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Nonlinear Dynamics and Spectral Stability of
Optoelectronic Microwave Oscillators

Yanne Kouomou Chembo, Laurent Larger, and Pere Colet

Abstract—We use a nonlinear dynamics approach to study the
deterministic behavior of ultrapure microwave generators referred
to as optoelectronic oscillators. In conventional studies, the stan-
dard nonlinear effects are very strongly rejected because they gen-
erate harmonics of the microwave frequency that are definitely out
of the selective oscillator bandwidth. However, we show that the
nonlinearity still affects the slowly varying dynamics of microwave
envelope, thereby inducing dynamical instabilities within the os-
cillator bandwidth. Starting from a full integro-differential model,
we use the multiple timescales method to build a delay-differential
equation for the slowly varying complex envelope of the microwave.
Then, the corresponding stationary solutions are derived, and the
stability of their amplitude and phase is investigated in detail as
a function of the feedback gain. We evidence essential bifurcation
phenomena, and, in particular, we demonstrate that the generated
microwave may turn unstable if the gain is increased beyond a pre-
cise critical value. This nonlinear dynamics approach, therefore,
demonstrates that the amplitude of the ultrapure microwave’s am-
plitude does not monotonously increase with the gain. The theoret-
ical study is confirmed by numerical simulations and experimental
measurements.

Index Terms—Delay effects, microwave generation, nonlinear
oscillators, optoelectronic devices.

I. INTRODUCTION

A VERY efficient way to produce ultrapure microwaves was
proposed few years ago by Yao and Maleki [1], [2], and it

is known by the name of optoelectronic oscillator (OEO). The
principle of operation of this oscillator relies on an innovative
energy storage principle, based on very long low-loss optical
fiber delay lines, instead of the classical concept of high-finesse
resonators.

The most basic architecture of the OEO consists of a
Mach–Zehnder (MZ) modulator which modulates nonlinearly
through its interference transfer function a contin-
uous-wave (CW) coherent light beam. The radio-frequency
(RF) modulated optical output then circulates within an ex-
tremely long fiber delay line, whose typical length is a few
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kilometers. This optical signal is afterwards converted back into
an electrical signal which is amplified, narrowly filtered around
the microwave frequency to be generated, and connected to the
electrode of the MZ modulator. Typically, the central frequency
of the filter is between 1 and 40 GHz, while the bandwidth
of the RF filter has a few tens of megahertz. This closed-loop
architecture therefore plays the role of an optoelectronic ring
cavity; however, its quality factor is very low, typically between
100 and 40 000. In fact, the outstanding performances of this os-
cillator originate from a-few-kilometers-long delay line, which
generates thousands of narrowly spaced cavity modes. The
long delay line thus plays the role of a strongly phase-shifting
element, thereby resulting in a high quality factor in terms of
phase versus frequency selectivity. The spectral purity of the
oscillation is then mainly determined by the ring cavity length
and by the microwave frequency, rather than by the gain profile
of the medium (which is in fact the amplitude selectivity of the
filter) [1]. Even though hundreds of these microwave cavity
modes do fit within the bandwidth of the RF filter, only one
mode is amplified under optimal conditions and oscillates in
a continuous, stable way, typically through a selective mode
competition process.

As noticed earlier, the purity of the microwaves gener-
ated with OEOs has been found to be superior to the previous
state-of-the-art resonator-based oscillators. These performances
can even be improved if some modifications are brought to the
original single-loop architecture. For example, the spurious
cavity modes can be overdamped by using the Vernier effect of
a dual-loop architecture [3] or, alternatively, by designing a suit-
able coupling between two OEOs [4]. It is also possible to build
tuneable OEOs [5] or even to enhance the frequency selection
using a photonic filter instead of an RF filter [6]. Therefore,
owing to this multiplicity and flexibility of architectures,
OEOs are expected to find applications for time-frequency
metrology and, of course, for the next generation of high-pre-
cision radars/sensors, where extreme purity for the reference
microwave is crucial. OEOs are also of great interest for many
applications in spatial and lightwave technologies. Just taking
few examples in the latter case, OEOs have been pointed out
as adequate systems to produce ultralow-jitter optical pulses
at high rates ( 10 GHz), to produce multiwavelength and
synchronized optical pulses, or to perform clock recovery at bit
rates as high as 40 Gb/s (see [7] and references therein).

Despite this large amount of experimental investigations de-
veloped around the concept of OEOs, very little has been done
to investigate theoretically its dynamical properties. This lack of
analytical insight is due to the extreme features of this system:
very large delayed feedback, widely spaced timescales, and po-
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tentially strong nonlinearity induced by a multiple-valued (non-
monotonous) nonlinear transfer function. These difficulties ex-
plain why most OEO studies implicitly assume no time-depen-
dent amplitude dynamics, as they try to capture essentially sta-
tionary features.

However, the stationary hypothesis may not be always satis-
fied. A priori, it can logically be considered that OEOs may, as
any delayed dynamical system, display other behaviors. In fact,
the OEO belongs to the wide family of electrooptical systems
with delayed feedback, which was first introduced by Neyer
and Voges back in the early 1980s [8]. Later, many studies had
been devoted to this class of systems, evidencing interesting
nonlinear behaviors such as bistability, hyperchaos, and even
chaotic breathers (see [9], [10] and references therein). In par-
ticular, one of the strongest research lines associated with this
architecture is still optical chaos cryptography [11]–[13].

It therefore appears that, as far as the OEO is concerned, ab-
sence of a dynamical framework prevents a deep understanding
of existing architecture’s performances and of course does not
enable the prediction of eventual instabilities. The main objec-
tive of the paper is then the explicit derivation of a delay-dif-
ferential equation which can describe accurately the determin-
istic dynamical behavior of OEOs, as well as a detailed stability
study of the solutions of interest. These investigations therefore
complement earlier results which have recently been presented
in [14].

The plan of this paper is the following. In Section II, we
present the experimental setup corresponding to the single-loop
OEO under study. The modeling of the OEO’s dynamics is
performed in Section III. We will use the multiple time scales
method to derive an equation for the complex envelope of the
microwave. Section IV is devoted to the existence and stability
of the stationary solutions. A detailed analysis is carried out
for the amplitude and for the phase of the microwave output.
These results are discussed in Section VII and are completed in
Sections V and VI by numerical simulations and experimental
measurements, respectively. We end with some concluding re-
marks in the final section.

II. SYSTEM

A schematic representation of the OEO under study is dis-
played in Fig. 1, and the oscillation loop consists of the fol-
lowing elements:

• A wideband integrated optics LiNbO MZ modulator; it is
seeded by a CW semiconductor laser of optical power ,
which serves as a bifurcation parameter for scanning the
OEO feedback gain; the modulator is characterized by a
half-wave voltage V, which defines
the amplitude scale required at the microwave MZ driving
voltage for operation in the nonlinear regime.

• A thermalized 4-km fiber performs a time delay of
s on the microwave signal carried by the optical beam;

the long delay is intended to support thousands of the mi-
crowave ring-cavity modes, whose free spectral range is
equal to kHz.

Fig. 1. Experimental setup for the single-loop OEO.

• A fast amplified photodiode with a conversion factor
V/mW.

• A narrowband microwave RF filter, intended to select the
frequency range for the amplified modes; its central fre-
quency is GHz, and the 3-dB bandwidth is

MHz.
• A microwave amplifier with gain is required to close

the loop. All optical and electrical losses are gathered in a
single attenuation factor .

It appears to some extent that the global features of the elec-
trooptical systems which are generally studied in the literature
are qualitatively at the extreme opposite of those of the OEO:
on the one the hand, we have a wide bandwidth and a relatively
short delay line, intended to generate a chaotic RF spectrum as
flat and as broad as possible [9], [11], [12]; on the other hand, we
have a narrow bandwidth and a very long fiber cavity in order to
select a single cavity mode, that is, a single frequency. For this
latter case, high gains are more difficult to obtain because of the
high losses induced by the narrowband RF filter, and low gain
obtained from the low-noise photodiodes required to ensure the
lowest phase noise level performance.

III. MODEL

A. Equation for the Instantaneous Microwave Amplitude

The narrowband filter has a central frequency and a band-
width . For the sake of simplicity, we will assume that it is
a first-order linear bandpass filter, so that the dynamics of the
system will be ruled on the one hand by the integro-differential
relation between its input and its output, and on the other hand
by the closure condition imposed by the feedback loop.

Effectively, it is known from the theory of linear filters that
the input and output of a bandpass filter are related as

(1)

On the other hand, is also the output voltage of the pho-
todetector; hence, it is proportional to the optical power of the
semiconductor laser which had been electrooptically modulated
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at the time by the amplified voltage . Con-
sequently, we have the relationship

(2)

Therefore, the RF input voltage of the MZ modulator
obeys the following equation:

(3)

This equation can be rewritten under this simplified and dimen-
sionless form

(4)

where is the dimensionless voltage at
the input of the MZ modulator, is the
normalized feedback gain, is the MZ off-set
phase, while and are the characteristic
time-scale parameters of the bandpass filter.

The dynamics of the OEO can unfortunately not be studied
under the form of (4), because the splitting between the fastest
and slowest dynamical time-scales is too high [14]. However,
owing to the bandpass filter, only the oscillations whose fre-
quency is within the bandwidth can arise. Therefore, an option
to circumvent this problem is to represent the solution under the
form of a carrier of frequency , slowly modulated by a com-
plex amplitude , yielding

(5)

with . In Section II-B, we derive an equation for the
complex envelope amplitude , which is assumed to vary
slowly relatively to the central carrier frequency , that is,

.
Generally, the frequency-domain approach is privileged in

the theoretical studies of microwave generators. This is due to
the fact that resonator-based oscillators have an extremely high
quality factor , inducing extremely slow energy decay
time compared with the fast oscillation period. These huge time-
scale differences are generally incompatible with affordable nu-
merical integration and tractable analytical developments in the
time domain. However, in the case of the OEO, we should be
able to keep the time-domain description because of the rela-
tively low quality factor of the microwave resonant filter (here,

).

B. Equation for the Microwave Envelope

After time derivation, (4) can be rewritten in the form

(6)

where

(7)

is the smallness parameter.
There are three different time-scales in the system: the carrier

frequency in the GHz range, the filter half-bandwidth
in the MHz range, and the free spectral range in

the kHz range. The separation of time-scales by the same three
orders of magnitudes makes the OEO an ideal case for the mul-
tiple time-scales method [15], [16]. This method relies on the
expansion of the variables in function of the various time-scales
involved in the system. Then, a different dynamics is assumed at
each time-scale, so that an evolution equation is derived at each
corresponding time-scale.

Let us then consider the smallness parameter that sepa-
rates the various time-scales as , where is a posi-
tive integer. According to this definition, is the fastest
time-scale, while, as increases, the times are attached to
slower variations. However, only a limited number of timescales
is needed to take into account all the dynamical features of the
system: here, the dynamics of interest can be tracked with a
first-order expansion of the variable following

(8)

On the other hand, the different timescales are considered to
be independent, so that the time derivatives expand as

and , with . We
are therefore restricted here to two timescales: a fast timescale

and a slow timescale .
After introducing these expanded terms into (6), it is found

that the timescale components and obey the following
equations at the various orders of :

Order

(9)

Order

(10)

From (9), the solution at order is given by

(11)

corresponding to a fast quasi-sinusoidal oscillation at frequency
, whose amplitude may eventually vary at the slow timescale
.
As far as (10) is concerned, a divergence of to infinity can

only be prevented by canceling the resonant terms in on the
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right-hand side. In order to obtain this solvability condition, we
first use the Jacobi–Anger expansion

(12)

where is the th-order Bessel function of the first kind. The
nonlinear term associated with the electrooptical modula-
tion can be expanded in harmonics of following

(13)
where stands for the complex conjugate of the preceding
term and

(14)

Using (11) and (13), the solvability condition of (10) can be
expressed as

(15)

which is also sometimes referred to as a secular equation. It may
be interesting to note that, owing to the narrowband RF filter,
only the resonant term is sustained and has an influence in
the system’s dynamics. All other spectral terms are far outside
the bandwidth of the system, and they are so strongly damped
that they do not have any noticeable effect.

Using the relationship , (15) can be rewritten under
the following final form after some straightforward algebra:

(16)

where is the half-bandwidth of the RF filter,
is the round-trip phase shift of the microwave,
is the effective gain of the feedback loop, and

is the Bessel–Cardinal function defined as .
The overdot here denotes time derivation relative to the time ,
and we have adopted the notation .

Equation (16) can furthermore be simplified. Effectively, the
term is due to the fact that the central frequency of the
RF filter may not coincide with the true frequency of the
carrier: it is therefore a detuning parameter, which can be set
to 1 by an adequate choice of the frequency reference. In the
next section, we will demonstrate that it is appropriate to set

, that is, . Hence, introducing the
detuning frequency such that

(17)

we may use the phase shift to transform (16)
into

(18)

which corresponds to the amplitude equation near the carrier
of frequency . From (17), we de-
duce that , so that : in the case of
single-mode oscillation, it means that the oscillating frequency
of the microwave ( GHz) is detuned by a very small amount
( kHz), in all cases smaller than the half free-spectral range.
Introducing a phase shifter into the loop would therefore enable
a fine tuning of the oscillating frequency, but it is not required
for the oscillation itself. Equation (18) is therefore the one we
are going to use to perform the stability analysis of the system.

IV. EXISTENCE AND STABILITY OF FIXED POINTS

The stationary states of (18) obey the following algebraic
equation:

(19)

which has two solutions: a trivial solution and a non-
trivial solution obeying . The fol-
lowing subsections are devoted to their stability study or, in
other words, to the determination of the parameter range for
which these states may be observed.

A. Stability of the Trivial Solution

The trivial solution exists for all values of . We have
to perturb this fixed point and check if the perturbation grows or
decays depending of the value of the gain. Neglecting higher
order nonlinear terms, a perturbation would obey

(20)

Hence, setting the perturbation of this fixed point to
, the real and imaginary parts of the eigenvalue

respectively obey the equations

(21)

(22)

In fact, a bifurcation occurs when the real part of the eigen-
value changes its sign (transversality condition): therefore, the
transcendental equation (22) can be linearized around .
Taking into account , we are led to two possible solu-
tions for and :

• Bifurcation for

and (23)

• Bifurcation for

and (24)

From (23) and (24), it is found that for and
for . If we define as the threshold

value of the oscillations, the trivial fixed point is stable for
and unstable otherwise. Moreover, it also appears that the

relevant bifurcation parameter here is : hence,
starting from now, we will restrict our stability study to the case

, as it captures all of the dynamical features of the system.
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It is understood that the bifurcation scenario for is the
same as with frequency detuning .

B. Stability of the Oscillating Solution

The nontrivial solution is given by

(25)

where is the inverse Bessel–Cardinal function, which only
exists for and is single-valued for realistic gain values

. In that range, Yao and Maleki have shown the validity
of the following approximation (obtained after a fifth-order ex-
pansion) [1]:

(26)

This stationary solution is of particular interest because it cor-
responds to a pure, single-mode microwave whose frequency

, amplitude , and phase are constant. The stability
of this solution depends on the behavior of the amplitude and
phase perturbations and , which are governed by the fol-
lowing equations:

(27)

(28)

It appears that the perturbation equations for the amplitude and
the phase are uncoupled, absolutely independent one from each
other.

1) Stability of the Phase: If we perturb the phase with
, the real and imaginary parts of the eigenvalue

should fulfill the set of equations

(29)

(30)

whose unique physical solution is

and (31)

This solution indicates that any value of the phase is allowed,
and all of them are neutrally stable. This is a direct consequence
of the phase invariance associated with limit-cycle oscillations.

2) Stability of the Amplitude: When we perturb the ampli-
tude of the microwave with , the real and
imaginary parts of the eigenvalue should rather obey

(32)

(33)

Close to the bifurcations , the precedent set of equa-
tions has two solutions which depend on the sign of the param-
eter .

• Bifurcation for :

and (34)

The bifurcation occurs here at , which corresponds
to . The damping is such that for

, while there is simply no oscillating solution for
. Note the continuity of the frequency perturbation

at , since .
• Bifurcation for :

and (35)

Using (25) and the equality , it
is found that the condition is fulfilled when the
bifurcation occurs at a critical value defined as

(36)

where is the inverse of the Bessel function (in the
single-valued range). Here, the damping is such that

for , and for . Therefore, the
oscillation is stable below the critical value and unstable
above.

From (34) and (35), it appears that the stability of the oscil-
lating solution has a lower and an upper boundary as a function
of the gain . The lower boundary value is , and it cor-
responds to the bifurcation between the trivial and the nontrivial
solution since is stable for while is stable for

: this corresponds to a pitchfork bifurcation. Note that
here the negative branch of the “fork” physically corresponds to
a positive amplitude with a phase shift of . The upper boundary
is , and here is stable as long as . The
winding frequency of the perturbation does not vanish as
at the bifurcation point: this is the signature of a Hopf bifurca-
tion, that is, the bifurcation from a fixed point to a limit cycle
of frequency . For , the microwave oscillation has
an amplitude of the form , and the theory of
Hopf bifurcations shows that the amplitude of the modulated
component initially grows as beyond the bifurcation.

V. NUMERICAL SIMULATIONS

The numerical results obtained using (18) are presented in
Fig. 2. Fig. 2(a) and (b) displays the transient dynamical be-
havior of the system just below and just above

the threshold value . It can be seen that the ampli-
tude decays to zero or increases to a nonzero stationary value.
It can also be noted that the transient behavior is not oscilla-
tory, in agreement with the theoretical stability analysis which
had demonstrated that the winding frequency of the eigenvalues
near are such that . Fig. 2(c) and (d) shows
the amplitude dynamics just below and just above

the critical bifurcation value . Below the
bifurcation, the transients decay with the theoretically predicted
winding frequency ; however, above the bifurca-
tion, the oscillatory behavior is sustained, and the oscillation is
steadily amplitude-modulated. Note that the amplitude modu-
lation is a square-wave because the delay is significantly larger
than the filter response time (see [10]). As the gain is fur-
ther increased, the system may enter into a -periodic behavior
[Fig. 2(e)] and later into a chaotic behavior [Fig. 2(f)].
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Fig. 2. Numerical simulation of (18) for various gain values. The initial condition has been uniformly set to A = 0:2 for t 2 [�T; 0]. All of the transients
are displayed to evidence the winding frequency of the eigenvalues near the bifurcations. (a) 
 = 0:9. (b) 
 = 1:1. (c) 
 = 2:2. (d) 
 = 2:4. (e) 
 = 2:75.
(f) 
 = 3:0.

The full bifurcation behavior of the system is shown in the
bifurcation diagram of Fig. 3. It synthetically represents the var-
ious dynamical states that can be obtained as the feedback gain
is varied. This bifurcation sequence to chaos is quite classical,
and the Feigenbaum rule may apply: it can therefore be pre-
dicted that the -periodic solution loses its stability at

, where is the Feigen-
baum constant. This theoretical value is very near the numerical
value of 2.7 obtained from the bifurcation diagram, and, because
of the very fast convergence of the Feigenbaum sequence, it also
nearly corresponds to the emergence of chaos.

VI. EXPERIMENTAL RESULTS

The analytical and numerical analysis is confirmed by the
experimental results presented in Fig. 4. The typical sequence
from below to above threshold is displayed, and it is evidenced
from Figs. 4(a) and (b) that the microwave’s amplitude effec-
tively undergoes a Hopf bifurcation as it changes from a con-

Fig. 3. Numerical bifurcation diagram. The labels a, b, c, d, e, and f indicate
the dynamical regimes corresponding to the timetraces of Fig. 2.
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Fig. 4. Experimental results. The carrier has a frequency of 3 GHz, and the gain is increased from below to far above the amplitude Hopf bifurcation. (a) Just below
the critical value, the amplitude is constant. (b) Just above the critical value, the amplitude is weakly amplitude modulated. (c) Well above the critical value, the
amplitude is strongly amplitude modulated. (d) Far above the critical value, the amplitude modulation becomes very complex, and here it is for example combined
to a frequency modulation.

stant to a steadily periodic behavior of period . The exper-
imental value obtained for the critical value was found to be

, and it was evaluated relatively to the threshold
gain.

As it can be seen in Fig. 4(c), the modulation depth increases
with the gain; furthermore, it is observed that the amplitude
modulation can turn asymmetrical. Further increase leads to
more complex behaviors: for example, in Fig. 4(d), the period of
the amplitude modulation drastically drops down to s, and
it is at the same time subjected to a frequency modulation of pe-
riod . This latter regime may be induced by the interaction of
several cavity modes, or by higher order integro-differential or
nonlinear terms. It also corresponds to the maximum gain that
we could achieve experimentally ( 2.7), which is sufficient to
observe strongly nonlinear regimes, but not enough for fully de-
veloped chaos.

VII. DISCUSSION

From the theoretical, numerical, and experimental results, it
appears that the behavior of OEOs unequivocally depends on
the value of the normalized gain parameter .

For , the systems does not oscillate. From a physical
point of view, it can be considered that is a threshold
value below which the system does not have enough energy
to sustain an oscillation, as the energy input is still inferior to
the energy losses in the feedback loop. Above the threshold
value, the system oscillates and the output is a perfectly pure

microwave of frequency and arbitrary (but constant)
phase, and this regime is stable as long as the gain is infe-
rior to the critical value . Hence, the interval of
gain values between and induces the single-mode be-
havior required for OEOs technological applications. For

, the monomode solution becomes unstable, as its ampli-
tude becomes modulated: the modulation depth increases with
the gain offset, while the period of the modulation is fixed to
twice the time delay. The consequence of this amplitude mod-
ulation of the microwave is that in the RF Fourier spectrum,
two robust modulation side-peaks appear at and

. It is expected that the emergence of these peaks
may be detrimental to the phase noise performance of OEOs.
In our case for example, when the emitted microwave is stable,
there are spurious (noise-induced) cavity-mode situated at

kHz from the carrier ( being a strictly positive integer).
However, after the loss of stability, additional deterministic side-
peaks also appear at 25 kHz [14]. This phenomenology is
completely deterministic, that is, it does not correspond to any
hidden influence of noise in the system: it is a bifurcation be-
havior induced by the nonlinear function which rules the dy-
namics of the envelope amplitude.

It is noteworthy that, as long as the bandwidth is
significantly smaller than the oscillation frequency ,
it does not play any role in this bifurcation sequence. Effec-
tively, the stationary amplitude, as well as the critical bifurcation
values and are independent of . This is also a proof
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that, in first approximation, the exact profile of the bandpass
filter is not a critical parameter: the same results would have
been obtained with a filter whose edges are steeper, i.e., a filter
whose falling edges decrease faster than 20 dB/dec, as it is
likely to be the case for a real-world RF filter. It should also be
emphasized that reducing the bandwidth of the RF filter cannot
prevent the microwave’s loss of stability beyond , except for

kHz (bandwidth smaller than the free
spectral range). Unfortunately, there are actually no available
RF filters with such a narrow bandwidth, so that experimen-
tally the Hopf bifurcation at can by no way be circumvented
through ultra-selective filtering.

The existence of a maximum gain value for the
monomode oscillation has another important consequence
as far as applications are concerned: according to (25), the
maximal output amplitude of the monomode microwave is

. Hence, the maximum
value of the root mean square voltage at the MZ input is

(37)

that is, about half the value of : The maximum microwave
output power is therefore of the order of 100 mW (or 20 dBm)
under a 50- impedance. In our case, it corresponds to a
peak-to-peak voltage of V, which is smaller than
the 12-V limit of our driver, thereby enabling the observation
of instabilities. This gives a direct indication about the max-
imum microwave output power that can be extracted from a
single-mode OEO. At last, it should be remembered that the
phase-noise floor decreases in an inversely proportional way
relatively to the microwave power: therefore, the limitation
induced by also defines a limitation for the power-induced
downshift. A higher microwave power may naturally be ob-
tained through post-amplification, though at the expense of
phase-noise performance.

From a mathematical point of view, the envelope equation
(18) is a member of the Ikeda equations family [17]. Its stability
analysis has revealed that the phase does not play a role for

(no oscillations) and does not play a role for
(neutrally stable phase). Therefore, for , the complex
envelope equation can be reduced to a real equation, exclusively
ruling the amplitude dynamics

(38)

This equation is similar to the real Ikeda equation with the differ-
ence that the nonlinear function here is a Bessel function instead
of a sinusoidal one. The advantage of using the real equation
(38) is that the theoretical analysis is simpler and the numerical
simulations are speeded up by a factor 2. The drawbacks are that
this equation is only valid below the Hopf bifurcation, and it no
longer carries any information about the phase, so that it cannot
be used later for phase-noise studies.

At last, the integro-differential delay equation (4) ruling
the dynamics of the initial microwave variable is also
an Ikeda-like equation [9], and the bifurcation phenomena
occurring for the variable can also be interpreted relatively to

. Then, below , the solution is stable. Above
the threshold value, a monomode oscillation of frequency

emerges through a Hopf bifurcation, as switches from a
fixed point to a limit-cycle. At , as the amplitude

becomes modulated, the limit-cycle corresponding to
bifurcates to a torus: this is a secondary Hopf bifurcation, also
called Neimark–Sacker bifurcation.

VIII. CONCLUSION

In this paper, we studied the nonlinear dynamics of OEOs.
We have first shown that the microwave amplitude obeys a
real integro-differential equation with delay. Then, using a
multiple time-scale analysis, we have derived a reduced non-
linear delay-differential equation whose variable is the complex
slowly varying envelope of the microwave.

The stability analysis of the equation has been performed, and
it has been shown that, as the gain is increased beyond a given
critical value, the amplitude of the oscillations undergoes a su-
percritical Hopf bifurcation. This bifurcation induces an ampli-
tude modulation whose principal consequence is the appearance
of deterministic side-peaks around the carrier, thereby deterio-
rating the spectral purity of the oscillations. Numerical simula-
tions and experimental measures have confirmed the theoretical
analysis, as all of the bifurcation phenomena have effectively
been observed following the predicted scenario.

This bifurcation has important implications for the various
applications of these oscillators: in particular, it sets an upper
limit to the output power of an ultrapure microwave. However,
one can expect that conventional methods of bifurcation control
should at least theoretically enable to shift that critical bifurca-
tion value if necessary.

An interesting extension of the amplitude equation in-
troduced here would be the inclusion of noise terms in the
amplitude equation allowing for the study of the phase noise
in OEOs (Langevin formalism). Effectively, time-domain noise
analysis is quite scarcely used in phase studies because there is
generally no deterministic equation to rule the phase dynamics.
For the OEO, the use of our complex envelope equation will
permit to apply the formalism of stochastic differential equa-
tions in order to quantify and analyze the effect of random
fluctuations on the phase-noise performances of OEOs.
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