þe� and

�‘;TMðrÞ ’ �‘;TMðr; �; �Þer with

�‘pðr; �; �Þ ¼ ð�1Þ‘‘1=4
21=2�3=4

S‘pðrÞe�ð1=2Þ‘½��ð�=2Þ�2ei‘�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rþ1
0 S2‘pðrÞr2dr

q
;

(1)

where S‘p is the Debye potential [10]. We expand the

electric field as Eðr; tÞ ¼ P

�
1
2 E�ðtÞei!�t��ðrÞ þ c:c:,

where � � f‘; pg labels the modes of slowly-varying am-
plitude E�ðtÞ and frequency!�, while ‘‘c.c.’’ stands for the

complex conjugate. We normalize the electric field as

A� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"0n
2
0=2@!�

q

E� where jA�j2 is the instantaneous
number of photons in the mode�, and n0 is the real part of
the refractive index at the laser frequency �0. For conve-
nience, we introduce the shifted eigennumber l ¼ ‘� ‘0,
where ‘0 is the angular number of the central (or pumping)
mode. The eigenfrequencies therefore read !l ’
!0 þ ½c=n0a�l.

To obtain the modal equations, we introduce the field
expansion into a wave equation characterized by a refrac-
tive index n0ð!Þ þ �nð!; kEk2Þ, where n0ð!Þ contains
chromatic dispersion, while the excess index �n ¼
�inQð!Þ þ 1

2n2n0"0ckEk2 accounts for the frequency-

dependent losses (through nQ) and for the FWM (through

n2). The spatiotemporal variations of this global equation
are projected onto ��

�ðrÞe�i!�t (hermitian inner product),

and we finally obtain the following coupled rate equations
for the modal field dynamics:

_A � ¼ � 1

2
�!�A� þ 1

2
�!���0F 0e

i�t

� ig0
X

�;	;�

��	�
� A�A�

	A�e
i$�	��t: (2)

In Eq. (2), �!� ¼ 2��!�nQð!�Þ=n0 is the modal band-

width, where �� ¼ R

V k��k2dV is the modal confinement

factor. The effective volume of the central mode is V0 ¼
½RV k�0k4dV��1, and g0 ¼ n2c@!

2
0=n

2
0V0 is the FWM

gain at !0. The intermodal coupling factor

�
�	�
� ¼ !2

�

!2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!�!	!�

!3
�

s

R

V½��
� ����½��

	 ����dV
R

V k�0k4dV
(3)

defines the coupling strength between the four interacting
modes �, 	, �, and �, and it depends on their power
density overlap. As indicated by the Kronecker symbol
��0, the external field F 0 is only resonant with the mode

l ¼ 0, with a detuning � ¼ �0 �!0. The ideal resonance
condition occurs when the modal FWM frequency detun-
ing $�	��¼!��!	þ!��!� vanishes, and it corre-

sponds to the FWM interactions @!�þ@!�!@!	þ@!�

for which the energy and the total angular momentum of
the interacting photons are conserved (‘� þ ‘� ¼
‘	 þ ‘�). This ideal condition is automatically fulfilled

in a dispersionless cavity with perfectly equidistant eigen-
modes. However, a detailed calculation shows that in pres-
ence of second-order dispersion, the intermodal detuning
‘‘walks-off’’ following $�	�� ¼ 1

2 
½l2� � l2	 þ l2� � l2��,
where


 ¼ ��1

2
2
3

9

c

n0a
‘�5=3
0 � 2n0!0

þ!0n
00
!0

n0

�

c

n0a

�

2
(4)

is the cavity dispersion parameter, and �1 ¼ 2:338 is the
first zero of the Airy function. This parameter can be
positive or negative (anomalous and normal dispersion,
respectively), and it includes both geometrical and material
contributions.
Stability analysis.—The first step of our stability analy-

sis is to study the threshold mechanism in comb genera-
tion. Below threshold (Al � 0 for l � 0), the steady-state
optical power jA0sj2 of the central mode l ¼ 0 obeys

jF 0j2 ¼ 4g20
�!2

0

jA0sj6 þ 8g0�

�!2
0

jA0sj4

þ
�

1þ 4�2

�!2
0

�

jA0sj2: (5)

This equation is bicubic and for a given input jF 0j2, there
may be one, two, or three solutions (hysteresis) for jA0sj2.
In case of hysteresis, only the values ofA0s for whichC ¼
@½jF 0j2�=@½jA0sj2�> 0 are stable and can be experimen-
tally observed.
On the other hand, a given sidemode pairA�l is excited

at threshold through degenerate FWM via A0 when the
perturbations �A�l obeying

� _A�l ¼ �1
2�!�l�A�l � ig0½��l;0;0

�l

þ�0;0;�l
�l �jA0j2�A�l

� ig0�
0;�l;0
�l A2

0�A
�
�le

i$�lt (6)

are diverging (positive eigenvalues), with $l � $0;l;0;�l.

We have solved these perturbation equations, and found
that for nearly degenerated modal parameters, the side-
mode pair A�l is excited when SðlÞ< 0, with

SðlÞ ¼ 12½g0jA0sj2�2 þ 8½2�þ$l�½g0jA0sj2�
þ ½2�þ$l�2 þ�!2

0: (7)

Hence, stable optical sidemode pairs are generated when
the conditions C> 0 for the central mode and SðlÞ< 0 for
at least one sidemode pair are fulfilled simultaneously. This
double condition can be explicitly translated as

Stability for l ¼ 0: jA0sj2 =2 ½B�ð0Þ;Bþð0Þ�;
Stability for l � 0: jA0sj2 2 ½B�ðlÞ;BþðlÞ�; (8)

where the stability boundaries are explicitly defined by

B�ðlÞ ¼ 1

3g0

�

�2�l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
l �

3

4
�!2

0

s

�

(9)
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with �l ¼ �� 1
2 
l

2. We can also determine the threshold

power for comb generation as the minimum of the lower
boundary following @B�=@�l ¼ 0, which yields

jA0j2th ¼
1

2

�!0

g0
¼ 1

2@!0

n20
n2c

V0

Q0

; (10)

where Q0 is the optical quality factor of the central
mode. This expression for the threshold is different from
to that in Ref. [8], because our model considers the more
general case where any sidemode pair can be excited at
threshold (and not only the modes adjacent to the pump).
This first sidemode pair �l oscillating at threshold is

solution of @B�=@l ¼ 0, yielding jlj ¼ lthð�Þ ¼ fð2=
Þ�
½�þ �!0�g1=2, to be rounded to the nearest integer. This
threshold oscillating sidemode pair can therefore be se-
lected by tuning the laser offset �, or by tuning �!0

through coupling.
Results and discussion.—The above stability analysis

shows that when there is no cavity dispersion [
 ¼ 0],
we have B�ðlÞ � B�ð0Þ. Hence, for all l, the conditions
of Eq. (8) cannot be fulfilled because the instability area for
the central mode exactly overlaps the stability zone for the
sidemodes. A nonzero dispersion is therefore necessary for
comb generation [9]. This is similar to supercontinuum
generation in nonlinear fibers [11]. Naturally, a too large
dispersion 
 would lead to essentially unequidistant
modes, incompatible with comb generation. An example
of stability diagram corresponding to the conditions of
Eq. (8) is illustrated in Fig. 2. It appears that only a pair
of symmetrical bands of modes can be directly excited by
the pump through degenerate FWM interactions of the
kind @!0 þ @!0 ! @!l þ @!�l. They are unexpectedly
not always adjacent to the central mode. For example, if
the central mode is pumped twice above threshold, then
only the modes such that 52< jlj< 83 can be excited by
the pump (dark shaded bands in Fig. 2). We refer to these
modes as the primary comb. Because of this bandlike
structure, degenerate FWM cannot efficiently excite a

wide comb of adjacent WGMs. On the other hand, non-
degenerate FWM interactions, i.e., bichromatic comb gen-
eration [12] is very efficient and does not have a threshold
condition. The cascaded interactions between the pump,
the primary and the subsequent higher order combs can
efficiently generate the full comb, as indicated by the
arrows in Fig. 2.
To further illustrate this physical process, we carried out

some extensive numerical simulations of the comb genera-
tion. We used the experimental parameters in Eq. (2), and
we have generated a time sequence of snapshots of the
comb generation process as shown in Fig. 3. This spectro-
temporal representation shows that at 8 �s, only the pri-
mary comb lines are generated. After 35 �s, however, the
comb lines start to fill the entire spectral region, resulting
from nondegenerate FWM. High efficiency of nondegen-
erate FWM is here necessary because the generation of a
large set of coherent and equidistant comb lines is not
possible through degenerate FWM. Our simulation also
suggests that a wide-span coherent comb may not neces-
sarily have all the resonator modes filled in between. A
sparse but wide comb is advantageous from the perspective
of the total pump power required for generating a wide
comb.
To validate our model, we compare the simulated spec-

tra with those obtained experimentally with the set-up of
Fig. 1. The adjustable parameters of the model were the
resonator dispersion and pump light intensity. Figure 4(a)
shows an example of the experimentally observed comb
profile displaying a distinctive spectral signature. It is
successfully reproduced in the numerical simulation as it
can be seen in Fig. 4(b), and this agreement confirms the
analytical stability study. The most strongly excited modes
are within the primary comb stability band, while a sub-
harmonic secondary comb is created at mid-distance from
the pump. It should be emphasized that all spectral features

FIG. 2 (color online). Stability diagram as a function of eigen-
mode order l and power jA0sj2 in the central mode. The hatched
area corresponds to stable primary comb generation. The pa-
rameters are a ¼ 2:3 mm, n2 ¼ 3:2� 10�20 m2 W�1, n0 ¼
1:43, Q0 ¼ 8� 108; V0 ¼ 7� 10�12 m3, �0 ¼ 1560:3 nm,
with � ¼ 0 and 
=2� ¼ 200 Hz (anomalous dispersion).

FIG. 3 (color online). Evidence of the sequentially cascading
comb excitation for jA0sj2 ¼ 2:5jA0j2th. (a) First, the central

mode is excited above threshold by the photons from the external
pump; (b) Then, the central mode excites the primary comb
through degenerate FWM; (c) Finally, the pump uses the primary
comb as a relay to excite the secondary and higher order combs
through nondegenerate FWM, thereby filling the gaps.
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(modulation depths, position of extrema, etc.) are quite
accurately recovered with the model, despite the extremely
large amplitude window (80 dB), wide wavelength span
(20 nm), and huge number of modes (	200). This analysis
also explains the multiple FSR spacing and periodic spec-
tral modulation previously observed in WGM combs [5,6].
It is also noteworthy that the numerical simulations in
Ref. [9] using a discrete iterative map model do also yield
comb spectra with the modulated structure of Fig. 4.

With the time-dependent simulation capability, it is also
possible to investigate the spectro-temporal dynamics of
the comb, as shown in Fig. 5. At t ¼ 0, the system starts
from the vacuum ground state with hjAlð0Þj2i ¼ 1

2 , where

the brackets stand for ensemble average over l. The comb
displays a chaotic dynamics, with a maximal Lyapunov

exponent ~� ’ 8:4� 104 s�1 (i.e., the temporal dynamics

of the comb cannot be predicted beyond ~��1 ’ 12 �s).
This chaotic amplitude dynamics induces parasitic modu-
lation sidebands that may be detrimental for phase coher-
ence. However, lower pump values (typically below twice
the threshold) lead to stationary states with constant am-
plitudes, or to harmonic secondary combs with multiple
FSR spacing. One of the challenges in WGM comb gen-
erators is to expand the spectral span to one octave. A large
FSR (>1 THz) makes it easier to achieve a wider comb
span because of a reduced number of modes. However, for
most applications, FSRs smaller than 10 GHz are desirable,
and they would correspond to combs with roughly
10 000 modes. Our model suggests that widening the
span of the comb can be achieved by optimizing the
position of the primary comb relatively to the dispersion
curve, which is known to vary nonmonotonously with
wavelength in most media. This optimization can be
done in the general case through Eq. (6). The approach
thereby provides a useful tool for the generation of a wider
comb span. In particular, it enables the determination of a

suitable dispersion compensation scheme or an optimal
geometry leading to the widest combs possible.
In conclusion, we have presented a joint theoretical and

experimental study on optical frequency comb generation
with monolithic WGM resonators. We have shown that the
interaction between dispersion and Kerr nonlinearity af-
fects the spectrum of the generated comb. In particular, we
have shown that the pump first excites a primary comb
through degenerate FWM, and then cascades out second-
ary combs through nondegenerate FWM. The results are in
excellent agreement with experimentally observed spectral
profiles. The theoretical analysis and numerical simulation
helped to understand the sequence of the cascading process
leading to the excitation of huge numbers of modes in
WGM resonators. They indicated that the comb can loose
its spectral stability and become chaotic for strong pump-
ing. These analyses will be helpful for engineering the
comb spectra, and for further investigations on the effects
of stochastic noise.
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FIG. 4 (color online). (a) Experimental spectrum; (b) snapshot
of the simulated spectrum at t ¼ 1 ms, with jA0sj2 ¼
2:5jA0j2th.

FIG. 5 (color online). Spectrotemporal representation of the
comb dynamics. Note that Fig. 4(b) is the snapshot at t ¼ 1 ms.
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