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Stability and optimal parameters for continuous feedback chaos control
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We investigate the conditions under which an optimal continuous feedback control can be achieved. Chaotic
oscillations in the single-well Duffing model, with either a positive or a negative nonlinear stiffness term, are
tuned to their related Ritz approximation. The Floquet theory enables the stability analysis of the control.
Critical values of the feedback control coefficient fulfilling the optimization criteria are derived. The influence
of the chosen target orbit, of the feedback coefficient, and of the onset time of control on its duration is
discussed. The analytic approach is confirmed by numerical simulations.
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I. INTRODUCTION

Chaotic oscillations are particularly characterized by th
unpredictability and high sensitivity to initial conditions. It
therefore easy to understand that they are generally con
ered as an undesirable phenomenon in engineering, main
the cases where high precision or high performance is
quired. Physiologists have also noticed that brain waves
cardiac pulsations sometimes become chaotic, and wond
making them periodic may induce important qualitative
quantitative changes in the living beings’ vital functions. R
covering a regular dynamics from a chaotic one has b
considered in the mathematical and physical communitie
a very challenging task, and gave birth to the notion of ch
control with interesting technological and biological applic
tions @1,2#.

The interest devoted to that particular problem has led
researchers to develop different techniques@2–6#. Due to its
simplicity and the ease to be implemented practically,
continuous chaos controlling method of Pyragas@6# has been
applied to control chaos in several physical systems@7,8# and
to achieve synchronization of chaotic systems@9,10#. We can
mathematically illustrate this approach by the followin
equation~in vectorial notation!:

v̇5f~v,t !2@K #@v2 v̄~ t !#H~ t2T0!, t>0, ~1!

whereH is the Heaviside step function defined as

H~x!5H 0 if x,0

1 if x>0.
~2!

K is the feedback gain matrix,v̄ is the target orbit,t is the
time, andT0 is the onset time of the control. Due to th
nonlinear vector-flowf(v,t), the system is assumed to di
play a chaotic dynamics whent,T0 , and for t>T0 , the
feedback controllers are supposed to be driving the oscill
from chaos to the desired target orbit.

*Corresponding author. Email address: pwoafo@uninet.uycdc
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Solving the retroactive control problem requires the f
fillment of optimization criteria, amongst which the choice
the appropriate target~s! orbit~s!, the computation of suitable
parameters for theK matrix, the minimization of the dura
tion of the control. To the best of our knowledge, very fe
analytical studies have been done in that domain, and
most of the time, the control parameters are chosen on
basis of numerical simulations, or even at random. The
fore, the aim of this paper is, to determine under which c
ditions the control may be conducted in the most efficie
way: that is, in one word, optimization.

For this purpose, we will take one of the most well-know
models of nonlinear physics, the single-well Duffing equ
tion, and for simplicity, we will lead the control with a singl
scalar parameterK according to

ẍ1l ẋ1x1gx35F cosvt2K~x2 x̄!H~ t2T0!, t>0.
~3!

Here,l is a positive damping coefficient, andg a nonlinear-
ity coefficient. In fact, Duffing introduced this latter cub
stiffness term in 1918 to describe the hardening (g.0) or
the softening (g,0) spring effects observed in many m
chanical problems@11#. We also suppose that the oscillator
excited by an external sinusoidal force of amplitudeF and
frequencyv, and that the control will be achieved toward
the target orbit (x̄,xG ) of the phase plane. This continuou
control of chaos by a self-controlling feedback technique
successfully been used both theoretically and experiment
and its robustness relatively to noise influence has b
proved to be effective@6#.

The paper is organized as follows. In Sec. II we will a
proximate the optimal orbits with the Ritz variational crit
rion in both theg.0 andg,0 cases. The Floquet theor
will enable us to perform the stability analysis of the co
trolled system in Sec. III; the boundaries of instability d
mains will be analytically determined. Section IV deals wi
various considerations such as the existence of a crit
valueKcr under which no control is possible, the influence
control precision upon this critical value, and the impact oK
andT0 upon the durationTcon of the control. Light will also
be shed on the variations ofTcon as a function of the controm
©2002 The American Physical Society05-1
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weight parameterK. We finally conclude in Sec. V. The nu
merical simulation of all the ordinary differential equatio
will use the fourth-order Runge-Kutta algorithm, with a tim
stephRK5T/1000, whereT52p/v is the period of the ex-
ternal excitation.

II. DETERMINATION AND COMPUTATION OF OPTIMAL
TARGET ORBITS

As it is known, the single-well Duffing model can displa
a chaotic dynamics according to the chosen parameter
theg.0 case@12,13#, the system presents the classical jum
phenomenon and nonlinear resonance, but high exte
force amplitudes give rise to chaotic oscillations owing to
pseudo-two-wells potential configuration, as shown in F
1~a!. Wheng,0, chaos is much more difficult to spot. Fo
example, the sets of parameters in Fig. 1~b! can induce two
different stable orbits depending on initial conditions. W
have an inner limit cycle, which has a relatively large ba
of attraction including the trivial center point in the pha
plane, and an outer chaotic trajectory whose basin of att

FIG. 1. Phase plane of the chaotic systems.~a! g.0 case:l
50.2, g51.0, F528.5, andv50.86 with initial conditions~0;0!.
~b! g,0 case:l50.4, g521.0, F50.23, v50.5255 with initial
conditions ~0;0! for the inner limit cycle, and~20.3;0.7! for the
chaotic trajectory.
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tion is a thin band separating the inner limit cycle and t
unbounded solution basins@14#.

It is more advantageous to achieve the control toward
regular orbit which, in the ideal case, satisfies Eq.~3! for t
,T0 , so that the transition from chaotic to controlled osc
lations may be as smooth as possible. Hence, optimiza
criteria come into play, trying to minimize the function

g~ t !5F cosvt2~xJ 1lxG 1 x̄1g x̄3!, t>0. ~4!

It has been theoretically demonstrated that the resid
functiong can uniformly be set equal to zero if the control
conducted towards one of the unstable periodic orb
~UPOs! embedded within the chaotic attractors@3,6#: in that
sense, they are the exact optimal target orbits. But gener
these UPOs correspond to nonsinusoidal oscillations, so
it is difficult to define their exact time-dependent analy
expression. Since our objective is to derive the analyti
expressions of the chaos control characteristics, we circ
vent this problem in the following manner. We approxima
the UPOs by regular uniperiodic orbits that nearly satisfy
optimization criterion. Therefore, the approximated minim
zation of the residue functiong can be achieved throug
several different methods, amongst which we have cho
the Ritz variational criterion, leading to

E
0

2p/`

g~ t !eivtdt50. ~5!

We can take a target orbit of any kind, but for sinusoid
excitations, elliptic trajectories in the phase plane seem to
the most appropriate, and then we set

x̄~ t !5 x̄0 cos~vt2w!. ~6!

Hence, Eq.~5! yields the following set of nonlinear algebra
equations:

H S @12v2!1
3

4
g x̄0

2G2

1l2v2G x̄0
25F2,

w5tan21S lv

~12v2!1
3

4
g x̄0

2D , ~7!

and the functiong may now be written as

g~ t !52b cos~3vt23w!, ~8!

where

b5 1
4 g x̄0

3. ~9!

The Ritz criterion has transformedg(t) into a periodic
function whose frequency is thrice that of the external ex
tation. Equation~7! gives a sixth-order polynom inx̄0 , and
we have used the Newton-Raphson algorithm to determ
its real positive solutions. For the system parameters of
1~a!, we have a single solution

x̄0153.327 32, w150.020 08 ~10!
5-2
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and for those of Fig. 1~b!, we have three, which are

H x̄0150.343 74, w150.319 56

x̄0250.864 79, w250.911 34

x̄0351.031 61, w3521.230 96

~11!

with a 1025 precision. For theg,0 case, the first inner Ritz
orbit can straightforwardly be identified to the stable perio
orbit of the uncontrolled system, while the second Ritz or
which is always unstable according to the classical nonlin
analysis~hysteresis!, constitutes a fairly good approximatio
of the UPO embedded within the chaotic attractor. For
g.0 case, the approximation is certainly less pertinent
cause the Ritz variational approximation is poor as the UP
in this case are more complicated.

Nevertheless, the Ritz procedure has the advantage to
vide sets of purely sinusoidal target variables to the feedb
controller, according to what is the most prevalent schem
practice. These approximated optimal orbits can also serv
interesting alternatives when time-delayed@6# or computer-
assisted@3# controllers are unavailable or inappropriat
hence keeping the exact UPOs out of reach. Moreover, t
explicit time-dependent expression would probably ena
one to perform a stability analysis valid for the neighbori
case of the true optimal orbits, i.e., UPOs. That is why, in
subsequent sections, we will rather tune the chaotic osc
tions to their related regular Ritz orbits. Note that through
the paper, theg.0 andg,0 cases will refer to the sets o
parameters used, respectively, in Figs. 1~a! and 1~b!.

III. STABILITY ANALYSIS OF THE CONTROL

Starting fromt5T0 , the system changes its configuratio
and stability considerations come into play. Quite few stud
have been done on that topic despite its crucial importan
We emphasize that stability is not control, because the no
of control implies the Sup(x2 x̄)<h condition,h being the
precision of the control, while stability, which is less restr
tive, just requiresx to remain bounded. Therefore, one c
tolerate the control to fail@Sup(x2 x̄).h#, but never to be
unstable, since it would cause irreversible damages to
system.

The stability of the control is strictly equivalent to th
boundedness of« defined as

«~ t !5x~ t !2 x̄~ t !, t>T0 . ~12!

Here, we have introduced a new variable which is the m
sure of the relative nearness of both controlled and ta
orbits. From Eq.~3!, one can therefore deduce that, fort
>T0 , « obeys

«̈1l«̇1 bV0
21h cos~2vt22w!c«1m«2 cos~vt2w!1g«3

52b cos~3vt23w! ~13a!

with

V0
2511K1 3

2 g x̄0
2, ~13b!
03620
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2 g x̄0

2,

m53g x̄0 ,

x̄0 andw being the coefficients of the Ritz solution. Equatio
~13a!, which is nonlinear with an excitation both parametr
and external, can be unstable for certain values ofK, i.e.,
lead to unbounded solutions. Effectively, if we only ke
linear terms in« ~since« is assumed to be small!, and discard
the external excitation~which does not induce unstable o
cillations at that approximation!, the boundedness of« would
be established by the study of the linear parametric equa

«̈1l«̇1 bV0
21h cos~2vt22w!c«50, ~14!

which is a damped version of the Mathieu equation. Eq
tion ~14! presents instability domains according tol, V0 , v,
andh. The Floquet theory tackles this problem by precisi
the stability boundaries@15–17#. By setting the following
rescalings,

t5vt,
~15!

u~t!5« expS lt

2v D ,

the dissipative Mathieu equation can be rewritten in the
nonical form as

ü1@d12a cos~2t22w!#u50 ~16!

with

d5
1

v2 FV0
22

l2

4 G5
1

v2 F11K1
3

2
g x̄0

22
l2

4 G ,
a5

h

2v2 5
3g x̄0

2

4v2 . ~17!

Hence, the control parameterK only modifiesd, but not a
anyway. The solution of Eq.~16! has the form

u~t!eutf~t!, ~18!

wheref is a p-periodic function andu a complex number.
Expandingf in Fourier series yields

f~t!5 (
n52`

1`

fne2int ~19!

and hence

u~t!5eutf~t!5 (
n52`

1`

fne~u12in !t. ~20!

Inserting Eq.~20! in Eq. ~16! gives an infinite homoge-
neous, linear, and algebraic system, which may have s
tions if and only if the associated determinant is set equa
zero, that is
5-3
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D~u!5 I „d1~u12im!2
…dm,n1a~e2iwdm,n211e22iwdm,n11!

d2~2m!2 I50, ~21!
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where thedm,n are Kronecker symbols@17#. The determinant
of Eq. ~21! is called the infinite Hill determinant, and one ca
show that it obeys

D~u!5D~0!2
sin2~ 1

2 ipu!

sin2~ 1
2 pAd!

~22a!

and therefore

u56
2i

p
sin21 AD~0!sin2~ 1

2 pAd!. ~22b!

Since, from Eqs.~15!,

«~t!5f~t!expF S u2
l

2v D tG , ~23!

we can deduce, depending on the real part ofu, that the«
oscillations either decay to zero or continuously increase
infinity, unless Re(u)5l/2v. Floquet theory states that th
transition from stability to instability occurs only in two dis
tinct conditions.

~1! p-periodic transition:u5l/2v.

D~0!1

sinh2S lp

4v D
sin2~ 1

2 pAd!
50. ~24!

~2! 2p-periodic transition:u5 i 1l/2v.

D~0!2

cosh2S lp

4v D
sin2~ 1

2 pAd!
50. ~25!

Equations~24! and~25! define a set of curves in the~d,a!
plane, as approximately represented in Fig. 2~for exact
curves, see Refs.@15–17#!. For the nondissipative Mathie
equation, the Hopf theorem states that for a fixeda, stable
values of d are those which are strictly situated betwe
boundaries of different types. In our dissipative case
graphically implies that the stability domain is the shad
area of Fig. 2. Mathematically, if we define the new re
function

G~d,a!5H D~0!sin2S 1

2
pAd D if d>0

2D~0!sinh2S 1

2
pA2d D if d,0.

~26!

The Hopf theorem leads to the following stability conditio
03620
to

it
d
l

2sinh2S lp

4v D,G~d,a!,1cosh2S lp

4v D . ~27!

We have earlier noticed that the control parameterK only
modifiesd, but nota. Hence, whenK is varied, the figurative
of the system in the~d,a! plane is just moving along aa
5const straight horizontal line. Starting fromd52` @i.e.,
K52` according to Eq.~17!#, this point will alternatively
pass through unstable and stable domains. Hence, as fa
stability is concerned, a proper choice ofK requires the ful-
fillment of the double inequality~27!.

Qualitatively, numerical simulations fully agree with th
above analytic statements. The unique solution of theg.0
case generates a higha value: hence, we have several stab
ity intervals of the kind ]Kb1 ,Kb2@ , ]Kb3 ,Kb4@ ,..., ]Kbn ,
1`@ , where theKbi are boundary values forK. Sincex̄0 is
large, the nonlinear terms of Eq.~13a! play a predominant
stabilizing role, and gather all the compact interva
]Kbi ,Kb( i 11)@ within #217.5,217.4@. If we notice thatd
50 corresponds here toK05217.560, we can deduce tha
the system surprisingly behaves as ifa was very small, pos-
sessing a single stability interval ]K0 ,1`@ at the first ap-
proximation. The two solutions of theg,0 case generate a
lower a, ~in absolute value! and then, lead to just two stabil
ity intervals of the form ]Kb1 ,Kb2@ and ]Kb3 ,1`@ : numeri-
cally, we have for the first solution (Kb1520.434; Kb2
50.017; Kb351.228) and for the second (Kb1520.231;
Kb250.008; Kb352.762). These intervals correspond to th
two segments laying within the shaded area in Fig. 2. Ob
ously,K50 ~corresponding to a no-control situation! always
belongs to a stability interval. In fact, it wasa priori evident
that negative values are not, in general, appropriate for
control, contrary to what occurs in synchronization theo

FIG. 2. Stability diagram in the~d,a! plane showing the
p-periodic boundaries~thick lines! and 2p-periodic boundaries
~thin lines!.
5-4
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@18#. But the Floquet theory enables us to point out a qu
interesting conclusion, confirmed by numerical simulatio
even small positive values ofK can destabilize a system
while higher values scarcely do.

It should be noticed that the control towards UPOs nea
correspond to the caseb50 ~i.e., g[0). Sinceb has no
influence on the linear stability pattern, one can expect
the conclusions derived for the Ritz orbits are qualitativ
valid for the exact optimal orbits. Anyway, the accuracy
the stability analysis can be sharpened by the expansio
the approximation to the harmonics ofv ~mainly for the
g.0 case!.

IV. CRITICAL PARAMETERS AND DURATION
OF CONTROL

As we have earlier noticed, stability is not control: appr
priate values forK are those for which

u«~ t !u,h, t.~T01Tcon!, ~28!

whereh is the precision of the control, andTcon its duration,
that is, the interval between the onset time of the control
the time of its end. The stability analysis suggests that v
large values ofK are always good, but it would be ver
interesting to determine the critical valueKcr under which,
for a given precision, no control is possible. The advant
of such an investigation is at least twofold: first, it enab
one to ensure the control with the smallestK possible, which
is equivalent to the lowest energy input; second it perm
one to know how the parameters of the system affect
critical value.

WhenK is varied,V0 is modified according to Eqs.~13!,
and sincev is a fixed frequency, resonances may occur w
the external and parametric excitations. The method of m
tiple time scales demonstrates that the last peak of reson
is induced by the external excitation: hence,V0 should be far
beyond 3v if we want to obtain small amplitudes for«. We
can therefore neglect the nonlinear terms~because of the
small amplitudes of«, precisely!, and discard the linear para
metric excitation~which does not induce noticeable res
nance!, and obtain the following simplified version of Eq
~13a!:

«̈1l«̇1V0
2«52b cos~3vt23w!, t>T0 . ~29!

The control is ensured when the precisionh is greater than
the amplitude of the« steady-state oscillations. The critic
value ofK above which it is the case is precisely obtained
setting the equality between the both, yielding

Kcr59v2212
3

2
g x̄0

21AS g x̄0
3

4h D 2

29l2v2 ~30!

assuming that

h,
ugux̄0

3

12lv
. ~31!

Figures 3~a! and 3~b! show the quasiperfect coincidenc
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between formula~30! and the results of the numerical simu
lation of the differential equation~3!, and therefore confirm
its validity. It obviously appears thatKcr is a decreasing func
tion of the precisionh. Sometimes, the Routh-Hurwitz crite
rion is used to determineKcr @7,8#, but it unfortunately fails
to include the influence of the precision, and then to ful
accuracy requirements. For theg.0 case, one can notice i
Fig. 3~a! that very largeK are necessary to ensure the co
trol, even for poor precisions: this is due to the large amp
tude x̄0 of the target motion. For theg,0 case, Fig. 3~b!
confirms that higherK are required for largex̄0 . This latter
case is interesting since it enables a quantitative compar
between orbits of the same system’s parameters: it is no
able that the control is more difficult to achieve with th
second orbit, that is near the chaotic band than with the
which is far away. Another marginal phenomenon can
reported. Control towards the first solution in theg,0 case
also occurs whenK belongs to the intervals#20.434,
20.036@ and #0.001,0.017@, which almost correspond to th
whole first stability interval: this apparently violates cond
tion ~30!. In fact, the retroactive feedback term2K(x2 x̄)
acts in that case as a small perturbation of the sens

FIG. 3. Kcr as a function of log10(h) ~full lines for analytic
results, squares and crosses for numerical results!. ~a! g.0 case.
~b! g,0 case with the lower curve for the first solution and t
upper one for the second.
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chaotic orbit, which then degenerates into the inner lim
cycle. Therefore this scheme may be interpreted as a ju
phenomenon, rather than a control process.

It appears that the control towards the Ritz orbits requ
a defined minimal input energy. This can be explained by
fact that they are not dynamically intrinsic solutions of t

FIG. 4. Tcon as a function ofK ~thick lines for analytic results,
and thin lines for numerical results!. ~a! g.0 case withT05100
and h51021; ~b! g,0 case, first solution withT05100 andh
51022; ~c! g,0 case, second solution withT05100 and h
51022.
03620
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uncontrolled Duffing system. For UPOs, the residual fun
tion g vanishes and the« variable is no more externally ex
cited: therefore, to foresee the success of the control pro
dure, the determination of theu exponent@which passes
through the computation of the infinite Hill determina
D~0!# would be necessary.

Equation ~29! can also be used to derive explicitly th
duration of the control, which can be assimilated to the ti
required for the transient oscillations to decay, that is,

Tcon5
2

l
lnFA«̇2~T0!1

@ «̇~T0!1l«~T0!/2#2

V0
22l2/4

h2
ubu

A~V0
229v2!219l2v2

G . ~32!

T0 implicitly influencesTcon through«(T0), since the du-
ration of the control logarithmically increases with the initi
separation between the chaotic and the target orbits in
phase plane. Hence, one should note thatTcon can be very
low only when the target orbit is near the chaotic trajecto
~even though, as we have earlier demonstrated, the co
paradoxically requires more energy in that case!. On the
other hand, as numerically confirmed by Fig. 4,Tcon is a
decreasing function ofK, and one can find that

Tcon,min5 lim
K→1`

Tcon5
2

l
lnF u«~T0!u

h G ~33!

is the minimum duration under which no control can
achieved. This result is of great practical interest.A priori,
one could have naively thought that the control could ha
been led as fast as desired, just depending onK: Figure 4
does not support that. For example, Fig. 4~b! shows that a
feedback coefficientK510 is sufficient to ensure an optima
control ~with approximately the minimumTcon). Hence, the
above analysis enables us to avoid an unavailing wast
input energy by preventing us from a useless increase of
control parameterK. Anyway, the interest of all the abov
statements is unfortunately limited by the fact that«(T0)
5x(T0)2 x̄(T0) is always an unknown because ofx(T0).
Nevertheless, it is possible to perform an analysis leadin
statistical conclusions.

One may wonder why the curves of Fig. 4 obtain
through the numerical simulation of Eq.~3! are not smooth.
We need to refer again to the Floquet theory to explain t
phenomenon. It should first be noticed thatKcr always be-
longs here to the last stability domain: it implies that all t
values beyondKcr are at least stable. Theu exponent, whose
real part permits one to determine the decay rate accordin
Eq. ~23! is explicitly defined as follows:

2sinh2S lp

4v D,G<0, u562i 6
2

p
sinh21A2G, ~34!

0,G,1, u56
2i

p
sin21AG,

1<G,cosh2S lp

4v D , u56 i 6
2

p
cosh21A1G.
5-6
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It can therefore be deduced that the associated dura
of control may, respectively, be derived as

2sinh2S lp

4v D,G<0, T̃con5Tcon

1

12
4v

lp
sinh21 A2G

,

0,G,1, T̃con5Tcon, ~35!

1<G,cosh2S lp

4v D , T̃con5Tcon

1

12
4v

lp
cosh21 A1G

,

where T̃con is the new duration of control, andTcon is the
former one defined by Eq.~32!. Hence, asK is increasing,
G~d,a! is varying and induces a modulation ofTcon mainly
whenG~d,a! is not between 0 and 1. Such variations are a
encountered in synchronization theory, even though they
quite larger@10#.

Deeper investigations can even permit to foresee the
sition of the peaks of these curves, that is, theK values for
which T̃con presents a local maximum. Effectively, the Fl
quet theory demonstrates that at the first approximat
parametric resonance in the Mathieu equation arises wh

d5n2, ~36!

n being a positive integer. According to Eq.~17!, the corre-
sponding values forK are

Kn5n2v22S 11
3

2
g x̄0

22
l2

4 D . ~37!

Once again, numerical simulation confirms this deducti
For example, if we consider the control towards the fi
solution of theg,0 case@Fig. 4~b!#, we haveKcr52.458
i-
.

to

tt

v.

03620
ns

o
re

o-

n,

.
t

~which is aboveK351.702) and analytic maxima given b
Eq. ~37! areK453.635@numerically, Fig. 4~b! gives 3.623#,
K556.120 ~numerically, 6.113!, K659.158 ~9.156!, K7
512.748 ~12.758!, K8516.890 ~16.881!, K9521.585,
~21.601!, and so on. It is quite remarkable that integer valu
come into play for the determination of these maxima, ev
though we are achieving a continuous control. Neverthel
it is important to note that other peaks may appear, beca
of the parametric and nonlinear resonances we have
glected. Anyway, theseKn values obviously lead to a slowe
control, and the above analysis at least enables one to a
them.

V. CONCLUSION

In summary, we have investigated the conditions un
which an optimal continuous feedback control can be l
The example of the generalized single-well Duffing mod
has enabled us to understand the occurrence of stability
tervals according to the control weight parameter. We h
also discussed the influence of the precision and of the
tem’s parameters upon the critical feedback coefficientKcr
and the duration of the control.

Perspectives for such a work are numerous. The first s
is to generalize the strategy we have developed to mult
mensional coupled systems, and to other types of targe
bits. Other subjective optimization criteria can also
adopted. For instance, in wire telecommunication syste
the feedback term can correspond to an undesirable cr
talk phenomenon: in this case, the goal to reach is to keeK
as low as possible, and then,Kcr will here rather be a maxi-
mum above which, for a given precision, the signalsx ~use-
ful! and x̄ ~parasite! may unfortunately not be considered
independent anymore. The study can also be extended to
synchronization of chaotic oscillators: the matter wou
therefore be to find theK values for which negative sub
Lyapunov exponents are obtained.
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