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Abstract

We study the nonlinear dynamics of ultra-high frequency current-modulated semiconductor lasers. A retroactive coupling
scheme is applied to achieve their synchronization both in the regular and chaotic regimes. The stability analysis is performed to
determine the suitable coupling parameters leading to high-quality synchronization. The consequences of parameter mismatch
are also highlighted. Numerical simulations confirm the analytic approach.
 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The synchronization of chaotic oscillators has gath-
ered an increasing interest during this last decade
[1–3]. Applications in the fields of biology, physics
and engineering rapidly appeared to be wide. As far as
communication engineering is concerned, chaotic syn-
chronization is expected to ensure a high-level privacy
for telecommunications and data transfer [4–6]. Con-
sequently, intense research activities are actually con-
ducted for the synchronization of semiconductor lasers
(laser diodes) which are currently the standard opto-
electronic emitter–receiver systems in fiber-optics net-
works (see Ref. [7] and references therein).
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E-mail address: pwoafo@uycdc.uninet.cm (P. Woafo).

The rate equations describing semiconductor lasers
usually possess only two degrees of freedom, namely,
the photon and carrier densities. Hence, additional de-
grees of freedom should artificially be introduced for
chaos to appear. For that purpose, a first method uses
an external reflector to feed back into the active layer
of the laser diode a fraction of its delayed electro-
magnetic output. Thereby, the infinite dimensional-
ity created by the feedback delay induces an hyper-
chaotic dynamics which is sometimes referred to as
coherence collapse [8]. In this Letter, we will rather
consider a second alternative which generates chaos
through the amplitude modulation of the injection cur-
rent. The chaotic behavior of these high-frequency
Current-Modulated Semiconductor Lasers (CMSLs)
has yet been studied both theoretically and experimen-
tally [9–12].

In view of practical applications, several key is-
sues still require deeper investigations. Amongst them,
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the stability analysis of the synchronization process
particularly gathers a lot of attention [13–17]. Even
though few techniques have recently been developed
and can serve as interesting guidelines, the determi-
nation of the suitable coupling parameters (i.e., those
which induce a robust and quasi-perfect synchroniza-
tion) is a difficult problem which commonly resists
to analytic approaches. On the other hand, the un-
avoidable parameter mismatches can constitute a se-
rious threat for the accuracy of synchronization, as it
may subject the figurative phase point to intermittent
burst-like repulsions from the synchronization mani-
fold [18–21]. The aim of this Letter is therefore to ex-
plain how the variation of the various parameters does
influence the stability of the master–slave CMSLs sys-
tem for a particular type of unidirectional coupling.
We will also examine the impact of parameter mis-
match on the quality of synchronization.

The Letter is organized as follows. In Section 2,
we first focus on the chaotic dynamics and bifurca-
tion behavior of uncoupled CMSLs. We also present
the unidirectional coupling which will ensure the syn-
chronization both in the regular and chaotic regimes.
The stability analysis is performed in Section 3. Flo-
quet theory will enable us to give a qualitative inter-
pretation of the various stability and instability inter-
vals that can be observed as the coupling parameter is
increased. Section 4 will deal with the effects of para-
meter mismatch upon the maximum synchronization
error, which is the most constraining indicator of the
synchronization quality. At last, we conclude in Sec-
tion 5.

The numerical simulation of all ordinary differ-
ential equations is performed with the fourth-order
Runge–Kutta algorithm, and the nonlinear algebraic

equations are solved with the Newton–Raphson algo-
rithm.

2. Dynamics and synchronization of
current-modulated semiconductor lasers

As we have earlier noticed, the relevant variables
for semiconductor lasers are the photon densityP

and the carrier densityN . Considering the amplitude
modulation of the injection current, the rate equations
read

dP

dt
=
[
g(N −N0)(1− sP )− 1

τp

]
P + βN

τs
,

(1)
dN

dt
= I (t)− N

τs
− g(N −N0)(1− sP )P.

The meaning and numerical values of the various
parameters are resumed in Table 1. We have assumed
that

(2)I (t)= Ib + Im sin(2πfmt),

whereIb andIm are, respectively, the bias and modu-
lation currents, whilefm is the modulation frequency.
A suitable normalization of Eqs. (1) leads to the fol-
lowing dimensionless form

ṗ = [
(1+ 2n)(1− σp)− 1

]
p + β(n+Φ),

(3)

ṅ= ε
[
i0
(
1+msin(ωt)

)− n− (1+ 2n)(1− σp)p
]
,

with the following rescalings

ε = τp

τs
, σ = s

gτs/2
, Φ = 1

2
gNthτp,

Table 1
Parameter values used for the numerical simulations

Symbol Parameter Value

g Gain coefficient 8.4× 10−13 m3 s−1

s Nonlinear gain suppression factor 0.5× 10−26 m3

β Spontaneous emission coefficient 10−5

Nth Carrier density at threshold 2.018× 1024 m−3

N0 Carrier density at transparency 1.435× 1024 m−3

τs Carrier lifetime 1.025 ns
τp Photon lifetime 2.041 ps
Ith Threshold injection current density 1.969× 1033 m−3 s−1

fm Frequency of the modulation current 2 GHz
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i0 =Φ
Ib − Ith

Ith
, m= Im

Ib − Ith
, ω = 2πfmτp,

(4)p =
(

1

2
gτs

)
P, n= 1

2
gNthτp

(
N

Nth
− 1

)
.

The dots overp and n in Eqs. (3) denote the
derivative relatively to the reduced time (in units of
τp). One should note that the dimensionless injection
currenti(t) is now characterized by its time average
amplitudei0 and its modulation indexm.

For certain parameter values, the CMSL exhibits a
chaotic behavior. Fig. 1(a) displays the chaotic oscil-
lations of the photon densityp as a function of time.
They are constituted of spikes with randomly distrib-
uted amplitudes, alternatively followed by irregular

(a)

(b)

Fig. 1. (a) Chaotic behavior of the CMSL fori0 = 0.6 andm= 1.0;
(b) Corresponding phase plane.

bursts of quite smaller amplitudes. This two-frequency
structure is also foreshadowed in the phase plane of
Fig. 1(b), where one can notice that the chaotic at-
tractor intrinsically possesses the characteristic notch
of double-periodic oscillations. It also appears on the
bifurcation diagrams of Figs. 2(a) and (b) that chaos
occurs when the CMSL is strongly excited, i.e., for
high i0 or m. More precisely, chaos seems to be pos-
sible only when the modulation index approximately
exceeds 0.95. In both cases, the route to chaos is the
period-doubling cascade of pitchfork bifurcations.

The synchronization of CMSLs can be carried out
through different methods. For example, a bidirec-
tional coupling has recently been used to synchronize
such lasers [22]. In that case, the synchronized CMSLs
were going from chaotic to periodic behavior through

(a)

(b)

Fig. 2. Bifurcation diagrams: (a) Fori0 with m = 1.0; (b) For m
with i0 = 0.6.
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a reverse period-doublingsequence as the coupling pa-
rameter was increased. In this Letter, we will rather
use a retroactive coupling scheme [23,24], which can
be explicitly written in vectorial notation as

ẋ = F(x, t),

(5)˙̃x = F(x̃, t)− C(x̃ − x),

where the tilde (∼) indicates the slave variables, while
the vector-flowsF and C, respectively, describe the
uncoupled CMSL and the unidirectional coupling. The
state vector is obviouslyx ≡ (p,n) in our case. Here,
we aim to use a feedback coupling which physically
corresponds to a situation where a current proportional
to the difference of the slave and master output powers
is electronically fed to the slave CMSL, so that the
slave rate equations may be expressed according to

˙̃p = [
(1+ 2ñ)(1− σ p̃)− 1

]
p̃ + β(ñ+Φ),

(6)

˙̃n= ε
[
i0
(
1+msin(ωt)

)−K(p̃ − p)− ñ

− (1+ 2ñ)(1− σ p̃)p̃
]
,

whereK is a scalar parameter. When convergence re-
quirements are met, this coupling forces the slave sys-
tem to duplicate the dynamics of the master. This is
clearly demonstrated by the diagonal synchronization
manifold on Fig. 3. The following section will there-
fore focus on the conditions under which the coupling
efficiently completes a robust and high-quality syn-
chronization.

Fig. 3. Synchronization manifold of the master–slave system for
i0 = 0.6 andm = 1.0. The coupling strength has been fixed to
K = 5.0.

3. Stability of the synchronization manifold

The stability analysis of synchronized nonlinear
oscillators is commonly carried out through the study
of the asymptotic behavior of the deviation vector
(whose Euclidian norm is the synchronization error)

(7)w(t)= x̃(t)− x(t),

which estimates the instantaneous mutual proximity
between the master and slave sub-systems in the phase
plane. In general, depending on the coupling parame-
ter(s), three distinct situations can arise from the sta-
bility study according to the value ofw(t) ast → +∞.
The first of them occurs when‖w(+∞)‖ = 0. In that
case, the slave trajectory progressively degenerates to
the master one, and consequently stable synchroniza-
tion is achieved. The second situation arises when
0< ‖w(+∞)‖<+∞, i.e., when the synchronization
error does not converge to zero and does not diverge to
infinity either. Here, the synchronization is said to have
failed, since thex and x̃ oscillations remain uncorre-
lated despite the coupling. The third and last situation
corresponds to‖w(+∞)‖ = +∞, i.e., the coupling in-
duces a sustained growth to infinity for the slave sys-
tem variables. This situation is obviously worst than
the second, as it can lead to catastrophic consequences.
We aim in this section to determine under which con-
ditions each of these three configurations is observed
in our system. There is no need to stress anymore the
extreme importance of such a study in view of practi-
cal applications.

At a linear approximation, the deviation vector
obeys to

(8)ẇ =
[(

∂F
∂ x̃

)
w=0

−
(
∂C
∂ x̃

)
w=0

]
· w = J(x, t) · w.

As we have earlier noticed, synchronization is
achieved when the Jacobian matrixJ(x, t) drives w
to 0 at long term. For this situation to occur, it
is known that the so-called sub-Lyapunov exponents
should necessarily be negative [1]. Unfortunately,
these exponents can only be derived numerically, and
thus do not give any analytic insight into the stability
analysis problem. Therefore, several propositions have
been made to surmount that deficiency. The most
straightforward is to suppose that stability can be
ensured if the Jacobian matrixJ(x, t) has uniformly
negative eigenvalues throughout the whole chaotic
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attractor, but this assumption has recently been proved
to be invalid [15]. Other stability constraints have later
been proposed, either based on Lyapunov functions
[18] or on the decomposition ofJ(x, t) into its time
average and time varying components [19]. Even
though the consequent stability constraints have the
merit to be analytic and mathematically rigorous, they
are unfortunately overly strong for certain dynamical
systems, and they commonly fail to reproduce the
complex stability patterns which are obtained through
experiments and numerical simulations.

In this Letter, we generalize an approach which
has successfully been applied to the particular case of
single-well Duffing oscillators [16]. In fact, Eq. (8) re-
sists to exact analytic treatments because the Jacobian
is a function of the vectorx, which is a chaotic vari-
able. To circumvent this problem, we will replace this
chaotic variablex by x0, which is here assumed to be
the most probable Unstable Periodic Orbit (UPO) in-
trinsically embedded within the chaotic attractor, and
which like x also obeys to

(9)ẋ0 = F(x0, t).

Sincex0 is a priori multiperiodic, it can be expanded
in Fourier series as

(10)x0(t)=
+∞∑
k=0

[
Ak cos(kωt)+ Bk sin(kωt)

]
.

The parametric modulation frequencyω has logically
been considered as the base of our multiperiodic
expansion. Therefore, the Fourier componentsAk and
Bk can be recovered through the Ritz variational
criterion according to

(11)

2π/ω∫
0

[
ẋ0 − F(x0, t)

]
ejkωt dt = 0, k = 0,1,2, . . . ,

j being the unit complex number. Finally, the stability
analysis is resumed to the following Floquet problem

(12)ẇ = J(x0, t) · w.

The difference between Eqs. (12) and (8) is that
the stability of the synchronization manifold is now
investigated through the Floquet exponents rather than
the conventional sub-Lyapunov exponents.

The master and slave CMSLs are described by two
sets of two first-order Ordinary Differential Equations

(ODEs) each. For mathematical commodity, we will
transform them into a single set of two second-order
ODEs. Therefore, if we discardσ andβ because of
their very small order of magnitude (∼ 10−5), the rate
equations can now be expressed as

p̈ + ε(1+ 2p)ṗ − 2εp
[
i0(1+msinωt)− p

]
− ṗ2/p = 0,

¨̃p + ε(1+ 2p̃) ˙̃p
− 2εp̃

[
i0(1+msinωt)−K(p̃ − p)− p̃

]
(13)− ˙̃p 2/p̃ = 0.

The synchronization error will consequently be de-
fined as the following scalar variable

(14)u= p̃ − p,

which obeys at a linear approximation to

ü+
[
ε(1+ 2p)− 2ṗ

p

]
u̇

(15)

+
[
2ε
(
ṗ + (K + 2)p − i0(1+msinωt)

)
+ ṗ2

p2

]
u= 0.

Note that this latter equation corresponds to Eq. (8).
The chaotic variable may now be replaced by its corre-
sponding UPOp0. Therefore, if we straightforwardly
consider the multiperiodicity ofp0, the stability analy-
sis will require the resolution of a differential equa-
tion with a multifrequency parametric excitation. Even
though the related study would logically yield the most
satisfying results, it should be noticed that unfortu-
nately, the consequent analytical stability boundaries
can hardly be derived in that case, even within the
frame of perturbation theory.

In fact, previous studies have demonstrated that
such a complexity can be avoided when the chaotic
attractor is almost simply folded, i.e., looks like a
simple closed loop in the phase space. It has been
shown in [15] for Rössler oscillators and in [16] for
single-well Duffing oscillators that for such chaotic
attractors, a single period-one UPO is sufficient to
describe accurately the stability pattern of the master–
slave coupled system. Since the chaotic attractor of
the CMSL is an almost simply folded band in the
phase plane(p,n), we aim to derive the stability
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pattern of the coupled system with a unique single-
frequency truncated UPO, that is, we approximate
the multiperiodic orbitp0 with only its constant and
fundamental spectral components as follows

(16)p0(t)=A0 +A1 cosωt +B1 sinωt.

In Eq. (15),ṗ andṗ2 can be neglected in the paramet-
ric excitation terms, since they are, respectively, pro-
portional toω (of orderε) andω2 (of orderε2). More-
over, the parametric damping is of orderε, while the
stiffness term is proportional to

√
ε. Hence, the para-

metric damping can be replaced by its time average
value

(17)λ= 〈
ε(1+ 2p)

〉= ε(1+ 2A0).

According to the Ritz variational criterion,A0,A1 and
B1 obey to the following set of nonlinear algebraic
equations:

−ω2A1 + λB1ω+ 4εA0A1 − 2εi0A1 = 0,

−ω2B1 − λA1ω+ 4εA0B1 − 2εi0B1 − 2εmi0A0 = 0,

(18)2A2
0 +A2

1 +B2
1 − 2i0A0 −mi0B1 = 0,

and Eq. (15) may now be rewritten as

(19)ü+ λu̇+ ⌊
Ω2

0 +µcos(ωt − 2ϕ)
⌋
u= 0

with

Ω2
0 = 2ε

[
(K + 2)A0 − i0

]
,

(20)

µ= 2ε
[(
(K + 2)A1

)2 + (
(K + 2)B1 −mi0

)2]1/2
.

This latter equation can be transformed into the
canonical Mathieu equation

(21)
d2η

dτ2 + [
δ + 2α cos(2τ − 2ϕ)

]
η = 0

with the following rescalings

τ = ωt

2
; η = uexp

(
λτ

ω

)
,

(22)δ = 4

ω2

[
Ω2

0 − λ2

4

]
, α = 2µ

ω2
.

The solution of the Mathieu equation has the form
[25]

(23)η(τ)= eθτ φ(τ )

where θ is a complex number, andφ a π -periodic
function. According to Eqs. (22), the synchronization
is stable when�[θ ] < λ/ω, and unstable otherwise.
Therefore, the stability domain is analytically delim-
ited as [16]

(24)−sinh2
(
λπ

2ω

)
<Γ (δ,α) <+cosh2

(
λπ

2ω

)
,

whereΓ is the real function defined as

(25)Γ (δ,α)=
{
∆(0)sin2( 1

2π
√
δ
)

if δ � 0,
−∆(0)sinh2(1

2π
√−δ

)
if δ < 0,

and∆(0) is the infinite Hill determinant atθ = 0. With
theδk,l Kronecker coefficients, this determinant can be
expressed under the following symbolic form [16]

(26)

∆(0)=
∥∥∥∥δk,l − α

δ − (2k)2
(
e2jϕδk,l−1 + e−2jϕδk,l+1

)∥∥∥∥

with k andl varying from−∞ to +∞. On the (δ,α)
parametric plane, which is sometimes referred to as
the Strutt diagram, the curves of equationΓ (δ,α) =
−sinh2(λπ/2ω) represent theπ -periodic transitions
from stability to instability (and vice-versa), while
the curvesΓ (δ,α) = +cosh2(λπ/2ω) represent the
2π -periodic boundaries. Hence, these two types of
boundaries delimit the zone of linear stability (where
u(+∞) = 0, i.e., where high-quality synchronization
occurs). This zone is approximately represented by the
shaded area in Fig. 4 [25,26]. The second zone that
can be noticed on the Strutt diagram is the area of
instability where any perturbation diverges to infinity
(|u(+∞)| = +∞), and this area is in blank on the sta-
bility map. At last, there is a buffer zone of nonlinear
stability between the linearly stable and unstable ar-
eas where 0< |u(+∞)| < +∞ (desynchronization).
This latter zone (which is, however, linearly unstable)
has been lightly shaded and cannot be predicted from
the conventional Floquet analysis, since it is originated
from the nonlinear variational terms we have discarded
in Eqs. (15) (see also Ref. [25]).

From Eqs. (20) and (22), it clearly appears that
whenK is increased, the parametersδ andα are si-
multaneously varied. More specifically, the figurative
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Fig. 4. Stability map in the (δ,α) parametric plane (or Strutt
diagram), showing theπ -periodic boundaries (thick lines) and
the 2π -periodic boundaries (thin lines). Three straight lines of
different slopes have been sketched, and they represent the linear
approximations of the curve of Eq. (27) for increasing values of the
modulation indexm.

point in the (δ,α) plane sketches a curve of equation

α =
(

1

2
δ + 4εi0

ω2

)√
A2

1 +B2
1

A2
0

(27)×
[

1+ m2i20 − 2mi0B1
8εA0

(ω2δ + 8εi0)

A2
1+B2

1
64ε2A2

0
(ω2δ + 8εi0)2

]1/2

,

In first approximation, this curve can be assimilated
to a straight line of slope

(28)a = 1

2

√
A2

1 +B2
1

A2
0

.

This slope is proportional to the ratio between the am-
plitude of the varying component ofp0(t) and the am-
plitude of its constant component. Therefore,a is an
increasing function of the modulation indexm, since
a stronger parametric excitation of the CMSL leads to
higherA1 andB1 values. AsK is increased, the fig-
urative point in the Strutt diagram moves from left to
right on the curve of Eq. (27), and therefore alterna-
tively passes through linearly unstable and linearly sta-
ble areas. Consequently, the synchronization intervals
for K can be represented under the form]Kb1,Kb2[,
]Kb3,Kb4[, . . . , ]Kbn,+∞[, where theKbk are the
boundary values. It appears from Fig. 4 that whenm

is small, the slope of the curve (27) is weak, and then

the synchronization pattern is made of a single interval
]Kb1,+∞[. But asm is increased, this curve intersects
the zones of linear instability because of its greater
slope, so that the former single stability interval splits
into an increasing number of different synchroniza-
tion sub-intervals. In Fig. 4, we have graphically rep-
resented three straight lines with distinct slopes, corre-
sponding to different values ofm. From the smallest to
the highest slope, these lines, respectively, lead to one,
two and three synchronization intervals forK. Note
that as we have earlier noticed, high values ofm pre-
cisely correspond to the synchronization of CMSLs in
their chaotic regime, so that complex stability patterns
may be expected in that case.

It results from the above reasoning that the period-
one UPO approximation predicts the progressive oc-
currence of compact desynchronization intervals as
the modulation indexm is increased. Moreover, it syn-
thetically provides the related geometrical explanation
through the Strutt diagram interpretation. Therefore,
one can expect that these compact intervals of non-
synchronized behavior should emerge and widen on
theK-axis asm is continuously increased.

The numerical simulations completely confirm our
analytic stability analysis. In Fig. 5, we have repre-
sented the maximal synchronization error as a func-
tion of the coupling strength, for increasing values
of the modulation index. The maximal synchroniza-
tion error we have tolerated for high-quality synchro-
nization is 10−5. Therefore, synchronization intervals
are indicated on Fig. 5 by horizontal segments of
equation log10(‖w‖max) = −5. In Fig. 5(a), for ex-
ample,m is quite small (m = 0.1), so that we have
a single synchronization interval]−1.00,+∞[. For
K < −1.00, the slave variables indefinitely grow to
infinity, while for K > −1.00, quasi-perfect synchro-
nization is achieved.K = −1.00 is a boundary value
for which a high (but not infinite) synchronization
error is noticed. In Fig. 5(b),m has been increased
(m= 0.4), as well as the slope of the figurative curve
on the Strutt diagram. This curve now intersects a
nonlinear stability area, thereby splitting the former
semi-infinite interval of linear stability into two, which
are ]−1.00,−0.73[ and ]−0.67,+∞[. Nevertheless,
the inner nonlinear stability interval obviously rep-
resents a loss of synchronization, and not a growth
to infinity. Whenm is further increased (m = 0.6),
the first stability interval splits into two in its turn in
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(a) (b)

(c) (d)

Fig. 5. Synchronization error as a function of the coupling strengthK , when i0 is fixed to 0.6. (a) m = 0.1; (b) m = 0.4; (c) m = 0.6;
(d) m= 1.0. Note the progressive occurrence and widening of compact desynchronization intervals asm is increased.

Fig. 5(c), so that the stability pattern forK is now
]−1.00,−0.95[, ]−0.90,−0.75[ and ]−0.59,+∞[.
According to the bifurcation diagram of Fig. 2(b),
these threem values correspond to periodic oscilla-
tions. Hence, the synchronization which occurs here
(even forK = 0) is due to phase-locking. We increase
againm to 1.0 in Fig. 5(d) so that we are now syn-
chronizing the CMSLs in their chaotic regime. The
stability pattern is now made of four sub-sets which
are]−1.00,−0.95[, ]−0.42,−0.19[, ]0.13,0.21[ and
]0.57,+∞[. It should be noticed that the desynchro-
nization intervals are larger in the chaotic state than
in the periodic regime, and that obviously no syn-
chronization occurs whenK = 0. Moreover, synchro-
nization is always ensured for theK values which

are slightly above theπ -periodic threshold valueK =
−1.00. This can easily be explained by the stability
diagram of Fig. 4, and also from Eqs. (13), sinceK =
−1.00 is the critical value that induces the inversion
of the retroactive coupling term. The mechanism char-
acterized by the progressive occurrence of desynchro-
nization intervals through the splitting into two of a
synchronization interval has invariably been observed
for various sets of CMSL parameters during numerical
simulations. Anyway, it has been noticed that the first
instability interval]−∞,Kb1[ always leads to a sus-
tained growth to infinity for the slave variables, and
should therefore be absolutely avoided. On the other
hand, the inner instability intervals do not induce such
a catastrophic behavior, but just fail to achieve stable
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and robust synchronization. This can be explained by
the fact that these intervals are only weakly unstable,
so that the nonlinear terms of the rate equations suc-
ceed to confine the figurative phase point within the
chaotic attractor when it is repelled from the linearly
unstable synchronization manifold.

4. Synchronization of mismatched
current-modulated semiconductor lasers

Even though parameter mismatch is unavoidable in
practice, its undesirable consequences can be limited
when certain optimization requirements are met [21].
If we consider the various CMSLs parametersζi and
their corresponding parameter mismatchesδζi , the
deviation vector obeys at a linear approximation to the
following integral equation

w(t)= �(t)�−1(t0) · w(t0)

(29)

+
t∫

t0

[
�(t)�−1(τ )

×
(∑

i

∂F(x, t, ζ)
∂ζi

δζi

)
(τ )

]
dτ,

where� is the principal matrix function, that is the
solution of

(30)�̇ = J(x, t) · �.

The first term of Eq. (29) decays to0 as t → +∞
within the stability area. The second term does never
vanish and hence corresponds to the synchronization
error due to the parameter mismatch. Ifλav is the av-
erage largest sub-Lyapunov exponent (obviously neg-
ative), it can be demonstrated from Eq. (29) that for
initially stable synchronization,‖w(t)‖max increases
with the mismatches|δζi |, but is inversely propor-
tional to |λav|, i.e., the synchronization error is min-
imized when (−λav) is the largest possible [21]. On
Fig. 6, we have plotted the synchronization error as a
function of the coupling strengthK for different per-
centages of parameter mismatch in the chaotic regime.
It is seen that in stable intervals,‖w(t)‖max effectively
increases with the parameter mismatch. We also re-
mark that the first stability interval (just at the right
of the boundary valueK = −1.0) is the least stable,

Fig. 6. Synchronization error for increasing parameter mismatch in
the chaotic regime.

since in that area, synchronization is lost for a pa-
rameter mismatch of only 1%. Anyway, above 1%,
severe degradation of synchronization has been no-
ticed. We are therefore led to the conclusion that the
synchronization of chaotic CMSLs is very sensitive
to parameter mismatch, because for other dynamical
systems, a tolerance at up to 50% is sometimes wit-
nessed. It is also very important to stress that no detun-
ing has been applied between the modulation frequen-
cies of the master and slave CMSLs. In fact, numeri-
cal simulations have indicated that even a detuning of
10−5% destroys the synchronized state. Therefore, a
quasi-perfect stabilization of these ultra-high frequen-
cies will be necessary for practical applications.

5. Conclusion

In this Letter, we have performed the stability
analysis for the synchronization of ultra-high fre-
quency current-modulated semiconductor lasers, both
in their periodic and chaotic regimes. We have de-
veloped an approach which has resumed the stability
study to a Floquet problem. Hence, we have been able
to explain the occurrence of instability intervals when
the parameters and/or the coupling strength are varied.
We have also studied the influence of the parameter
mismatch upon the quality of the synchronization.

For further investigations, several important issues
remain opened. For instance, other coupling schemes
can be considered. In view of applications in com-
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munication engineering, a particular emphasis should
also be made on the study of the delayed differential
equations which enable to modelize the synchroniza-
tion of (very) distant CMSLs. At last, the signal distor-
tion due to noise and frequency filtering in telecommu-
nication links induce a degradation of synchronization
whose study should gather a specific interest.
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