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Transitions from spatiotemporal chaos to cluster and complete synchronization states
in a shift-invariant set of coupled nonlinear oscillators
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We study the spatiotemporal dynamics of a ring of diffusely coupled single-well Duffing oscillators. The
transitions from spatiotemporal chaos to cluster and complete synchronization states are particularly investi-
gated, as well as the Hopf bifurcations to instability. It is found that the underlying mechanism of these
transitions relies on the motion of the representative points corresponding to the system’s nondegenerated
spatial transverse Fourier modes in the parametric Strutt diagram. A scaling law is used to demonstrate that the
compact interval of the scalar coupling parameter values leading to cluster synchronization broadens in a
square-power-like fashion as the number of oscillators is increased. The analytical approach is confirmed by
numerical simulations.
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I. INTRODUCTION

The study of the~non! synchronous behavior of couple
chaotic oscillators is currently gathering a growing amo
of important experimental and theoretical contributio
@1–7#. The interest devoted to that topic is motivated by
potential relevance to pattern formation and coherent col
tive behavior in physics~Josephson junctions, granular h
drodynamics!, chemistry ~discrete reaction-diffusion sys
tems!, and biology ~development of living organisms
collective dynamics of biological cells aggregates!.

Beside the well known and intensively studied pheno
ena of spatiotemporal chaos@8# and complete~full ! synchro-
nization@9# in coupled chaotic systems, recent literature h
reported the existence of hybrid configurations consequen
symmetry breaking and spontaneous spatial reorder
which are sometimes referred to as cluster synchroniza
@4–6#. These intermediary states allow the chaotic oscillat
to synchronize with one another in groups, while there is
synchronization among the groups. Clustering is mostly w
nessed when the coupling is nonlocal or nonsymme
@5,10#. It consequently appears as more fascinating and m
unconventional when it occurs in a system with local a
symmetric coupling@4,6#.

Depending on the number of chaotic oscillators, the ty
of coupling, and the boundary conditions, the dynamical s
tem can display a rich but limited set of different clust
patterns. The stability of the various clusters is usually st
ied through the variations of the sub-Lyapunov expone
associated with their related submanifolds. Unfortunat
this numerical procedure is very time consuming and, mo
over, very repetitive, since the numerical simulation of t
sub-Lyapunov exponents has to be performed separatel
each possible cluster. Therefore, this approach can no lo
be applied when the number of oscillators becomes proh
tively high.
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In this paper we consider a ring ofN diffusely coupled
single-well Duffing oscillators and we aim to give an an
lytic insight into the various transitions that can occur b
tween the three possible dynamical states of the ring~spa-
tiotemporal chaos, cluster synchronization, compl
synchronization! and instability when the coupling strengt
is varied. However, our analytical study presents, within
same framework, the underlying structure of both the sta
themselves and the transitions between them. This may h
valuable applications in the thermodynamic limit (N
→1`) for the phase transitions theory of one-dimensio
atomic lattices, or for nonlinear transmission lines in co
munication engineering.

The paper is organized as follows. In Sec. II we perfo
the general stability analysis of the model, and we use F
quet theory to derive approximated analytical stabil
boundaries for the spatial Fourier modes of the ring. T
Hopf bifurcations between the various dynamical states
the model will be particularly analyzed. Section III dea
with the extension of the study to the thermodynamic lim
and with the application of the stability analysis to the sp
cific cases of a positive and of a negative nonlinear stiffn
coefficient. A scaling law is used to demonstrate that
transition boundaries of anyN-ring can be recurrently de
duced from the transition boundaries of the correspond
two-oscillators model. Finally, Sec. IV is devoted to the Co
clusion.

II. THEORETICAL STABILITY ANALYSIS, CRITICAL
TRANSITION BOUNDARIES, AND NUMBERING

OF CLUSTERS

A. The stability analysis

The coupled system under study is a ring ofN diffusely
coupled single-well Duffing oscillators~SWDOs! whose
evolution equations are

ẍi1l ẋi1xi1gxi
35F cosvt1K~xi 1122xi1xi 21!,

i 51,...,N. ~1!m
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xi(t) is the instantaneous deviation of thei th oscillator from
the stable and trivial equilibrium statexi[0. l stands for
the damping, andg is a nonlinear stiffness coefficient whic
may be either positive or negative. Each oscillator of the r
is excited by a periodic excitation of amplitudeF and fre-
quency v. At last, the positive parameterK is the scalar
coupling strength. The system of Eqs.~1! obeys the shift-
invariance conditionxi 1N[xi . WhenK50, each SWDO is
uncoupled and displays a rich variety of nonlinear behavio
depending on the chosen sets of parameters@11#. Figure 1
presents the typical chaotic oscillations that can be obse
in SWDOs for both theg.0 andg,0 cases. As one ca
notice in Fig. 1~b!, the g,0 oscillator is a bistable system
since the nonlinear oscillations may be either chaotic~outer
attractor! or periodic ~inner regular limit cycle!, depending
on the initial conditions.

The stability of the coupled system can be studied thro
the linearization of Eqs.~1! around the statesxi , according
to

FIG. 1. Phase plane for the chaotic oscillators~a! g.0 case:
l50.2; g51.0; F528.5;v50.86, with initial conditions~0,0!. ~b!
g,0 case:l50.4; g521.0; F50.23; v50.5255, with initial
conditions~20.3, 0.7! for the chaotic trajectory, and~0, 0! for the
regular inner limit cycle. Theg.0 and g,0 cases will always
refer to these parameters throughout the whole paper.
04620
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j̈ i1lj̇ i1~113gxi
2!j i5K~j i 1122j i1j i 21!, i 51,...,N,

~2!

wherej i is the first order perturbation ofxi . We can replace
in the first approximation theN distinct xi chaotic variables
of the parametric excitation by a unique variablex0 which
represents the dynamics of an uncoupled oscillator. This s
stitution enables us to uncouple the variational Eqs.~2!
through a Fourier transform diagonalization@9#, so that they
can be rewritten as

z̈s1lżs1F113gx0
214K sin2S ps

N D Gzs50, s50,...,N21,

~3!

where thezs are new variational variables expressed in t
diagonal base. The modes50 is called the longitudinal
mode because it governs the dynamics of the perturbat
within the synchronization manifold, while the modessÞ0
are the transverse modes since they decide the linear sta
of the perturbations transverse to the synchronization m
fold.

The best deterministic candidates to replace the cha
variablex0 in the parametric term of Eq.~3! are the unstable
periodic orbits~UPOs! of the chaotic attractor. They are i
general multiperiodic, so that straightforwardly using the
for the stability analysis would imply the resolution of a
ordinary differential equation~ODE! with multifrequency
parametric excitations. Hence, analytic stability boundar
may hardly be derived in that case. In fact, previous stud
have shown that such a complexity can be avoided when
fundamental Fourier component is strong relatively to
harmonics of the external forcing frequency. It has be
demonstrated in@12# for Van der Pol oscillators, in@13# for
SWDOs, and in@14# for Rössler oscillators that for such
chaotic oscillators, a single period-one approximation of
UPOs is sufficient to describe accurately the stability patt
of the coupled system. Figure 2 displays the Fourier spe
of the uncoupled SWDOs in both theg.0 andg,0 cases,
and it clearly appears that the fundamental spectral com
nent is predominant relative to the others, and is more lik
to provoke the parametric resonance leading to desynchr
zation or instability. A sharper analysis would have also de
onstrated that the parametric resonances induced by the
monics ofv are easily stabilized by the nonlinear variation
terms we have neglected in Eq.~2!. Obviously, it results
from Fig. 2 that the validity of the single-frequency approx
mation is more justified for theg,0 case than for theg
.0 case.

Therefore, we approximate the chaotic variablex0 with
the uniperiodic functionxper defined as

xper~ t !5A0 cos~vt2w!. ~4!

The analytic amplitudeA0 can be determined through th
Ritz variational criterion as 3.323 for theg.0 case. For the
g,0 case, we rather haveA050.343 for the inner limit
cycle andA050.864 for the chaotic trajectory.
5-2
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The meaning of Eq.~4! is not to suppose initially a syn
chronous motion in the ring, even though it may seem to
its most obvious consequence: the essence of the substit
~4! is spectral and not dynamical, and hence, we implic
assume that the spectral properties of the oscillators are
drastically modified by the coupling. In that case, the var
tional equations~3! can be rewritten in their turn under th
form of canonical Mathieu equations

d2hs

dt2 1@ds12a cos~2t22w!#hs50, s50,...,N21

~5!

with the following rescalings:

t5vt,

hs~t!5zs expS lt

2v D ,

~6!

ds5
1

v2 F11
3

2
gA0

22
l2

4
14K sin2S ps

N D G ,

FIG. 2. Fourier spectra~a! g.0 case and~b! g,0 case.
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One should notice that the feedback parameterK and the
number of oscillatorsN only influenceds and nota anyway.
From Floquet theory, it can therefore be demonstrated th
given modes is linearly stable if the following double in-
equality is fulfilled @13,15#:

2sinh2S lp

4v D,G~ds ,a!,1cosh2S lp

4v D , ~7!

where

G~d,a!5H D~d,a!sin2S 1

2
pAd D if d>0

2D~d,a!sinh2S 1

2
pA2d D if d,0

~8a!

and

D~d,a!5 I dm,n1
a~e2iwdm,n211e22iwdm,n11!

d2~2m!2 I .

~8b!

D(d,a) is the infinite Hill determinant evaluated on a pe
odic boundary ofh. Thedm,n are the Kronecker symbols,m
andn being integers varying from2` to 1`.

From a conventional approach, the parametric plane~d, a!
is divided into two areas: the area of linear stability (zs
→0) and the area of linear instability (zs→6`). The
boundaries between these two zones can be eitherp periodic
@i.e., z(t)5z(t1p/v)] if G(d,a)52sinh2(lp/4v) or 2p
periodic @i.e., z(t)5z(t12p/v)] if G(d,a)
51cosh2(lp/4v). The corresponding stability diagram
sometimes referred to as the Strutt diagram and is re
sented in Fig. 3. The linearly stable area is enclosed wit

FIG. 3. The Strutt diagram. The linearly stable area is dar
shaded, the nonlinearly stable belt is lightly shaded, and the
stable area is blank. Thep periodic boundaries are denoted by thic
lines while the 2p periodic boundaries are denoted by thin line
The representative points of four nondegenerated modes have
been represented.
5-3
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the p and 2p periodic boundaries, and has been uniform
shaded. It is known that crossing these periodic bounda
corresponds to Hopf bifurcations@13,15#. In Fig. 3 four non-
degenerated modes have been represented on aa5const
straight horizontal line. The leftmost point represents the l
gitudinal mode, while the remaining three others are tra
verse modes.

B. Transition boundaries between the cluster states

In fact, the Strutt diagram may be divided into two only
the linear approximation. When the variational equations a
to decide the stability of a nonlinear system, the nonlin
terms that have been discarded in the variational equat
~2! play a predominant stabilizing role, thereby leading to
emergence of a third area in the Strutt diagram. Effectiv
due to these nonlinear variational terms, there is a bu
zone between the linearly stable and linearly unstable ar
it is an area of nonlinear stability~which is, however, linearly
unstable!, where uzsu does not decay to zero and does n
grow to infinity either. The inner boundaries of this buff
zone are the periodic boundaries of the linearly stable a
while its outer boundaries with the unstable area are v
irregular and sometimes fractal-like. In Fig. 3 this area
nonlinear stability has been represented as a lightly sha
belt surrounding the linearly stable area, while the unsta
one remains blank. Among the four modes represented,
first and third modes~starting from the left! are nonlinearly
stable while the two others are linearly stable. Let us assu
that the local width of this belt isL(d (kp),a), where the
couple (d (kp),a) is the related point situated on akp peri-
odic boundary of the Strutt diagram (k51 or 2!. Assuming
that the transverse modes are in the right-half plane, the
lytical condition of nonlinear stability can be approximat
for each of them by

~21!k~ds2d~kp!!F sin2S 1

2
pAd~kp!D ]D~ds ,a!

]ds
U

ds5d~kp!

1
p

4

sin~pAd~kp!!

Ad~kp!
D~d~kp!,a!G

,

L~d~kp!,a!coshS lp

2v D
ud~p!2d~2p!u

. ~9!

Here (d (kp),a) is the nearest boundary point relative to t
representative pointMs(ds,a), while ud (p)2d (2p)u in the rhs
of Eq. ~9! is the length of the segment laying within th
nearest stability interval. For the geometrical reasoning,
local belt width L(d (kp),a) can be replaced without an
inconvenience by its average valueL̄.

We can now analyze through the Strutt diagram wha
happening in the coupled system when the coupling stren
K is increased. WhenK50, the system is uncoupled and a
the transverse modessÞ0 degenerate into the longitudina
mode s50. Therefore, the whole coupled system is rep
sented by a single pointM0 of coordinates (d0 ,a) in the
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Strutt diagram. Since the uncoupled system is chaotic
clearly appears that the pointM0 is situated within the non-
linear stability area. AsK is increased, theN21 transverse
modes represented in the Strutt diagram by the po
Ms(ds ,a) independently begin to move along the straig
horizontal line of equationa5const with a ‘‘velocity’’

ns5
dds

dK
5

4

v2 sin2S ps

N D , s51,...,N21. ~10!

Hence, depending onK andN, the pointsMs are distributed
between the three different areas of the Strutt diagram,
each transverse mode may be either linearly stable, non
early stable, or unstable.

Therefore, depending onK and N, three distinct sets of
mode distributions, which are unambiguously equivalent
the three dynamical states of the ring, can be distinguish
In the first case, all the transverse modes are within the a
of nonlinear stability: it corresponds to the regime of sp
tiotemporal chaos. For the second case, certain transv
modes are in the area of linear stability while all the oth
are in the zone of nonlinear stability: it is the regime
cluster synchronization. For the third case, all the transve
modes are linearly stable, and then, the ring is in the co
plete synchronization state. Hence, the mode distribution
Fig. 3, for example, corresponds to a cluster synchroniza
state. At last, when at least one transverse mode is in
instability area, the whole coupled system becomes unsta
i.e., the state variablesxi indefinitely grow to infinity. The
principal advantage of reasoning through the Strutt diagr
is that increasing the number of oscillators does not req
us to sketch different stability maps, but just to convenien
add supplementary transverse modes on the same diagr

We emphasize one more time that the validity of o
modal approach for the study of the ring’s dynamical beh
ior strongly depends on the nature of the Fourier spectra
the individual uncoupled oscillators. It is only because t
fundamental Fourier component is overly strong relatively
all the others that we can, for example, interpret in first a
proximation the spatiotemporal chaos state as the resu
linearly unstable spatial Fourier modes. In the general cas
is known that this interpretation is absolutely not valid.

C. Numbering of clusters

It appears from the above analysis that cluster synchr
zation is the result of the distribution of the transverse mo
between the linear and nonlinear stability areas of the St
diagram. From the discrete eigenfrequency spectrum of
~3!, one can deduce that the number of nondegenerated tr
verse modes isN/2 if N is even and (N21)/2 if N is odd.
Hence, distributingN/2 @or (N21)/2] points amongst two
areas yields 2N/2 ~or 2(N21)/2) different possibilities. Pro-
vided that spatiotemporal chaos~all the transverse modes ar
nonlinearly stable! and complete synchronization~they are
all linearly stable! are excluded, the number of possible clu
ter states can be deduced as
5-4
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:5H 2N/222 if N is even

2~N21!/222 if N is odd,
where N>2. ~11!

It is, however, important to notice that mathematically, sp
tiotemporal chaos and cluster synchronization correspon
an N cluster and to a one cluster, respectively. For sm
values ofN, the following results are obtained. WhenN52
or N53, linearly stable clustering is not observed: we not
either spatiotemporal chaos~ab and abc states! or a com-
pletely synchronous motion~aa and aaa!. For N54, two
cluster states are foreseen by Eq.~11!; anyway, symmetry
considerations allow theabab state to exist, while the stat
aabb is unstable and is not observed@16#. The same reason
ing applies forN55 as well. The caseN56 has been inten
sively studied by Zhang and co-workers in@4# for Rössler
oscillators. Five different cluster patterns have been obse
~while :56), since the sixth stateaaabbb is always un-
stable. Note that the mode distribution of Fig. 3 can cor
spond to a ring of 6 or 7 oscillators.

WhenN is further increased, the number of possible clu
ters grows exponentially according to Eq.~11!. Anyway, it
should be stressed that some of these clusters are scarc
not observed during numerical simulations or in practi
Three main reasons can explain that. The first reason is
some clusters are very weakly stable, so that they rap
degenerate into compatible clusters of higher symmetry~i.e.,
less complicated and more stable patterns!. This explains
why for a givenK, it is sometimes possible to obtain man
different clusters, depending on the initial conditions@4#. The
second reason is that for a fixed number of oscillatorsN, it
may be impossible to witness a given cluster state beca
the transverse modes do never fit with the related mode
tribution in the Strutt diagram, whatever the value ofK is.
The third and last reason is that when the cluster state co
sponds to a situation where only very few nondegenera
modes are linearly stable, a global correlation between
ring variables is witnessed, rather than localized mutual s
chronization states. In that case, the ring is said to be in
‘‘rotating wave state.’’ Here and throughout the whole pap
we refer to any spatial ordering, either by effective synch
nization of some items of the ring or by a global correlati
between the state variables, as cluster synchronization, s
the above analysis shows that both the ‘‘hard’’ cluster s
chronization~almost all the transverse modes are linea
stable! and the ‘‘rotating wave state’’~only a few of them are
linearly stable! have exactly the same mathematical natu
even though the related dynamical consequences are d
ent. From our Strutt diagram approach, the emergence f
spatiotemporal chaos occurs when the fastest Fourier m
becomes linearly stable while all the others remain non
early stable. Hence, one can conclude that emergence
spatiotemporal chaos first passes through an ‘‘ordering,’’
a bifurcation to a ‘‘rotating wave state.’’

Another marginal phenomenon can be reported. The n
bering of the cluster states in Eq.~11! relies on the fact tha
the eigenfrequency spectrum is approximately ha
degenerated, since the number of figurative transverse m
points in the Strutt diagram isN/2 or (N21)/2. In reality, it
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may be possible in some particular cases that the nonlin
variational terms we have discarded in Eq.~3! succeed in
destroying the partial degeneracy of the linear Fourier eig
frequency spectrum, thereby inducing a number of figurat
points higher thanN/2 or (N21)/2. Therefore, the exponen
of 2 in Eq.~11! increases so that new ‘‘unconventional’’ clu
ter states do emerge, such asabcb, for example, whenN
54. This phenomenon can be identified to a kind of nonl
ear mode-locking.

Consequently, since Eq.~11! does not take into accoun
these considerations,: can just be considered as an order
magnitude. However, one can expect that this quantita
estimation may be useful for the statistical approach of
model in the thermodynamic limit.

III. NUMERICAL SIMULATIONS

We focus in this section on some of the corollaries of t
above theoretical stability analysis for the specific cases
positive and of a negative nonlinear stiffness coefficient,
spectively. As we have earlier noticed, the number of clus
is low when rings of only few oscillators are concerned. F
these cases, numerical simulation can be performed to s
each cluster state as well as the transitions amongst th
However, this approach does not hold anymore whenN is
significantly increased, since it becomes quite complicate
identify the various clusters. Moreover, these clusters
come less interesting as individuals whenN is high.

The appropriate approach in this case is to identify in
parametric planeN-K the areas corresponding to each of t
three dynamical states of the ring. A scaling law is genera
used for that purpose@1,2#, and we hereafter proceed in th
way to derive the stability pattern of theN-oscillator system
from the stability pattern of the two-oscillators model. Th
potential interest of such a scaling law is high in the therm
dynamic limit: it means that the dynamical states and
phase transitions of a one-dimensional lattice model can
deduced from the experimental or theoretical data obtai
through the study of the two-oscillators model interaction

1. The gÌ0 case

Let us first consider theg.0 case. ForN52, numerical
simulations show that the coupled system is nonsynch
nized when K<Kb1(2)50.34, and synchronized forK
>Kb2(2)51.15. ForKb1(2),K,Kb2(2), intervals of syn-
chronized and nonsynchronized behavior are interming
This may easily be understood from the Strutt diagram in
pretation. For a two-oscillator system, there is a single tra
verse mode moving along thea5const straight horizonta
line. Its representative pointM1 starts from a nonlinear sta
bility area, and then alternatively passes through linear
nonlinear stability zones. Finally, this point remains in t
last semi-infinite segment laying within the linear stabili
region, leading to synchronous motion@13#.

For N.2, the number of transverse modes becom
greater and the fastest of them has a velocity
5-5
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n fast5H 4

v2 if N is even

4

v2 sin2S N21

2N
p D if N is odd

~12a!

while the slowest has a velocity

nslow5
4

v2 sin2S p

ND . ~12b!

We can deduce from the stability analysis that whenK is
~very! low, all the transverse modes pointsMs are spread
within the initial nonlinear stability area, and therefore t
ring displays a spatiotemporal chaotic dynamics. As soon
the fastest transverse mode pointM fast oversteps its first
Hopf periodic boundary, the ring enters into the cluster
regime and when the slowest modeM slow oversteps its las
Hopf periodic boundary, the coupled system becomes c
pletely synchronized. The consequence of this transi
mechanism is that it is impossible for the ring to beco
unstable, whatever the values ofK and N are. In fact, this
may be explained by a highL̄ value.

Mathematically, if we define

Kb1~N!5H Kb1~2! if N is even

Kb1~2!

sin2S N21

2N
p D if N is odd

~13!

and

Kb2~N!5
Kb2~2!

sin2S p

ND >
Kb2~2!

p2 N2 when N@2. ~14!

It appears that the system is in the spatiotemporal regim
K<Kb1(N), in the completely synchronous state ifK
>Kb2(N), and in the clustering regime whenKb1(N),K
,Kb2(N). Hence, according to the scaling laws~13! and
~14!, the width@Kb2(N)2Kb1(N)# of the clustering interval
broadens in a square power-like fashion asN tends to infin-
ity. The parametric planeN-K is therefore divided into three
areas, as displayed in the semilogarithmic diagram of F
4~a!. Typically, we have spatiotemporal chaos for lowK,
cluster synchronization for intermediate values, and fina
complete synchronization whenK is high enough. One
should anyway note that degenerated full synchroniza
states can also be observed in the cluster area, dependin
the initial conditions and on the number of oscillators.

The numerical simulations confirm the above analysis.
for example, we focus on the transition from the cluster
the completely synchronous states, we can notice the ex
lent coincidence between the numerical and the se
analytical curves in Fig. 4~a!. This good concordance is du
to the fact thatKb2(2) has been determined numerica
~which is why we refer to this comparison as a sem
analytical one!. A purely analytical comparison would re
04620
as

g

-
n
e

if

.

y

n
on

f,
o
el-
i-

-

quire the analytic determination ofKb2(2). This is difficult
to achieve here becauseA0 and the correspondinga constant
value are so high that approximated or perturbation meth
do not apply. Hence, for an analytic derivation ofKb2(2), it
would be indispensable to compute the Hill determina
D~d,a! at a high order of truncation~>18!, or alternatively to
use the Mathieu special functions. However, the purely a
lytic comparison would have presented a little discrepan
with the numerical results because Eq.~4a! does not qualita-
tively fit with the pseudo-double-well configuration of th
phase portrait of Fig. 1~a!.

If we now focus on the transition from spatiotempor
chaos to cluster synchronization, we can notice on Fig. 4~a!
the rather good qualitative concordance between se
analytical and numerical results. In fact, since Eq.~4! does
not dynamically take into account the complex spatial p
terns of spatiotemporal chaos and cluster synchroniza

FIG. 4. Boundaries delimiting the different dynamical states a
instability of the ring in the semilogarithmic diagramN
2 log10(K). The analytical and semianalytical results are deno
by solid lines, while the numerical results are denoted by squa
and crosses. ‘‘SpC’’ stands for spatiotemporal chaos, ‘‘CoS’’
complete synchronization, ‘‘ClS’’ for cluster synchronization, a
‘‘Ins’’ for instability. Note that for the numerical comparisons, th
drifts and deviations are accentuated by the logarithmic scale~a!
g.0 case.~b! g,0 case.
5-6
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states, the bifurcation boundaryKb1(N) is not as accurate a
Kb2(N), even thoughKb1(2) is also determined numerically
Nevertheless, its interest remains at least qualitative, h
ever, since it predicts that the bifurcation values leading
the emergence of ordering from spatiotemporal chaos
roughly independent ofN. It is also important to notice tha
the good concordance of our semianalytical compari
proves that as we have earlier postulated, the spectral p
erties of the coupled oscillators do not drastically differ fro
those of the corresponding uncoupled items.

2. The gË0 case

For theg,0 case, numerical simulations also confirm t
theoretical analysis. WhenN52, one can numerically ob
serve a synchronous motion whenK<Kb1(2)'0.13, and
whenK>Kb2(2)'0.37. The crucial parametersKb1(2) and
Kb2(2) can here be determined analytically, thereby perm
ting a purely analytical comparison beside a semianalyt
one. Effectively, theA0 values in theg,0 case are low
enough to enable an approximated analytical determina
of bothKb1(2) andKb2(2). At thefirst order approximation,
the two branches of the 2p periodic boundaries aroundd
51 can be derived as

d516a ~15!

so that for the outer chaotic trajectory (A050.864), the bi-
furcation boundary values forN52 are

Kb1~2!5
1

16
~l223gA0

2!50.138,

~16!

Kb2~2!5
1

16
~l229gA0

2!50.416,

which are in excellent concordance with the numerical v
ues 0.13 and 0.37.

For the intermediate coupling strengths values@i.e., be-
tween Kb1(2) and Kb2(2)], intervals of instability and of
complete synchronization are intermingled. Here, the tra
tions cannot be well determined because they depend on
initial conditions @13#. Effectively, the multistability is so
predominant in theg,0 case that stable motion is witness
only when the initial conditions of all the oscillators a
gathered within a small region of the ring phase space. F
a Strutt diagram interpretation, we can say that the aver
width L̄ is so thin that the nonlinear stability buffer zone
almost exclusively fractal-like. Therefore, one can straig
forwardly deduce that clustering is practically impossible
the g,0 case for the chosen parameters, as well as
tiotemporal chaos independently ofK andN. Consequently,
the coupled system is generally either unstable or comple
synchronous, except for very lowK values, for which spa-
tiotemporal chaos can be observed. Anyway, the fastest
the slowest transverse modes are expressed as for theg.0
case, so that the same scaling law reasoning applies. He
if we defineKb1(N) and Kb2(N) as in Eqs.~13! and ~14!,
respectively, we can also divide theN-K plane into an upper
zone of synchronous motion, an intermediate zone of in
04620
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tricably intermingled stable and unstable areas, and a lo
zone of complete synchronization and spatiotemporal ch
Naturally, the uncertainty onKb1(2) andKb2(2) induces an
error when evaluatingKb1(N) andKb2(N), but the square-
power broadening behavior is preserved, however, and
scaling law remains at least of qualitative interest.

In Fig. 4~b! the uppermost double line stands for both t
analytical and semianalytical results, and they indicate
bifurcation boundary to the completely synchronous sta
These two solid lines are very near each other because o
excellent concordance between the numerical and analy
values ofKb2(2) which has been earlier demonstrated. Ho
ever, a deviation from the numerical simulation is notic
due to the bistability of the system. Effectively, a quasip
fect coincidence is observed untilN56, but beyond, the ring
locks into the inner limit cycle so that theKbn(2) values
should be calculated now withA050.343, and probably
around another resonance valued5n2, n being an integer
greater than 1.

The same comment can be made for the bifurcation fr
spatiotemporal chaos to instability. The intermediate dou
line stands for the semianalytical and analytical bounda
corresponding to the chaotic trajectory, and the single low
solid line stands for the bifurcation boundary related to
inner limit cycle. Once again, the numerical comparison r
idly switches from the chaotic boundary to the periodic on
Therefore, since in theg,0 case the spectral invarianc
condition is not fulfilled, several bifurcation boundary valu
do coexist. Consequently, depending on the number of os
lators and on the initial conditions, the ring’s state variab
will bifurcate around various boundary lines related to t
different spectral groups.

IV. CONCLUSION

In this paper we have studied the various dynamical sta
of a shift-invariant set of diffusely coupled single-well Du
fing oscillators. A general stability analysis has led to
uncoupled set of canonical Mathieu equations, and Floq
theory has been used with effect to derive analytical stab
boundaries for the spatial Fourier modes of the model.
have also analyzed the Hopf transitions from spatiotemp
chaos to cluster and complete synchronization states thro
the Strutt diagram. At last, a scaling law has enabled us
deduce the stability pattern of anyN ring from the two-
oscillators model Lyapunov spectrum.

This study can be extended to other models of coup
oscillators, provided that they have a relatively strong fun
mental Fourier component, as is the case for Ro¨ssler-like
oscillators@4,6,9#. It would also be of great interest to de
velop the statistical approach of the model in the thermo
namic limit, and also to extend the analytical study to t
related continuous medium model. At last, more prec
physical and biological models sometime require us to c
sider nonlocal couplings@5# or long-range interactions@7#.
For these latter cases, interesting new phenomena have
been observed through numerical simulations, and are w
ing for accurate analytical explanations.
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