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Stability and optimal parameters for continuous feedback chaos control
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We investigate the conditions under which an optimal continuous feedback control can be achieved. Chaotic
oscillations in the single-well Duffing model, with either a positive or a negative nonlinear stiffness term, are
tuned to their related Ritz approximation. The Floquet theory enables the stability analysis of the control.
Critical values of the feedback control coefficient fulfilling the optimization criteria are derived. The influence
of the chosen target orbit, of the feedback coefficient, and of the onset time of control on its duration is
discussed. The analytic approach is confirmed by numerical simulations.
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[. INTRODUCTION Solving the retroactive control problem requires the ful-
fillment of optimization criteria, amongst which the choice of

Chaotic oscillations are particularly characterized by theirthe appropriate targe) orbit(s), the computation of suitable
unpredictability and high sensitivity to initial conditions. It is parameters for th& matrix, the minimization of the dura-
therefore easy to understand that they are generally consition of the control. To the best of our knowledge, very few
ered as an undesirable phenomenon in engineering, mainly mnalytical studies have been done in that domain, and the
the cases where high precision or high performance is remost of the time, the control parameters are chosen on the
quired. Physiologists have also noticed that brain waves anblasis of numerical simulations, or even at random. There-
cardiac pulsations sometimes become chaotic, and wonderfiére, the aim of this paper is, to determine under which con-
making them periodic may induce important qualitative orditions the control may be conducted in the most efficient
quantitative changes in the living beings’ vital functions. Re-way: that is, in one word, optimization.
covering a regular dynamics from a chaotic one has been For this purpose, we will take one of the most well-known
considered in the mathematical and physical communities azodels of nonlinear physics, the single-well Duffing equa-
a very challenging task, and gave birth to the notion of chaosion, and for simplicity, we will lead the control with a single
control with interesting technological and biological applica-scalar parametef according to
tions[1,2].

The interest devoted to that particular problem has led the %+ Ax+x+ yx3=F coswt—K(x—X)H(t—T,), t=0.
researchers to develop different techniq[@s6]. Due to its (3)
simplicity and the ease to be implemented practically, the
continuous chaos controlling method of Pyrafélshas been Here,\ is a positive damping coefficient, anda nonlinear-
applied to control chaos in several physical system8 and ity coefficient. In fact, Duffing introduced this latter cubic
to achieve synchronization of chaotic systd®40]. We can  stiffness term in 1918 to describe the hardening-Q) or
mathematically illustrate this approach by the following the softening ¢<0) spring effects observed in many me-
equation(in vectorial notatioft chanical problem§11]. We also suppose that the oscillator is

excited by an external sinusoidal force of amplitdgie@nd
v=Ff(v,t)—[K][Vv=V(t)JH(t=Ty), t=0, (1)  frequencyw, and that the control will be achieved towards
the target orbit X,X) of the phase plane. This continuous

whereH is the Heaviside step function defined as control of chaos by a self-controlling feedback technique has
successfully been used both theoretically and experimentally,
0 if x<0 and its robustness relatively to noise influence has been
H(x)= ) 2) proved to be effectivé6].
1 if x=0. The paper is organized as follows. In Sec. Il we will ap-

proximate the optimal orbits with the Ritz variational crite-
K is the feedback gain matrix,is the target orbitt is the  rion in both they>0 and y<0 cases. The Floquet theory
time, andT, is the onset time of the control. Due to the will enable us to perform the stability analysis of the con-
nonlinear vector-flowf(v,t), the system is assumed to dis- trolled system in Sec. lll; the boundaries of instability do-
play a chaotic dynamics wher<T,, and fort=T,, the  mains will be analytically determined. Section IV deals with
feedback controllers are supposed to be driving the oscillatovarious considerations such as the existence of a critical

from chaos to the desired target orbit. valueK, under which no control is possible, the influence of

control precision upon this critical value, and the impadkof

andT, upon the duratiol ., of the control. Light will also

*Corresponding author. Email address: pwoafo@uninet.uycdc.crhe shed on the variations @f,, as a function of the control
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tion is a thin band separating the inner limit cycle and the
unbounded solution basing4].

It is more advantageous to achieve the control towards a
regular orbit which, in the ideal case, satisfies B).for t
<T,, so that the transition from chaotic to controlled oscil-
lations may be as smooth as possible. Hence, optimization
criteria come into play, trying to minimize the function

dx/dt

g(t)=F coswt— (X+AX+x+yx%), t=0. (4

It has been theoretically demonstrated that the residual
functiong can uniformly be set equal to zero if the control is
conducted towards one of the unstable periodic orbits
(UPOg embedded within the chaotic attract¢8s6]: in that
sense, they are the exact optimal target orbits. But generally,
these UPOs correspond to nonsinusoidal oscillations, so that
it is difficult to define their exact time-dependent analytic
expression. Since our objective is to derive the analytical
expressions of the chaos control characteristics, we circum-
vent this problem in the following manner. We approximate
the UPOs by regular uniperiodic orbits that nearly satisfy the
optimization criterion. Therefore, the approximated minimi-
zation of the residue functiog can be achieved through
several different methods, amongst which we have chosen
the Ritz variational criterion, leading to

dx/dt

27/ )
f g(t)e'“tdt=0. (5)
0

We can take a target orbit of any kind, but for sinusoidal
excitations, elliptic trajectories in the phase plane seem to be
the most appropriate, and then we set

(b) x

FIG. 1. Phase plane of the chaotic systefas.y>0 case:\ X(t)=Xo cog wt—¢). (6)
=0.2, y=1.0,F=28.5, andw=0.86 with initial conditions(0;0).
(b) y<0 case\=0.4, y=—1.0,F=0.23, »=0.5255 with initial
conditions (0;0) for the inner limit cycle, and—0.3;0.7 for the
chaotic trajectory.

Hence, Eq(5) yields the following set of nonlinear algebraic
equations:

2

. . . [([1_602)"‘%770 +\ 20’ [Xg=F?,
weight parameteK. We finally conclude in Sec. V. The nu- 4
merical simulation of all the ordinary differential equations \w
will use the fourth-order Runge-Kutta algorithm, with a time p=tan! ——3 | (7)
stephrx=T/1000, wherelT =27/ w is the period of the ex- (1— w?) + Zyxﬁo

ternal excitation.

and the functiorg may now be written as
IIl. DETERMINATION AND COMPUTATION OF OPTIMAL

TARGET ORBITS g(t)=—pBcog3wt—3¢), (8)

As it is known, the single-well Duffing model can display W
a chaotic dynamics according to the chosen parameters. In
the y>0 casd12,13, the system presents the classical jump B= %yxﬁo. (9)
phenomenon and nonlinear resonance, but high external
force amplitudes give rise to chaotic oscillations owing to the  The Ritz criterion has transformeg{t) into a periodic
pseudo-two-wells potential configuration, as shown in Figfunction whose frequency is thrice that of the external exci-
1(a). When y<0, chaos is much more difficult to spot. For tation. Equation(7) gives a sixth-order polynom iRy, and
example, the sets of parameters in Fifb)Ican induce two  we have used the Newton-Raphson algorithm to determine
different stable orbits depending on initial conditions. Weits real positive solutions. For the system parameters of Fig.
have an inner limit cycle, which has a relatively large basini(a), we have a single solution
of attraction including the trivial center point in the phase
plane, and an outer chaotic trajectory whose basin of attrac- X01=3.32732, ¢,=0.02008 (10

here
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and for those of Fig. (b), we have three, which are n= %yx?,,

%01=0.34374, ¢,=0.31956
X02=0.86479, ¢,=0.91134 (11)
Xo3=1.03161, p3=—1.23096

#=3¥Xo,

Xo and ¢ being the coefficients of the Ritz solution. Equation
(13a), which is nonlinear with an excitation both parametric

with a 10°° precision. For they<<0 case, the first inner Ritz and external, can be unstable for certain valuekof.e.,

: . . e .~ lead to unbounded solutions. Effectively, if we only keep
orb!t can straightforwardly be |dent|f|_ed to the stable .pe”Od.'Clinear terms ire (sincee is assumed to be smaland discard
orbit of the uncontrolled system, while the second Ritz orbit

. e'lthe external excitatiofiwhich does not induce unstable os-
Lillations at that approximationthe boundedness efwould

analysis(hysteresis constitutes a fairly good approximation ebe established by the study of the linear parametric equation

of the UPO embedded within the chaotic attractor. For th

y>0 case, the approximation is certainly less pertinent be- E+Ne+] Q2+ pcog2wt—2¢)|s =0 (14)
cause the Ritz variational approximation is poor as the UPOs 0 '
in this case are more complicated. which is a damped version of the Mathieu equation. Equa-

. Nevertheless, thg Ritz procedure ha§ the advantage to prgon (14) presents instability domains accordinghtoQ), ,
vide sets of purely sinusoidal target variables to the feedbacknq 5. The Floquet theory tackles this problem by precising

controller, according to what is the most prevalent scheme ife stability boundarie§15—17. By setting the following
practice. These approximated optimal orbits can also serve ggscalings,

interesting alternatives when time-delaylé&] or computer-

assisted[3] controllers are unavailable or inappropriate, =i,

hence keeping the exact UPOs out of reach. Moreover, their (15)
explicit time-dependent expression would probably enable AT

one to perform a stability analysis valid for the neighboring u(r)=e EXF<Z )

case of the true optimal orbits, i.e., UPOs. That is why, in all

subsequent sections, we will rather tune the chaotic oscillahe dissipative Mathieu equation can be rewritten in the ca-
tions to their related regular Ritz orbits. Note that throughouthgnical form as

the paper, they>0 andy<0 cases will refer to the sets of

parameters used, respectively, in Fig&) and 1b). U+[6+2acog27—2¢)Ju=0 (16)
I1l. STABILITY ANALYSIS OF THE CONTROL with
Starting fromt=T,, the system changes its configuration, 5 1 02— )\_2 _ 1 LiK4 3 = ?\_2
and stability considerations come into play. Quite few studies Y 4| w? PRIV
have been done on that topic despite its crucial importance.
We emphasize that stability is not control, because the notion 7 3770
of control implies the Sup(—X)=<h condition, h being the a=5—7=—"7> (17)
2w 4w

precision of the control, while stability, which is less restric-
tive, just requires< to remain bounded. Therefore, one can Hence, the control paramet&r only modifies s, but not

tolerate the control to faflSupx—x)>h], but never to be anyway. The solution of E¢(16) has the form
unstable, since it would cause irreversible damages to the

system. u(r)e’ (1), (18)
The stability of the control is strictly equivalent to the
boundedness of defined as where ¢ is a w-periodic function and? a complex number.
. Expanding¢ in Fourier series yields
e(t)=x(t)—x(t), t=T,. (12
+ oo
Here, we have introduced a new variable which is the mea- d(1)= 2 b,e?n" (19
sure of the relative nearness of both controlled and target n=-e
orbits. From Eq.(3), one can therefore deduce that, for dh
=Ty, € obeys and hence
+ o
8+)\8+[Q§+ﬂCOE{Zwt—Z(p)Js-l-,u,szCOS(wt—qo)-i—'ysg u(r)=e’¢(7)= 2 B,ef+2inT (20)
— — Bcog3mt—3¢) (133 !
_ Inserting Eq.(20) in Eq. (16) gives an infinite homoge-
with neous, linear, and algebraic system, which may have solu-
5 s — tions if and only if the associated determinant is set equal to
Qp=1+K+3yX5, (13D zero, that is
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A(a)—’ (6+(6+2im)

where thed,, , are Kronecker symbolsl7]. The determinant
of Eq.(21) is called the infinite Hill determinant, and one can
show that it obeys

NP Sirf(3im6) -
(60)=A(0) S o) (229
and therefore
6= iz—ﬂl_sin’l VA(0)sir?(: /). (22b)
Since, from Eqgs(15),
A
S(T):(ﬁ(T)eX[{(e— 2(1))7- , (23

we can deduce, depending on the real parp,othat thee

5—(2m)2

=0, (21

—sinhz(m)<l“(5,a)<+cosﬁ(m (27
4w 4o

We have earlier noticed that the control paramé&temly
modifiesd, but nota. Hence, wherK is varied, the figurative
of the system in thdd,a) plane is just moving along &
=const straight horizontal line. Starting frof= —° [i.e.,
K= —o according to Eq(17)], this point will alternatively
pass through unstable and stable domains. Hence, as far as
stability is concerned, a proper choicelofrequires the ful-
fillment of the double inequality27).

Qualitatively, numerical simulations fully agree with the
above analytic statements. The unique solution of ¢hed
case generates a highvalue: hence, we have several stabil-
ity intervals of the kind Ky ,Kpol, 1Kp3:Kpal,--+y 1Kpns
+oo[, where theK,,; are boundary values fdf. Sincex, is
large, the nonlinear terms of E¢L339 play a predominant
stabilizing role, and gather all the compact intervals

oscillations either decay to zero or continuously increase tdKbi Ko+l Within ]-17.5-17.4. If we notice thats

infinity, unless Ref)=N\2w. Floquet theory states that the
transition from stability to instability occurs only in two dis-
tinct conditions.

(1) m-periodic transition:d=\/2w.

sinr?( M)
A0+ —— 2] g (24)
sif(3myo)
(2) 27r-periodic transition:d=i+\/2w.
cosit MT)
w
A(0)— (25)

————=0.
sirf(3m/é)

Equationg24) and(25) define a set of curves in tHé,a)
plane, as approximately represented in Fig(f@ exact
curves, see Ref$15-17). For the nondissipative Mathieu
equation, the Hopf theorem states that for a fixedstable
values of § are those which are strictly situated between
boundaries of different types. In our dissipative case, i
graphically implies that the stability domain is the shaded

area of Fig. 2. Mathematically, if we define the new real_

function

A(O)sinz(;wﬁ) if 5=0
I'(8,a)= (26)

—A(O)sinf?(iw\/—&) if 5<0.

The Hopf theorem leads to the following stability condition:

=0 corresponds here t§,=—17.560, we can deduce that
the system surprisingly behaves asviftvas very small, pos-
sessing a single stability intervaK},,+oo[ at the first ap-
proximation. The two solutions of the<0 case generate a
lower «, (in absolute valupand then, lead to just two stabil-
ity intervals of the form Ky;,Kpo[ and Kz, + [ : humeri-
cally, we have for the first solutionK(,;=—0.434; K,
=0.017; Kp3=1.228) and for the seconK(;=—0.231;
Kp2=0.008; K,3=2.762). These intervals correspond to the
two segments laying within the shaded area in Fig. 2. Obvi-
ously,K=0 (corresponding to a no-control situaticalways
belongs to a stability interval. In fact, it waspriori evident
that negative values are not, in general, appropriate for the
control, contrary to what occurs in synchronization theory

~

1

a=const

FIG. 2. Stability diagram in the(5,a) plane showing the
mr-periodic boundariedthick line9 and 2r-periodic boundaries
(thin lines.
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[18]. But the Floguet theory enables us to point out a quite  **® —
interesting conclusion, confirmed by numerical simulations:
even small positive values df can destabilize a system, 1000

while higher values scarcely do.

It should be noticed that the control towards UPOs nearly s}
correspond to the cas@=0 (i.e., g=0). SinceB has no
influence on the linear stability pattern, one can expect thaQ 500 |
the conclusions derived for the Ritz orbits are qualitatively
valid for the exact optimal orbits. Anyway, the accuracy of w0
the stability analysis can be sharpened by the expansion ¢

the approximation to the harmonics af (mainly for the 200 -

v>0 case.
0
IV. CRITICAL PARAMETERS AND DURATION 22 2 4.8 16 1.4 1.2 N
OF CONTROL (@) log ()

As we have earlier noticed, stability is not control: appro-

priate values foK are those for which ol
|8(t)|<h, t>(To+ Teon)s (29) 140
whereh is the precision of the control, and,,, its duration, 12

that is, the interval between the onset time of the control ant |
the time of its end. The stability analysis suggests that verjg*
large values ofK are always good, but it would be very

interesting to determine the critical vall&,, under which, 60}
for a given precision, no control is possible. The advantagt

of such an investigation is at least twofold: first, it enables “

one to ensure the control with the smallk&spossible, which ot

is equivalent to the lowest energy input; second it permits . ‘ ,

one to know how the parameters of the system affect thi: 45 < a5 3 25 2 -5
critical value. () logo(h)

WhenK is varied,(), is modified according to Eq$13),
and sincew is a fixed frequency, resonances may occur with FIG. 3. K as a function of logy(h) (full lines for analytic
the external and parametric excitations. The method of mulresults, squares and crosses for numerical resuiés y>0 case.
tiple time scales demonstrates that the last peak of resonant® y<0 case with the lower curve for the first solution and the
is induced by the external excitation: hen€k, should be far ~ UPper one for the second.
beyond 3 if we want to obtain small amplitudes fer We ) )
can therefore neglect the nonlinear terfiecause of the between formuld30) and the results of the numerical simu-
small amplitudes of, precisely, and discard the linear para- lation of the differential equatiofB), and therefore confirm
metric excitation(which does not induce noticeable reso- its validity. It obviously appears th#, is a decreasing func-

nance, and obtain the following simplified version of Eq. tion of the precisiorh. Sometimes, the Routh-Hurwitz crite-
(133: rion is used to determink, [7,8], but it unfortunately fails

to include the influence of the precision, and then to fulfill
é-i—)\é-l-Q%s: —pBcog3wt—3¢p), t=Ty. (29 accuracy requirements. For the>0 case, one can notice in
Fig. 3(@ that very largeK are necessary to ensure the con-
The control is ensured when the precisiois greater than  trol, even for poor precisions: this is due to the large ampli-
the amplitude of the: steady-state oscillations. The critical tudex, of the target motion. For the#<0 case, Fig. ®)
value ofK above which it is the case is precisely obtained byconfirms that higheK are required for larg&,. This latter
setting the equality between the both, yielding case is interesting since it enables a quantitative comparison
between orbits of the same system’s parameters: it is notice-

3 V?’o ‘ able that the control is more difficult to achieve with the
Ka=90?~1- 2 Yo+ E) —9\%w® (30 second orbit, that is near the chaotic band than with the first
which is far away. Another marginal phenomenon can be
assuming that reported. Control towards the first solution in thel0 case
4 also occurs whenK belongs to the intervalg—0.434,
he lvIXa 31) —0.034 and]0.001,0.01F, which almost correspond to the

whole first stability interval: this apparently violates condi-
tion (30). In fact, the retroactive feedback termK(x—X)
Figures 3a) and 3b) show the quasiperfect coincidence acts in that case as a small perturbation of the sensitive

12zw’
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uncontrolled Duffing system. For UPOs, the residual func-
tion g vanishes and the variable is no more externally ex-
cited: therefore, to foresee the success of the control proce-
dure, the determination of thé exponent[which passes
through the computation of the infinite Hill determinant
A(0)] would be necessary.

Equation(29) can also be used to derive explicitly the
duration of the control, which can be assimilated to the time
required for the transient oscillations to decay, that is,

. [6(To)+\e(To)/2]?
2
L2 \/8 (T =07 \7a .
con—y IN .
A |l

(0590921 90 20?

T, implicitly influencesT,,, throughe(T,), since the du-
ration of the control logarithmically increases with the initial
separation between the chaotic and the target orbits in the
phase plane. Hence, one should note fhgt, can be very
low only when the target orbit is near the chaotic trajectory
(even though, as we have earlier demonstrated, the control
paradoxically requires more energy in that gasen the
other hand, as numerically confirmed by Fig. B, is a
decreasing function ok, and one can find that

2 |8(To)|}
T = lim Tep=c—In———
con,min Kot oo con )\ h

(33

is the minimum duration under which no control can be
achieved. This result is of great practical interéstpriori,

one could have naively thought that the control could have
been led as fast as desired, just dependindoffrigure 4
does not support that. For example, Figb)4dshows that a
feedback coefficienk =10 is sufficient to ensure an optimal
control (with approximately the minimunf..,). Hence, the
above analysis enables us to avoid an unavailing waste of
input energy by preventing us from a useless increase of the
control parameteK. Anyway, the interest of all the above
statements is unfortunately limited by the fact thdiT )
=X(To) —X(T,p) is always an unknown because xfT).
Nevertheless, it is possible to perform an analysis leading to
statistical conclusions.

One may wonder why the curves of Fig. 4 obtained
through the numerical simulation of E(B) are not smooth.
We need to refer again to the Floguet theory to explain that
phenomenon. It should first be noticed th&t, always be-
longs here to the last stability domain: it implies that all the
values beyond ., are at least stable. Thieexponent, whose
real part permits one to determine the decay rate according to
Eq. (23) is explicitly defined as follows:

N 2
—sinhz(m><rso, 0=i2ii;sinh*1\/—F, (34)

chaotic orbit, which then degenerates into the inner limit

cycle. Therefore this scheme may be interpreted as a jump

phenomenon, rather than a control process.

2i
0<r<i, 0=i;sin‘1\/f,

It appears that the control towards the Ritz orbits requires

a defined minimal input energy. This can be explained by the
fact that they are not dynamically intrinsic solutions of the

cosh 1\+T.

N 2
1<I'<cosht|—|, 6#==+i+t—
4w T
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It can therefore be deduced that the associated duratiorfrhich is aboveK;=1.702) and analytic maxima given by

of control may, respectively, be derived as Eq. (37) areK,=3.635[numerically, Fig. 4b) gives 3.623,
K5=6.120 (numerically, 6.113 Kg=9.158 (9.156, K,
. AT =~ 1 =12.748 (12.759, Kg=16.890 (16.881), Ky=21.585,
_S'nhz(m <I'<0, Teon=Teor 4, ' (21.601, and so on. It is quite remarkable that integer values
1- Gsinh* J-T come into play for the determination of these maxima, even
though we are achieving a continuous control. Nevertheless,
=~ it is important to note that other peaks may appear, because
0<I'<1, Teon=Tcon, (39 of the parametric and nonlinear resonances we have ne-
glected. Anyway, thesK, values obviously lead to a slower
1sF<cosr‘F()\—W) ¥ o7 1 control, and the above analysis at least enables one to avoid
4(1) ’ con con 4(1) B ’ them
1- +—cosh L/+T

V. CONCLUSION
where T, is the new duration of control, anl,, is the
former one defined by EJ32). Hence, aK is increasing,
I'(6,a) is varying and induces a modulation ©f,, mainly
whenI'(6,«) is not between 0 and 1. Such variations are als

In summary, we have investigated the conditions under
which an optimal continuous feedback control can be led.
The example of the generalized single-well Duffing model
encountered in synchronization theory, even though they al as enabled us to understand the occurrence of stability in-

térvals according to the control weight parameter. We have

quite larger{10]. , . e ]
Deeper investigations can even permit to foresee the pozglso discussed the influence of the precision and of the sys

sition of the peaks of these curves, that is, khealues for tem's parameters upon the critical feedback coeffickegt

= : ) and the duration of the control.
which Teo, presents a local maximum. Effectively, the Flo- — pgrgnectives for such a work are numerous. The first step

quet theory demonstrates that at the first approximations 1, generalize the strategy we have developed to multidi-
parametric resonance in the Mathieu equation arises when onsional coupled systems, and to other types of target or-
5=n2 (36) bits. Other subjective optimization criteria can also be
' adopted. For instance, in wire telecommunication systems,
n being a positive integer. According to E@.7), the corre- the feedback term can correspond to an undesirable cross-
sponding values foK are talk phenomenon: in this case, the goal to reach is to keep
as low as possible, and thef,, will here rather be a maxi-
— A2 mum above which, for a given precision, the signalsise-
1+ PRAEE (37 ful) andx (parasit¢ may unfortunately not be considered as
independent anymore. The study can also be extended to the
Once again, numerical simulation confirms this deductionsynchronization of chaotic oscillators: the matter would
For example, if we consider the control towards the firsttherefore be to find thé& values for which negative sub-
solution of they<0 case[Fig. 4(b)], we haveK,=2.458 Lyapunov exponents are obtained.

K,=n’w’—
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