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Generalized correlated states in a ring of coupled nonlinear oscillators with a local injection
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In this paper, we study the spatiotemporal dynamics of a ring of diffusely coupled nonlinear oscillators.
Floquet theory is used to investigate the various dynamical states of the ring, as well as the Hopf bifurcations
between them. A local injection scheme is applied to synchronize the ring with an external master oscillator.
The shift-invariance symmetry is thereby broken, leading to the emergence of generalized correlated states.
The transition boundaries from these correlated states to spatiotemporal chaos and complete synchronization
are also derived. Numerical simulations are performed to support the analytic approach.
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I. INTRODUCTION

Synchronization and spatiotemporal dynamics of cha
systems are some of the most intensively investigated to
of nonlinear science@1–3#. It is known that these phenomen
can lead to interesting applications in communication en
neering@4# or for the understanding of certain collective b
haviors encountered in various physical and biological s
tems@5,6#.

In general, when several identical oscillators are coup
different dynamical states can be observed such as
tiotemporal chaos or complete synchronization. It has
been demonstrated that the occurrence of these dynam
states mostly relies on the number of oscillators, as wel
on the type and strength of the coupling@7–10#. However,
the modelized system or its potential utilization sometim
requires to couple the system to an external independen
cillator. This is commonly achieved through the local inje
tion technique consisting of a unidirectional coupling b
tween the external command oscillator and a fix
representative of the nonlinear coupled system@11#. This lo-
cal injection scheme is, for example, indispensable for
description of undesirable parasite couplings or external
turbations. On the other hand, local injection can also
willingly introduced to force the nonlinear system to rep
cate the dynamics of the external master oscillator. For
ample, it is known that initially chaotic oscillators can loc
into a ~multi-! periodic state when they are mutually coupl
@10#. The local injection method can, in that case, enable
recover the chaotic dynamics when the unidirectional co
mand coupling is suitably designed.

In this paper, we consider a shift-invariant set ofN dif-
fusely coupled single-well Duffing oscillators~SWDOs! with
a positive nonlinear stiffness coefficient. Straightforward
taking into account the injection unidirectional coupling, t
evolution equations can be written as

ẍ11l ẋ11x11gx1
35F cosvt1K~x222x11xN!

1G~ x̄c2x1!,
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ẍk1l ẋk1xkgxk
35F cosvt1K~xk1122xk1xk21!,

k52,...,N, ~1!

where x̄c represents the dynamics of the external oscilla
and plays the role of a command signal,xk stands for the
instantaneous displacement of thekth oscillator,K and G,
respectively, represent the coupling parameter and the l
injection strength. TheN state variablesxk obey to the shift-
invariance conditionxk[xk1N . Generally, literature lays
emphasis upon the casex̄c[0, i.e., upon the control of the
coupled system to the trivial equilibrium state. Even for th
simplest target, further simplifications are often imposed
analytical results to be derived. For example,G may be di-
rectly set to infinity to pin at least the first oscillator to 0, an
gradient-coupling forces are sometimes introduced to
hance the control efficiency@11#. Throughout our study we
takex̄c as the chaotic oscillation of a SWDO identical to th
uncoupled items of the ring, i.e., we have

xJ c1lxG c1 x̄c1g x̄c
35F cosvt. ~2!

For the sake of exemplification, we fixN to 4, and we aim to
analyze the influence of the local injection on the dynam
of the nonlinear coupled system. More precisely, our obj
tive is first to identify the various dynamical states of the ri
depending onK, and second to study the modifications i
duced by the local injection coupling.

The paper is organized as follows. In Sec. II, we analy
the dynamics of the nonlinear coupled system whenG50.
The transitions from spatiotemporal chaos to complete s
chronization states are particularly investigated through F
quet theory. Section III deals with the caseGÞ0, and it is
demonstrated that the local injection coupling drastica
modifies the dynamical behavior of the ring as it enab
what we have termed generalized correlated states to em
We also give an analytic insight into the nature of the
correlated states and discuss their potential applicatio
mainly in the field of communication engineering. The four
and last section is devoted to the conclusion.m
©2002 The American Physical Society01-1
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II. NONLINEAR DYNAMICS AND BIFURCATION
BEHAVIOR OF THE FOUR-OSCILLATOR RING „GÆ0…

The SWDOs with a positive nonlinear stiffness term c
display a chaotic dynamics as it appears in Fig. 1 with
pseudo-two-well potential configuration. When they are d
fusively coupled like in Eqs.~1!, the stability of the resulting
dynamical state can be studied through the linearization
these equations around the statesxk according to

j̈k1lj̇k1~113gxk
2!jk5K@jk1122jk1jk21#,

k51,2,3,4, ~3!

wherejk stands for the perturbations. Each of these per
bations is parametrically excited by a chaotic variablexk .
The Fourier spectrum of the SWDO withg.0 in the chaotic
state shows that the energy is mainly distributed in v
sharp bands around odd harmonics ofv. But, the major part
of the energy is around the fundamental mode, which is t
the most predominant. Consequently, we can in first appr
mation replacexk in Eqs.~3! by

xper5A0 cos~vt2w!, ~4!

wherexper is supposed to be the best uniperiodic approxim
tion of xk . The mathematical meaning of such a substitut
is that the asymptotic behavior of eachjk will be decided by
the optimized Floquet multipliers instead of the su
Lyapunov exponents@12,13#. As reported in Refs.@12,13#
dealing with the optimization of chaos synchronization, t
first order approximation gives results in fairly good agre
ment with the numerical simulation.

If we introduce the diagonal variables~or Fourier modes!
zs as

z15j11j21j31j4 ,

z25x42x2 ,
~5!

z35x32x1 ,

z45x42x31x22x1

and the following rescalings,

t5vt,

d05
1

v2 F11
3

2
gA0

22
l2

4 G ,
a5

3gA0
2

4v2 , ~6!

hs5zs expF lt

2vG , s51,2,3,4,

Eqs. ~3! may now be written under the form of a set
independent canonical Mathieu equations, that is,
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d2hs

dt2 1@ds12a cos~2t22w!#hs50, s51,2,3,4, ~7!

with

d15d0 ,

d25d35d01
2K

v2 , ~8!

d45d01
4K

v2 .

Floquet theory states that depending onds and a, hs may
either indefinitely grow to infinity or decay to zero, an
thereby unambiguously decide the asymptotic behavior
the independent Fourier modeszs @13#. Consequently, the
stability of eachzs relies on the position of the representati
point Ms(ds ,a) on a stability map which is sometimes re
ferred to as the Strutt diagram.

In Fig. 2, we have represented the Strutt diagram whic
divided into three areas in the parametric plane~d, a! @13#.
The first of them is the area of linear stability whereuz
(1`)u→0. It is the inner shaded zone of Fig. 2, and
boundaries can be eitherp periodic @z(t)5z(t1p/v)# or
2p periodic @z(t)5z(t12p/v)#. The second zone is th
area of instability where any perturbation diverges to infini
i.e., uz(1`)u→1`. This area is in blank in the Strutt dia
gram. At last, there is a buffer zone of nonlinear stabil
between the linearly stable and unstable areas, wher
,uz(1`)u,1`. This latter zone~which is, however, lin-
early unstable! has been lightly shaded and cannot be p
dicted from the conventional Floquet analysis, since it ori
nates from the nonlinear variational terms we have discar
in Eqs.~3!.

We can now analyze through the Strutt diagram what h
pens in the system when the coupling strengthK is continu-
ously increased from zero to infinity. WhenK50, the system
is uncoupled and the Fourier modesz2 , z3 , andz4 degener-

FIG. 1. Phase plane of the chaotic oscillator withl50.2, g
51.0, v50.86, andF528.5.
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ate intoz1 . Therefore, the whole system is represented b
single pointM0 of coordinates (d0 ,a) in the Strutt diagram.
It should be noticed thatM0 automatically belongs to the
nonlinear stability area since the uncoupled system is c
otic. AsK is increased, the modesz2 , z3 , andz4 represented
in the stability map by the related pointsMs of coordinates
(ds ,a) independently begin to move from left to right alon
the straight horizontal line of equationa5const with a ‘‘ve-
locity’’

ns5
dds

dK
. ~9!

It results thatz4 is the fastest mode with a velocityn4
54/v2, while the degenerated modesz2 andz3 are the slow-
est with n25n352/v2. These ‘‘mobile’’ modes are called
transverse modes because they decide the stability of pe
bations transverse to the complete synchronization manif
On the other hand,z1 remains immobile in the Strutt dia
gram sincen150: it is the longitudinal mode describing th
stability along the synchronization manifold. WhenK is
small, the three transverse mode pointsM2 , M3 , and M4
remain in the vicinity ofM0 , i.e., in the nonlinear stability
zone. Therefore, the correspondingz, perturbations have a
nonzero finite time-average value: we are in the regime
spatiotemporal chaos.

When the fastest modez4 reaches first the linearly stabl
area, the ring satisfies the constraint

x42x31x22x1[0, ~10!

while we still have

x1Þx3 ,

x2Þx4 , ~11!

FIG. 2. The Strutt diagram. Thep-periodic boundaries are rep
resented by thick lines, and the 2p-periodic boundaries are repre
sented by thin lines. The nondegenerated spatial Fourier m
have been represented forG50 ~points! and forGÞ0 ~crosses!.
06620
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sincez2 andz3 remain in the nonlinear stability buffer zone
The ring is therefore in a standard correlated state~SCS!.
This intermediate state differs from spatiotemporal chaos
cause of the constraint~10!, and also from complete synchro
nization because of Eqs.~11!.

If, on the other hand,M4 reenters into the buffer zon
while M2 andM3 have yet together penetrated into the li
early stable area, we have

x1[x3 ,

x2[x4 , ~12!

and

x42x31x22x1Þ0. ~13!

This is sometimes referred to as cluster synchronizat
Here, two clusters have emerged@Eqs.~12!# while there is no
synchronization between these two clusters@Eqs.~13!#.

At last, when the three transverse mode pointsM2 , M3 ,
andM4 are together in the linearly stable area, the ring is
the complete synchronization state

x45x35x25x1 , ~14!

corresponding to the simultaneous fulfillment of both Eq
~10! and~12!. In that case, all the oscillators display the sam
dynamics.

Numerical simulations confirm the bifurcation mechanis
deduced from the Strutt diagram analysis. Let us consider
following two functions of the state variables:

g45^ux42x31x22x1u&, ~15!

g235^ux42x2u1ux32x1u&, ~16!

where the bracketŝ•& stand for the time average.g4 repre-
sentsz4 on one hand, whileg23 represents bothz2 andz3 on
the other. These functions will be equal to zero if the cor
sponding transverse modes points are in the linearly st
area of the Strutt diagram, and different from zero if they a
in the buffer zone.

In Figs. 3~a! and 3~b!, the variations ofg23 and g4 are
represented as a function ofK. Effectively, for lowK values,
the ring is in the spatiotemporal chaos regime sinceg23Þ0
and g4Þ0. WhenK reaches 0.70,g4 first vanishes becaus
the fastest mode pointM4 enters the linear stability area: it i
the standard correlated state. This is also witnessed wheK
is between 2.30 and 2.35 (g23Þ0 andg450). On the other
hand, wheng2350 and g4Þ0, like in the case 1.05,K
,1.20, we have a cluster synchronization state. At last, co
plete synchronization (g235g4[0) occurs between 1.20 an
1.70, and also whenK.2.35. It is important to notice tha
the transitions between these dynamical states are n
sharp. Moreover, unstable invariant sets embedded within
chaotic attractor can perturb the stability of the Four
modes, like forK'1.00 orK'1.75.

The above stability analysis can be generalized to a w
range of chaoticN-oscillator coupled systems through th
master stability function~MSF! technique@7#. Even though

es
1-3
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that method was originally developed to investigate the
bility of the completely synchronous motion, it can, howev
enable one to understand the various phenomena that
yet been numerically encountered in some coupled syst
~intermittent pattern formation, symmetry breaking, spon
neous spatial reordering, etc.!. Effectively, the MSF method
enables one to decide the stability of the transverse mo
and therefore, the cluster and correlated states would als
interpreted as the dynamical configurations correspondin
the various distributions of these transverse modes betw
the linearly and nonlinearly stable areas of the related par
eter space.

III. INFLUENCE OF THE LOCAL INJECTION „GÅ0…

WhenG is taken into account, the first order perturbati
equations are

j̈11lj̇11~113g x̄c
2!j15K~j422j11j2!2Gj1 ,

j̈k1lj̇k1~113g x̄c
2!jk5K~jk1122jk1jk21!, k52,3,4,

~17!

FIG. 3. ~a! Variations ofg23 as a function ofK, ~b! idem forg4 .
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with jk5xk2 x̄c . From these equations, we can determ
the eigenvaluesLn through the resolution of the characteri
tic fourth-order polynomial equation,

G41S G

K DG324G222S G

K DG50, ~18!

where the solutionsGn are related to the eigenvaluesLn and
the velocitiesnn by

Gn522
Ln

K
522v2nn . ~19!

Figure 4 shows the numerical solutions of Eqs.~18! ob-
tained with the Newton-Raphson algorithm when the ra
(G/K) is increased. It can be noticed that whenG50, we
have three nondegenerated modes, as we have demons
in the preceding section. But as soon asGÞ0, the degen-
eracy of the second mode is destroyed so that four non
generated modes now appear, and the slowest one dis
tinuously passes fromn2,352/v2 to n1501. Moreover, it
appears thatn4 indefinitely increases to infinity, while the
second mode keeps a constant velocityn252/v2.

Each of these nondegenerated modes has been sche
cally represented in the Strutt diagram in Fig. 2 by crosse
coordinates (ds ,a) with

d15d01n1K5d01
«1

v2 K,

d25d01n2K5d01
2

v2 K,

~20!

d35d01n3K5d01
21«3

v2 K,

d45d01n4K5d01
41«4

v2 K.

FIG. 4. Velocities~in units of 1/v2) of the Fourier modes when
the ratio (G/K) is increased.
1-4
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The ds parameters have been explicitly written to define
detuning functions«s which are obviously equal to 0 whe
G50. However,n1 and n3 asymptotically converge to th
limit values «1

`/v2 with «1
`50.585 and («3

`12)/v2 with
«3

`51.414, respectively, whenG→1`.

A. Generalized correlated states

The determination of the dynamical state of the ring n
depends on the distribution of the four nondegenerated F
rier modes between the various areas of the Strutt diagram
we considerT as the transfer matrix from the perturbatio
variablesj i to the diagonal oneszk , we have the following
equations:

zk5(
i 51

4

Tikj i . ~21!

Here, theTik coefficients are complicated functions ofG and
K which can be obtained through an eigenvector analysi
Eqs. ~17!. They are, however, simply equal to 0, 1, or21
whenG50.

For very smallK values, the mode points are still in th
nonlinear buffer zone, so that the ring remains in the s
tiotemporal chaos state. WhenK is increased, the fastes
mode becomes linearly stable, i.e.,

z45(
i 51

4

Ti4~xi2 x̄c!50. ~22!

This latter equation expresses a nontrivial linear constr
between the four dynamical variablesxi : we consider this
intermediate state as a generalized correlated state~GCS! by
opposition to the SCS we have analyzed in Sec. II. Equa
~22! means that knowing thex̄c command variable, each rin
displacementxj can be related to the three others as

xj5 x̄c1(
i 51
iÞ j

4
Ti4

Tj 4
~xi2 x̄c!. ~23!

This may have a conceptual application to the enhancem
of the chaotic encryption of messages@4#. Effectively, in the
classical scheme, only two chaotic oscillators are synch
nized. Hence, one can encode an information-bearing si
into the noiselike output of the chaotic transmitter while t
synchronous receiver identifies the masking compon
which is then extracted to reveal the original transmit
message.

In the four-oscillator ring with a local injection, security
strengthened when the encryption is performed with thexj
variable rather than withx̄c . Effectively, according to Eq.
~23!, it is indispensable in that case to know the dynamics
the three other chaotic oscillators to recover the enco
message. Therefore, one can consider that these
complementary oscillators enable the chaotic componen
be more complex, i.e., more difficult to pirate. When a s
ond nondegenerated mode becomes linearly stable, a su
mentary constraint is imposed so that each chaotic oscill
06620
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of the ring can be univocally related to only two others.
this case, obviously, the masking component is less comp
If a third mode also becomes stable, each oscillator will
related to a single other one and at last, complete cha
synchronization with the external master oscillator occ
when the four modes become linearly stable. This latter c
corresponds to the classic masking technique, since the f
oscillator ring is now equivalent to a single oscillator. Obv
ously, the above reasoning can also be extended to
N-oscillator system.

B. Transition boundary values for generalized clusters states

The transition boundaries between the spatiotemp
chaos, GCS, and complete synchronization states are m
influenced by bothG and K. Let us, for example, focus on
the first bifurcation~from spatiotemporal chaos to GCS! and
on the last one~from GCS to complete synchronization! asK
is increased with a fixedG. The corresponding critical tran
sition values forG50 have yet been determined numerica
in Sec. II asK f(0)50.70 andKl(0)52.35. They can be use
to deduce analytically the transition valuesK f(G) and
Kl(G) for any nonzeroG value. Note that forGÞ0 we
should have spatiotemporal chaos forK,K f(G), complete
synchronization forK.Kl(G), and GCS whenK f(G)<K
<Kl(G).

In fact, the first GCS emerges when the fastest mode p
M4 enters the linear stability area of the Strutt diagra
From Eqs.~8!, ~9!, and~20!, we can therefore deduce that

E
d0

dcr,f
dd5E

0

K f ~0! 4

v2 dK5E
01

K f ~G! 1

v2 F41«4S G

K D GdK,

~24!

i.e.,

E
01

K f ~G!

«4S G

K DdK54@K f~0!2K f~G!#, ~25!

wheredcr,f is the first critical Hopf boundary value encoun
tered asdis increased. Since the integrand function«4 is
positive, one can straightforwardly deduce that

K f~G!<K f~0!. ~26!

Hence, the ring emerges more rapidly from spatiotempo
chaos whenG is greater. However,K f(G) cannot be ex-
pressed explicitly because«4 has not been determined an
lytically.

On the other hand, the boundary transition from the l
GCS to the complete chaotic synchronization state co
sponds to the entrance of the slowest mode pointM1 into the
last semi-infinite linear stability section, so that we have

E
d0

dcr,f
dd5E

0

K f ~0! 2

v2 dK5E
01

K f ~G! 1

v2 «1S G

K DdK, ~27!

i.e.,
1-5
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E
01

Kl ~G!

«1S G

K DdK52Kl~0!. ~28!

Here, dcr,f is the last critical Hopf boundary value. Ther
fore, Kl(G) converges to the asymptotic value

Kl~G→1`!'
2

«1
` Kl~0!.Kl~0!. ~29!

The above equation means that asK is increased, complete
synchronization paradoxically occurs later when a local
jection coupling is introduced. It can consequently be c
sidered that the related gap energy is used to tune the
chronous chaotic ring to the target master oscillator.

The critical boundary curvesK f(G) andKl(G) have been
plotted in Fig. 5. They divide the parametric plane into thr

FIG. 5. Transition boundaries from GCS to complete synch
nization. The analytical results are shown by full line, and the
merical results are shown by squares linked by a continuous li
ev

tt
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areas: the lower zone corresponds to spatiotemporal ch
the intermediate one to the GCS, and the uppermost to
complete synchronization. However, the curveK f(G) re-
mains difficult to distinguish in the figure, since it rapid
vanishes to 0. Therefore, the lower zone of spatiotemp
chaos does not clearly appear on the map. On the same
ure, the results of the numerical simulation forKl(G) have
also been represented. They show a qualitative concord
with the analytic results of Eq.~28!. One can note the dis
continuity atG50 for theKl(G) curve, due to the drop to
01 of the slowest velocity when the local injection is set o
This implies that smallG values~case corresponding to un
desirable external perturbations! irreversibly destroy the
complete synchronization state since the threshold va
jumps from a finite value to infinity. However, it appears th
the boundary curves rapidly converge to their asymptotes
that it is not necessary to use highG values to obtain a
satisfying synchronization.

IV. CONCLUSION

In summary, we have studied the dynamics and bifur
tion behavior of a ring of chaotic oscillators with a loc
injection. Floquet theory has enabled to interpret through
Strutt diagram the various transitions amongst the differ
dynamical states of the system. The influence of local inj
tion has also been investigated, and a particular emphasis
been laid upon the generalized correlated states. The bo
aries from these GCS to spatiotemporal chaos and comp
synchronization have been derived.

The extension of our approach to the thermodynamic li
(N→1`) and to the continuous media approximatio
seems to be an important perspective. This study may
shed some light on various interesting issues such as
collective behavior of small aggregates of coupled cells
biology @5#, or the problem of interconnection in chao
secured communication networks.
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