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Optimization and stability boundaries for the synchronization of semiconductor lasers
with external optical feedback
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We perform a stability and optimization analysis for the synchronization of unidirectionally coupled
external-cavity semiconductor lasers. Using rigorous stability criteria, we qualitatively derive the boundaries of
the high-quality synchronization basin. The underlying influence of Hopf bifurcations on the stability of the
synchronization manifold is also investigated.
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I. INTRODUCTION

Synchronization of chaotic systems has been the focu
intense research activities in recent years@1–3#. This para-
doxical phenomenon was soon considered as an intere
candidate to ensure secure telecommunications@4–6#. Effec-
tively, one can encode an information-bearing signal into
output of a chaotic transmitter, while a synchronous rece
identifies the masking chaotic component, which is then
tracted to reveal the original transmitted message. S
nowadays telecommunication networks require lar
capacity information transmission and ultrafast process
semiconductor lasers have become indispensable and w
spread devices, precisely as optoelectronic emitter-rece
systems. That is why the chaotic synchronization of se
conductor lasers~laser diodes! has currently gathered s
much attention@4,7–9#.

Chaos can be generated in laser diodes through exte
optical feedback~EOF!. Indeed, for weak EOF, improve
frequency stability, linewidth narrowing, and noise reducti
have been noticed. But as the feedback increases, the in
dimensionality created by the feedback delay can induc
drastic spectral broadening, which is sometimes referre
as coherence collapse@10–15#. The coherence collapse sta
is associated with hyperchaotic attractors whose comple
is expected to provide high-level security for the encod
messages, even at the subnanosecond time scale. As
potential applications to telecommunications are concern
quite interesting realizations have been set up. For exam
Goedgebuer and co-workers have built a robust cryptosys
based on the synchronization of tunable laser diodes w
wavelength hyperchaos@16#, and while using an open-loo
chaotic synchronization scheme, Fisheret al. have success
fully encoded and decoded signals at a frequency up t
GHz @17#.

Despite these important experimental and theoretical
sults, many crucial questions still require particular attenti
mainly about the stability and optimization of synchroniz
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tion processes. The stability of synchronization can be un
stood in two distinct ways. From the first point of view
stability implies indefinite boundedness for the drive and
sponse variables. Within that scheme, synchronization is
stable only when the coupling provokes a sustained gro
to infinity for the state master and/or slave variables. T
kind of instability is quite grave, because it can cause ir
versible damage to the coupled drive-response system. It
been demonstrated that its underlying mechanism is ge
ally the parametric resonance induced by the overly do
nant frequencies of the Fourier spectrum corresponding
the master oscillator@18,19#. From the second point of view
stability implies robustness, and in that sense, the synchr
zation is unstable when it is subjected to intermittent des
chronization events, i.e., when the figurative phase po
is burst-likely repelled from the synchronization manifol
This bubbling phenomenon is explained by the fact t
some unstable invariant sets for which the largest transv
sub-Lyapunov exponent is positive can be embedded wi
an attractor even when the largest transverse sub-Lyapu
exponent for the attractor as a whole is negative@20–22#. It
is important to notice that for the application of externa
cavity semiconductor laser~ECSL! synchronization to secure
telecommunications, these bursts would have catastro
consequences, because during the desynchronization i
vals, the encoded information cannot be recovered an
therefore irreversibly lost. Throughout all the paper, we w
hence always refer to this second stability definition, beca
it is more constraining as it includes the first one.

The key issue of this paper is to derive for unidirectio
ally coupled ECSL’s an analytic approximation for th
boundaries of the synchronization basin, both in the regu
and chaotic regimes. We therefore aim to establish rigor
stability constraints able to guarantee high-quality synch
nization.

The paper is organized as follows. In Sec. II, we pres
the rate equations corresponding to our coupling sche
and the stability analysis of the synchronized laser diode
performed in Sec. III. The last section is devoted to the c
clusion. The iterative integration of all ordinary differenti
equations is performed with the fourth-order Runge-Ku
algorithm, while all the nonlinear algebraic equations will
solved through the Newton-Raphson algorithm.
©2003 The American Physical Society14-1
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II. MODEL OF UNIDIRECTIONALLY COUPLED
EXTERNAL-CAVITY SEMICONDUCTOR LASERS

The nonlinear dynamics of ECSL’s can be modeliz
through the Lang-Kobayashi rate equations@23#. This model
is quite accurate in the single-longitudinal-mode regi
when the optical feedback is weak to moderate. The sign
cant variables are the carrier densityN and the complex elec
tric field defined by its amplitudeÊ and its slowly varying
phasef. In dimensionless units, the Lang-Kobayashi eq
tions read

Ė5nE1gEt cos~vt1f2ft!,

ḟ5an2gS Et

E D sin~vt1f2ft!,

ṅ5«@p2n2~112n!E2#, ~1a!

with the following rescalings:

«5tp /ts , p5
1

2
gNthtpS J

Jth
21D ,

g5tpS 12r 0
2

t inr 0
D r ext, K5tpS 12r 0

2

t inr 0
D kcp ,

t5T/tp , tc5Tc /tp , v5
2pc

l
tp , ~1b!

and

E5S 1

2
gtsD 1/2

Ê,

n5
1

2
gNthtpS N

Nth
21D . ~1c!

Table I presents the meaning and numerical values of
laser diode characteristics. In Eq.~1a!, the overdot denotes
the derivative relatively to the reduced timet/tp and the
subscripts denote delayed variables: i.e., we assume thaV
is a variable~E, f, or n! andu the delay,Vu[V(t2u). The
first delay to appear in our equations is the dimension

TABLE I. Parameter values used for the numerical simulatio
~based on AlxGaAs12x semiconductor lasers@8#!.

Symbol Parameter Value

g Gain coefficient 8.4310213 m3 s21

a Linewidth enhancement factor 3
r 0 Facet amplitude reflectivity 0.556
Nth Carrier density at threshold 2.01831024 m23

J Injection current density 1.3Jth

ts Carrier lifetime 2.04 ns
tp Photon lifetime 1.927 ps
t in Round-trip time in the laser cavity 8 ps
l Wavelength 800.0 nm
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round-trip delayt5T/tp , whereT52Lext/c andLext is the
length of the external cavity@8#. The optical feedback is
taken into account through the coefficientg, which is pro-
portional to the external reflectivity percentager ext. p
stands for the injection current density, whose influence u
the ECSL dynamics is extremely decisive for the large-sc
structure of the laser’s oscillations. Effectively, whenp is
very close to the threshold valuepth50, the ECSL enters into
what is usually called the low-frequency fluctuation~LFF!
regime @12,15#. In our case,p is much greater, so that th
chaotic oscillations have a relatively constant mean va
which is Ap>0.7, corresponding to the trivial steady-sta
regime.

Theoretically, two fundamentally different types of ch
otic synchronization can occur for ECSL’s depending on
strengths of both the feedback and the coupling@9#. For the
first type, which is referred to as conventional synchroni
tion, the slave variables synchronize~up to a constant for
some of them! with those of the master at timet2Tc , where
Tc is the coupling delay, i.e., the time required for the co
mand signal emitted by the master to reach the slave. H
we will rather use a technique belonging to the second gr
and which is based on the continuous chaos control sch
proposed by Pyragas@24#.

According to Murakami and Ohtsubo, the synchronizati
of identical ECSL’s can be achieved with an unidirection
coupling scheme provided that some physical constraints
fulfilled ~see details in Ref.@8#!. Using appropriate externa
mirrors, the master laser diode injects into the active reg
of the slave laser diode a fraction of its electromagnetic o
put, which thereby plays the role of a command signal.
optical isolator guarantees the unidirectionality of the co
pling. The slave ECSL is subjected to a second optical fe
back, which completes a retroactive control loop. The sla
system equations corresponding to that particular coup
are

E8 5ñẼ1gẼt cos~vt1f̃2f̃t!1K@Etc
cos~vtc1f̃2ftc

!

2Ẽt cos~vt1f̃2f̃t!#,

f8 5añ2gS Ẽt

Ẽ
D sin~vt1f̃2f̃t!2KF S Etc

Ẽ
D sin~vtc1f̃

2ftc
!2S Ẽt

Ẽ
D sin~vt1f̃2f̃t!G ,

n85«@p2ñ2~112ñ!Ẽ2#, ~2!

where the tilde indicates the slave variables andK accounts
for the optical coupling. Note that the coefficientK is pro-
portional to the coupling efficiency percentagekcp . A second
delay also appears in our equations, which is the coup
delaytc5Tc /tp . Thus Eqs.~2! are double-delay differentia
equations~DDDE’s!, as t and tc simultaneously influence
the ECSL dynamics@25#. If we had considered multiple re
flections with the external reflectors, additional delays wo

s
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OPTIMIZATION AND STABILITY BOUNDARIES FOR . . . PHYSICAL REVIEW E67, 026214 ~2003!
have been introduced, leading to increasingly complica
equations. Anyway, these additional delays are not relev
here since the optical feedback is weak. DDDE’s in synch
nization theory seem to be very promising. Effectively, a

suming that the synchronization manifold isV(t2tc)5Ṽ(t
2t), they enable us to achieve anticipated, instantaneou
delayed synchronization depending on the fact thattc can be
smaller, equal, or greater thant. Throughout all the paper
we will focus for the sake of exemplification on instant
neous synchronization, and therefore we will only deal w
a single degenerated delay (t[tc). This particular case may
seem to be restrictive, but it can nevertheless give a d
insight into what occurs for the general double-delay mod

III. STABILITY BOUNDARIES OF THE
SYNCHRONIZATION BASIN

As we have earlier noticed, quasiperfect synchronizat
is required for most of its potential applications. Cons
quently, the determination of necessary and sufficient co
tions for high-quality synchronization currently constitut
an important field of investigations@18–20,22#. For synchro-
nized ECSL’s, the stability is often performed through t
linear stability analysis of the external-cavity mod
~ECM’s! @7,8#. Unfortunately, this approach rapidly loses
validity for typically nonlinear states~multiperiodic, quasip-
eriodic, and chaotic!. Moreover, it does not provide a gener
stability constraint or limits for the synchronization basin.

It was first believed that stable synchronization could
ensured by the negativity of the so-called transverse s
Lyapunov exponents@1#. However, this condition has furthe
been proved to be necessary, but not sufficient, because
exponents describe the chaotic attractor as a whole, whe
stability also depends on localized invariant sets embed
within this attractor. It has also been suggested that u
formly negative instantaneous eigenvalues could be an in
esting alternative. Unfortunately, this ‘‘ubiquitous local st
bility’’ criteria is exclusively relevant for the long-term
behavior and fails to make a statement about the stabilit
the transient motion, as the continuously changing eigen
ues and eigenvectors can induce parametric reson
@18,19#. Later, sufficient stability conditions either derive
from Lyapunov functions or from anamorphosis-based me
ods were proposed. Anyway, these latter techniques do
generally apply when the coupling is inextricably nonline
~and delayed! as in our case.

On the other hand, Brown and Rulkov have proposed
original approach which enables one to derive rigorous
bility criteria, i.e., sufficient constraints which guarant
high-quality ~burst-free! synchronization between identica
systems with drive-response coupling@26#. Moreover, their
method can precisely be used to design the efficient c
plings. Effectively, the Brown-Rulkov~BR! technique leads
to explicit analytic stability conditions and therefore offers
judicious guidance for the choice of the suitable system
rameters. We aim to use this method to derive the stab
boundaries of the synchronization basin.
02621
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Let us consider the master and slave vector fields as

x5~E,f,n!,

x̃5~Ẽ,f̃,ñ!. ~3!

Our evolution equations~1a! and~2! may now be written in
vectorial notation as

ẋ5F~x,xt!,

xP5F~ x̃,x̃t!1C~ x̃,x̃t ,xt!, ~4!

whereF represents the uncoupled ECSL andC the unidirec-
tional coupling. If we define the coordinate transverse to
synchronization manifold,

w5 x̃2x, ~5!

as the deviation vector between the drive and response
systems, it obeys

ẇ5F]@F~ x̃,x̃t!1C~ x̃,x̃t ,xt!#

] x̃ G
w50

w

1F]@F~ x̃,x̃t!1C~ x̃,x̃t ,xt!#

] x̃t
G

wt50

wt ~6!

at a linear approximation. Explicitly developing the Jacobi
matrices yields

ẇ5@H~x,xt!#w1~g2K !@G~x,xt!#wt , ~7!

where

H~x,xt!

5F n 2gEt sinw E

g
Et

E2 sinw 2g
Et

E
cosw a

22«~112n!E 0 2«~112E2!

G
~8!

and

G~x,xt!5F cosw Et sinw 0

2
1

E
sinw

Et

E
cosw 0

0 0 0

G . ~9!

We have introducedw5vt1f2ft as the phase delay. W
now decompose theH matrix into its time average and var
able components according to

H~x,xt!5A1B~ t !, ~10!

with

A5^H~x,xt!&,

B~ t !5H~x,xt!2^H~x,xt!&. ~11!

Here ^•& denotes the time average along the driving traj
tory. In first approximation, the matrixB can be considered
4-3
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as proportional tog. This approximation becomes more a
curate asp increases, since in that caseE oscillates around
theAp mean value@15#. HenceH can finally be expressed a

H~x,xt!5A1gQ~ t !. ~12!

We emphasize thatQ still weakly depends ong anyway. The
A matrix can be diagonalized toD through the transfer ma
trix P. Therefore the vectorz, which is thew counterpart in
the D basis, satisfies

z~ t !5@U~ t,t0!#z~ t0!1E
t0

t

gU~ t,s!@P21Q~s!P#z~s!ds

1E
t0

t

~g2K !U~ t,s!@P21G~s!P#zt~s!ds, ~13!

where U(t,t0)5exp@D(t2t0)# is the exponential operato
Linearly stable synchronized behavior is expected ifiz(t)i
→0 ast→1`. This convergence to 0 can occur if and on
if each of the three blocks in Eq.~13! individually vanishes
at long term.

Let us considerL1 , L2 , andL3 , the eigenvalues ofA,
ordered as Re@L1#>Re@L2#>Re@L3#, where Re@L# is the real
part of L. The first block of Eq.~13! converges to0 if

2Re@L1#.0. ~14!

It is our first stability requirement. This condition is remini
cent of the negativity of transverse sub-Lyapunov expone
but in fact, Eq. ~14! is more constraining, because su
Lyapunov exponents are obtained through theH andG ma-
trices, while L1 is derived throughA, which is only the
time-average component ofH.

The second block uniformly tends to0 if the exponential
operator imposes onto theP21QP term its decay behavior
One can use norms to convert Eq.~13! into an inequality
and, therefore, uniform convergence is ensured if

2Re@L1#.ugu^iP21QPi&, ~15!

that is,

g,
2Re@L1#

^iP21QPi&
. ~16!

It appears that the feedback coefficient has an upper l
which depends on the system’s parameters. We stress a
that the right-hand side of inequality~16! depends ong, so
that this inequality is mathematically implicit.

At last, the third block of Eq.~13! converges to zero if

2Re@L1#.ug2Ku^iP21GPi& ~17!

or, more explicitly,

g2S 2Re@L1#

^iP21GPi& D,K,g1S 2Re@L1#

^iP21GPi& D . ~18!

This latter relation means that the stability basin lies withi
band around the central valueK5g.
02621
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To summarize, the BR technique has provided three
bility constraints, which are Eqs.~14!, ~16!, and ~18!. We
will further see that the numerical simulation qualitative
confirms these analytic statements.

For this numerical comparison, two radically oppos
situations will be considered: the stable and unstable bi
cation states. To understand the reason for this differen
tion, one should recall the bifurcation behavior of ECSL
@8#. Their nonlinear dynamics is strongly determined by t
interplay between the relaxation oscillation frequency of
solitary semiconductor laser@ f R5Ag(J2Jth)/2p5VR/2p#
and the external-cavity-mode spacing frequency (f ext51/T
5c/2Lext). As the feedback coefficientg increases, the ini-
tially stable eigenmodes undergo a first Hopf bifurcati
~first HB! to periodic oscillations. It is demonstrate
@13,14,27# that whenVRT is an odd multiple ofp, the com-
petition betweenf R and f ext is the weakest possible and
hence, the critical Hopf bifurcation value is very low: it
a stable bifurcation. On the other hand, whenVRT is an even
multiple of p, this competition is the strongest possible, a
the critical Hopf bifurcation value is quite high: it is her
an unstable bifurcation. Wheng is further increased, the in
terval of periodic oscillations is followed in both cases by
two-frequency quasiperiodic regime after a second Hopf
furcation~second HB!. This bifurcation sequence is univers
for ECSL’s, even though the critical bifurcation values a
different for each eigenmode@11#. For all related numerica
simulations, we have takenLext515 cm for the stable bifur-
cation andLext512 cm for the unstable one, so that we ha
found the Hopf bifurcation values couple ofr ext to be, re-
spectively,~0.34, 0.89! for the stable bifurcation regime an
~1.04, 1.54! for the unstable case~in units of %!. These Hopf
bifurcations are indicated in Figs. 1 and 2 by vertical so
lines.

To check for the validity of our analytic approach, on
should represent the numerical synchronization basin in
r ext-kcp figurative plane. This has already been done in@8#,
and the synchronization basins that have been obta
qualitatively fit with our predictions, both in the stable an
unstable bifurcation cases. Effectively, a maximalr ext value
is observed, as well as the band shape around the max
stability diagonal,r ext5kcp . We remind the reader thatg and
K are, respectively, proportional tor ext and kcp @see Eq.
~1b!#.

The stability is mostly affected along the diagonal: t
erefore, we introduce a new variable

qd5Ar ext
2 1kcp

2

2
, ~19!

which is the curvilinear coordinate along the diagonal s
ment r ext5kcp . Hence, sinceqd is always simultaneously
equal tor ext and kcp , varying qd implies varying the feed-
back rateg and the coupling rateK at the same time. In Figs
1~a! and 2~a!, we have plotted Re@L1# as a function ofqd . It
appears that for the stable bifurcation, the BR technique fo
sees synchronization for very weakqd . As qd increases,
Re@L1# becomes positive and intermittently drops below
for qd.1.79. Nevertheless, synchronization cannot be
4-4
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gained in that case because the second stability require
is no longer respected:qd ~here corresponding tog! is then
too large and (2Re@L1#) too low to satisfy the inequality
~16!. For the unstable bifurcation, synchronization for ve
weak feedback is also guaranteed. Globally, the BR te
nique leads to interesting results as it can, however, enab
to understand the geometrical form of the synchronizat
basin in ther ext-kcp figurative plane. Unfortunately, it is
striking that the consequent stability criteria are ove
strong. For example, they fail to foresee stability within t
chaotic range, which is, however, the most interesting.

Nevertheless, we can circumvent this deficiency by dia
nalizing H with its related sub-Lyapunov exponentsl1>l2
>l3 , rather thanA with the Re@L# eigenvalues in the BR
method. The resulting stability criteria thereby lose th
mathematical rigor, but—and this is the most importan
they still provide necessary conditions for the stable synch
nization to occur. Proceeding in that way, the three stab
criteria ~14!, ~16!, and~18! degenerate into two, which are

2l1.0 ~20!

and

FIG. 1. Stable bifurcation case.~a! Variations of Re@L1# and~b!
variations ofl1 along the diagonalr ext5kcp .
02621
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g2S 2l1

^iL21GL i& D,K,g1S 2l1

^iL21GL i& D , ~21!

whereL is the transfer matrix fromH to its diagonal coun-
terpart. Equation~20! replaces both Eqs.~14! and ~16!, and
then intrinsically contains the upper limitation ofg. More-
over, it exactly corresponds to the well-known standard s
bility condition. On the other hand, Eq.~21! stands for Eq.
~18! with the same geometrical meaning.

Figures 1~b! and 2~b! display the variations ofl1 as a
function of qd , and it clearly appears that the new set
stability criteria~20! and ~21! more accurately fits with the
numerical boundaries of the synchronization basin. Equa
~20! decides the stability of the synchronization along t
diagonal, while Eq.~21! does the same for the transver
direction. Effectively, it appears that asqd is increased~along
the diagonal!, the synchronization is stable whenl1 is nega-
tive, while in the perpendicular direction, the width of th
basin varies accordingly toul1u; i.e., the basin is larger a
ul1u is greater. Therefore, one can conclude~even though it
is not new! that the synchronization is optimized whenl1 is
the most negative possible. Nevertheless, we recall that
~20! and ~21! are not rigorous.

FIG. 2. Unstable bifurcation case.~a! Variations of Re@L1# and
~b! variations ofl1 along the diagonalr ext5kcp .
4-5
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Although it does not appear explicitly, Hopf bifurcation
can dangerously threaten the stability of synchronizat
@6,8,25#. Effectively, when we carefully examine Figs. 1~b!
and 2~b!, we note thatul1u drastically drops to 0 around th
bifurcation values. For the stable bifurcation, these drops
not reach the positive upper half-plane. But for the unsta
case, the first and second HB’s succeed in destabilizing
synchronization along the diagonal. Since within the chao
regime the bifurcation sequence subsists under a fra
form, chaotic synchronization can be lost because of a sl
variation of a relevant bifurcation parameter. Fortunate
these undesirable HB’s can analytically be localized in
periodic regime for ECSL’s, thus indicating in the first a
proximation the parameter ranges to avoid in prior
@13,14,27#.

This may be particularly important for the synchroniz
tion of ECSL’s in the presence of parameter mismatch~or
noise!. Effectively, it is known that the maximal synchron
zation erroriwimax is roughly proportional to the global mis
match~or to the intensity of the noise!, but inversely propor-
tional to the average largest sub-Lyapunov exponentl1
around the hyperchaotic attractor. Even though this reas
ing is not mathematically rigorous, it can serve as an in
esting guideline for the choice of the coupling paramete
Since the suitable parameters should preferably induce
lowest sub-Lyapunov exponents, the HB’s should degr
the tolerance to parameter mismatch~noise!. The numerical
simulations we have performed confirm this argumentati
I.

h

I

,
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and they show that the synchronization error inversely f
lows the variations oful1u, i.e., drastically increases near th
HB’s. Therefore, one can expect that control and anticon
of these Hopf bifurcations will soon play a key role for th
optimization of synchronization in both the periodic and ch
otic states@28#.

IV. CONCLUSION

In this paper, we have performed the stability and optim
zation analysis for the synchronization of unidirectiona
coupled external-cavity semiconductor lasers, both in th
~multi!periodic and hyperchaotic regimes. The Brow
Rulkov technique has provided stability constraints wh
have enabled us to foresee the shape of the synchroniz
basin. The underlying influence of Hopf bifurcations h
been highlighted. We have noticed that they can even de
bilize the synchronization manifold in the most unfavorab
cases.

A logic continuation of this work could be the stabilit
analysis of the most general delay configuration, i.e.,
nondegenerated double-delay system. Even though se
numerical studies have been performed fortÞtc @7–9#, al-
most nothing has been done to investigate analytically h
the interplay between the two delayst andtc influences the
shape of the synchronization basin. At last, further stud
can also be devoted to extend this analytic approach to o
types of ECSL couplings.
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