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Abstract

We perform the stability and optimization analysis for the (non)delayed synchronization of Duffing-like oscillators, using a
retroactive scheme. Stability boundaries are derived through Floquet theory. Critical values for the feedback synchronization
coefficient are found. The influence of the delay and of the onset time of the driving upon stability and synchronization time is
also analyzed. 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The very essence of chaos is complexity, unpre-
dictability and extreme sensitivity to initial condi-
tions. It is therefore counterintuitive to suppose that
chaotic oscillators can synchronize, i.e., continuously
remain in step with each other. Nevertheless, when
certain requirements are met, it is possible to obtain a
high correlation between several identical or different
chaotic systems [1–6]. During recent years, different
schemes have been developed for this purpose to be
achieved. Generally, in the synchronization’s mecha-
nism, a “master” system drives or commands the re-
sponse of a “slave” system, even though other tech-
niques with mutual coupling, which ignore this hierar-
chy, have been set up.
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Very soon, it appeared that one of the most im-
portant application of chaotic synchronization is the
masking of information-bearing signals in spread-
spectrum communications [7–9], although researchers
still explore applications in the areas of oscillatory
neural systems, multimode laser systems or chemical
processes.

In this Letter, we aim to study the stability and the
optimization of (non)delayed synchronization. In fact,
deep stability analysis is scarcely performed in liter-
ature as far as synchronization is concerned, despite
its crucial importance. On the other hand, optimiza-
tion is a key-word for wide-spread applications, and
efforts should be made to fulfill optimization crite-
ria such as the minimization of both synchronization
time and required energy input for the process. De-
layed synchronization also gathers a growing interest,
since it enables the modelization in wireless telecom-
munications, coupled phase-locked loops systems or
neuronal networks.
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For the illustration of our approach, we will take
a very well known model of nonlinear physics, the
single-well Duffing oscillator, with either a positive
or a negative nonlinear stiffness term. We also choose
to achieve the synchronization through a feedback
coupling, so that the whole system becomes

(1)




ẍ + λẋ + x + γ x3 = F cosωt,

ü + λu̇ + u + γ u3

= F cosωt − K(u− xτ )H(t − T0),

whereH is the Heaviside function defined as

(2)H(x)=
{

0 if x < 0,
1 if x � 0,

t is the time, andT0 is the onset time of the synchro-
nization. x represents the master system, andu the
slave system.τ is the delay, assuming thatxτ (t) =
x(t−τ ). Hence the role of the feedback coupling coef-
ficientK will be to force the convergence ofu towards
the given past statexτ of the master oscillatorx. It
has been proven that this synchronization scheme effi-
ciently resists to noise, and can easily be implemented
practically [4].

The Letter is organized as follows. In Section 2, we
perform the stability analysis of the synchronization
whenτ = 0. Floquet theory will enable to derive ap-
proximations for the stability boundaries, and qualita-
tively explain their occurrence. In Section 3, the de-
lay τ is taken into account. Its influence upon stability
is studied, and we also analytically derive the critical
valueKcr under which, for a given precision, no syn-
chronization is possible. Section 4 deals with the du-
ration of synchronization, as well as its variations as
a function ofK andT0. We finally conclude in Sec-
tion 5. The numerical simulation of all ordinary dif-
ferential equations will use the fourth-order Runge–
Kutta algorithm, with a time stephRK = T/500, where
T = 2π/ω is the period of the external excitation.

2. Stability and synchronization of the coupled
chaotic system (τ = 0)

According to the chosen parameters, the single-
well Duffing model can display a chaotic dynamics. In
theγ > 0 case [10,11], high external excitation gives
rise to chaotic oscillations owing to a pseudo-two-
wells potential configuration, as it appears in Fig. 1(a).

(a)

(b)

Fig. 1. Phase plane of the chaotic oscillators. (a)γ > 0 case:
λ = 0.2, γ = 1.0,F = 28.5,ω = 0.86, with initial conditions(0,0).
(b) γ < 0 case:λ = 0.4, γ = −1.0, F = 0.23, ω = 0.5255, with
initial conditions(0,0) for the inner limit cycle and(−0.3,0.7) for
the chaotic trajectory.

Chaos is much more difficult to spot whenγ < 0 [12].
For example, we have in Fig. 1(b) a set of parameters
which induces two different stable orbits according to
initial conditions, i.e., an inner regular limit cycle and
an outer chaotic trajectory. Note that throughout all the
Letter, theγ > 0 andγ < 0 cases will always refer to
the sets of parameters used, respectively, in Figs. 1(a)
and (b).

Starting fromT0, the coupling becomes effective
and the system changes its configuration: hence stabil-
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ity considerations come into play. We emphasize that
stability is obviously not synchronization, because the
notion of synchronization implies the negativity of the
sub-Lyapunov exponents, while stability, which is less
restrictive, just requiresu to remain bounded. There-
fore, one can tolerate the synchronization to fail, but
never to be unstable since it would cause irreversible
damages to the system.

Let us introduce a new variable

(3)ε(t) = u(t) − x(t),

which is the measure of the relative nearness of both
chaotic orbits. The stability of the synchronization
process is therefore strictly equivalent to the bound-
edness ofε, which obeys to

(4)ε̈ + λε̇ + (
1+ K + 3γ x2)ε + 3γ xε2 + γ ε3 = 0.

Eq. (4), which is nonlinear with a parametric excita-
tion, can lead to unbounded solutions according to the
coefficientK. Since the parametric excitation is also
chaotic, the analytic approach of the stability study is
quite difficult. We are therefore compelled to use ap-
proximations for bothγ > 0 andγ < 0 cases.

In occurrence, we will replace the chaotic trajecto-
ries by virtual regular elliptic trajectories of the form

(5)x̄ = x̄0 cos(ωt − ϕ),

wherex̄ obeys to the variational Ritz criterion

2π/ω∫
0

[
F cosωt − ( ¨̄x + λ ˙̄x + x̄ + γ x̄3)]eiωt dt = 0.

(6)

Eq. (6) yields the following set of nonlinear algebraic
equations:[((

1− ω2) + 3

4
γ x̄2

0

)2

+ (λω)2
]
x̄2

0 = F 2,

(7)ϕ = tan−1
[

λω

(1− ω2) + 3
4γ x̄2

0

]
.

One can hence find that the corresponding solution for
theγ > 0 case is

(8a)x̄0 = 3.32372 and ϕ = 0.02008,

and for theγ < 0 case,

(8b)x̄0 = 0.86479 and ϕ = 0.91134.

(a)

(b)

Fig. 2. Fourier spectra, with frequencies in units ofω and amplitudes
in units of relatedx̄0. (a)γ > 0 case. (b)γ < 0 case.

Fig. 2(a) displays the Fourier spectrum of theγ > 0
Duffing oscillator. Energy is mainly distributed in
very sharp bands around odd harmonics ofω. Hence,
Ritz approximation is qualitatively poor (this could
have been predicted earlier from the phase plane in
Fig. 1(a)), but nevertheless remains of quantitative
interest since the major part of the energy lays around
the fundamental frequencyω. On the other hand, for
the γ < 0 case, the phase plane (Fig. 1(b)) and the
Fourier spectrum (Fig. 2(b)) both agree that the Ritz
approximation is rather good, so that it can be used to
perform the stability analysis.
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Therefore, if we only keep the linear terms inε
(sinceε is assumed to be small), the stability of the
synchronization would be established by the study of
the linear parametric equation

(9)ε̈ + λε̇ + [
Ω2

0 + µcos(2ωt − 2ϕ)
]
ε = 0,

where

Ω2
0 = 1+ K + 3

2
γ x̄2

0,

(10)µ = 3

2
γ x̄2

0,

x̄0 andϕ being the coefficients of the Ritz solutions.
Eq. (9) is a damped version of the Mathieu equation,
and presents instability domains according toλ, Ω0,
ω andµ. Floquet theory tackles this problem by pre-
cising the stability boundaries. Setting the following
rescalings:

z = ωt,

(11)η(z) = ε exp

(
λz

2ω

)
,

the dissipative Mathieu equation can be written in the
canonical form as

(12)η̈ + [
δ + 2α cos(2z − 2ϕ)

]
η = 0

with

δ = 1

ω2

[
Ω2

0 − λ2

4

]
= 1

ω2

[
1+ K + 3

2
γ x̄2

0 − λ2

4

]
,

(13)α = µ

2ω2 = 3γ x̄2
0

4ω2 .

The feedback parameterK only modifiesδ, but
notα anyway. The solution of Eq. (12) has the form

(14)η(z) = eθzφ(z),

whereθ is a complex number, and

(15)φ(z) =
+∞∑

n=−∞
φne

2inz

is aπ -periodic function. Hence,

(16)η(z) =
+∞∑

n=−∞
φne

(θ+2in)z.

Inserting Eq. (16) in Eq. (12) gives an infinite ho-
mogeneous linear algebraic system, which may have

solutions if and only if the associated determinant is
set equal to zero, that is,

∆(θ)=
∥∥∥∥ (δ + (θ + 2in)2)δm,n

δ − (2n)2

+ α(e2iϕδm−1,n + e−2iϕδm+1,n)

δ − (2n)2

∥∥∥∥
(17)= 0,

where theδm,n are Kronecker symbols [13].∆(θ) is
called the infinite Hill determinant, and one can show
that

(18)∆(θ) = ∆(0)− sin2( 1
2iπθ

)
sin2(1

2π
√
δ
) .

Therefore

(19)θ = ±2i

π
sin−1

√
∆(0)sin2

(
1

2
π

√
δ

)
.

Since, from Eqs. (11),

(20)ε(z) = φ(z)exp

[(
θ − λ

2ω

)
z

]
,

ε oscillations either decay to zero or increase to in-
finity, unless Re(θ) = λ/2ω. According to Floquet
theory, the transition from stability to instability (or
the inverse) occurs only in two conditions:

• π -periodic transition:θ = λ/2ω,

(21)∆(0)+ sinh2(λπ
4ω

)
sin2(1

2π
√
δ
) = 0.

• 2π -periodic transition:θ = i + λ/2ω,

(22)∆(0)− cosh2
(
λπ
4ω

)
sin2(1

2π
√
δ
) = 0.

If we define the new real function

(23)Γ (δ,α) =
{
∆(0)sin2( 1

2π
√
δ
)

if δ � 0,
−∆(0)sinh2(1

2π
√−δ

)
if δ < 0,

the analytic stability condition is the following, ac-
cording to Hopf theorem:

(24)−sinh2
(
λπ

4ω

)
<Γ (δ,α) < +cosh2

(
λπ

4ω

)
.
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Fig. 3. Stability diagram in the (δ,α) plane showing theπ -periodic boundaries (thick lines) and 2π -periodic boundaries (thin lines).

Graphically, Eqs. (21) and (22) define a set of
curves in the (δ,α) plane, as approximately repre-
sented in Fig. 3 (for exact figures see Refs. [13–15]).
For a fixedα, the Hopf theorem demonstrates that the
stable values ofδ are those which are strictly situ-
ated between boundaries of different types: the sta-
bility domain is hence the shaded area of Fig. 3. Be-
causeα is independent ofK, the figurative point of
the system in the (δ,α) plane is just moving along a
α = const straight horizontal line whenK is varied.
Starting fromδ = −∞ (i.e., K = −∞ according to
Eqs. (13)), this point will alternatively pass through
unstable and stable domains.

We should not forget that the Ritz orbit is only an
approximation of the chaotic trajectory. In the best
case (γ < 0), we can consider that the Ritz solution
is correct with an uncertainty(δx̄0) for the amplitude
x̄0. Hence, from stability boundaries (24), the width
(δΓ ) of the inner safety intervals will be

(25)(δΓ ) =




∣∣( ∂∆(0)
∂x̄0

sin2( 1
2π

√
δ
)

+ 3πγ x̄0
4ω2

sin(π
√
δ)√

δ
∆(0)

)
(δx̄0)

∣∣
if δ � 0,∣∣(− ∂∆(0)

∂x̄0
sinh2(1

2π
√−δ

)
+ 3πγ x̄0

4ω2
sinh(π

√−δ)√−δ
∆(0)

)
(δx̄0)

∣∣
if δ < 0.

The accuracy of these boundaries will obviously
depend on the order of truncation of the infinite deter-

minant∆(0). The agreement between numerical sim-
ulations and the analytic approach is qualitatively ef-
fective. For theγ > 0 case, we have a single stability
boundary valueKb1 ≈ −6.0 above which the coupled
system is stable. A deeper investigation involving at
least the odd harmonics ofω in the approximation ofx
would be able to explain why, despite the highα value,
only a single boundary value is found. Theγ < 0 case
fits better to the analytic study, since here the lower|α|
induces two stability intervals of the kind]Kb1,Kb2[
and]Kb3,+∞[. These intervals correspond to the two
segments laying in the shaded area of Fig. 3, and the
boundary values are numerically found to beKb1 =
−0.000, Kb2 = 0.088 andKb3 = 1.312. Obviously,
K = 0 which corresponds to an uncoupled system al-
ways belongs to a stability interval.

It has been demonstrated that synchronization oc-
curs when negative sub-Lyapunov exponents are ob-
tained [1]. In fact, the above stability analysis enables
to derive that for theγ < 0 case, the related sub-
Lyapunov exponent can be approximated by

(26)Λ ≈ Re

(
θ − λ

2ω

)
,

so that stability areas should be strictly identified to
synchronization areas. Numerical simulations confirm
this hypothesis, and effectively, the slave oscillatoru

either synchronizes withx (in the whole stability zone)
or either becomes unstable. This is absolutely not the
case for theγ > 0 system, since in that case one can
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found stable intervals without effective synchroniza-
tion. Indeed, in this latter case, the approximate vir-
tual orbit is very poor and instantaneous deviations
(bursts) from this virtual orbit are frequent and cer-
tainly have high amplitudes. Consequently, high qual-
ity results cannot be attained [16–18].

3. Delayed synchronization (τ �= 0)

The purpose of delayed feedback synchronization
is to achieve the convergence ofu(t) towardsx(t − τ )

= xτ (t), i.e., to ensure a constant phase shift be-
tween both chaotic oscillators. Applications for this
scheme recently appeared to be wide, particularly for
wireless synchronization devices. An extension of this
topic can lead to the synchronization of distributed de-
layed systems, with application to private communi-
cations [19]. In some particular cases, one can even
couple the driven systems in such a way that they an-
ticipate the driver by synchronizing with its arbitrar-
ily distant future state. This anticipated synchroniza-
tion scheme would probably enable fast prediction in
electronic or optical devices in communication sys-
tems [20].

When delay is taken into account,ε rather obeys to

ε̈ + λε̇ + (
1+ K + 3γ x2

τ

)
ε + 3γ xτε

2 + γ ε3

(27)= −2F sin
ωτ

2
sin

(
ωt − ωτ

2

)
.

ε is now submitted to an external sinusoidal excitation
whose amplitude depends onF andτ . From this point,
quite important remarks have to be made. Whenτ

is a multiple of the periodT = 2π/ω (i.e., τ = nT ,
n being a positive integer), this external term vanishes
and Eq. (27) is no more different from Eq. (4).
Hence, whenτ = nT , the whole analysis developed
in Section 2 remains valid. On the other hand, when
τ �= nT , the external excitation (due toF and τ )
induces steady state oscillations forε, and then fights
against the uniform collapsing betweenu and xτ .
Stability is hence highly affected by these oscillations,
mostly whenε is strongly excited. In fact, the most
unfavorable scheme occurs whenτ is an odd multiple
of T/2.

When τ = nT , instability mainly comes from the
parametric excitation, as we have earlier seen. But

whenτ �= nT , amplitudes ofε can be very large de-
pending onF andτ , and therefore, nonlinearity may
no longer be discarded as we did for Eq. (9): it rather
implies crucial modifications.

Let us take the example of theγ < 0 case. If we
suppose

(28)ε = E cos(ωt − ψ),

the amplitudeE according to Eq. (27) approximately
obeys to a twelfth-order polynomial equation (explic-
itly defined in Appendix A) of the form

(29)
6∑

k=0

mk

(
E2)k = 0.

It is well known that the(E,K) curve in this case
leads to multivalued areas, which correspond to the
hysteresis phenomenon. This means that, according
to K, the stability of the system can also depend on
the initial conditions(ε(T0), ε̇(T0)). Since, precisely,
ε(T0) = u(T0) − x(T0) is unpredictable and exclu-
sively depends onT0, one can reach the surprising con-
clusion that there exist intervals ofK where the on-
set time of the drivingT0 randomly decides the stabil-
ity of the synchronization process. Numerical simula-
tion confirms this analysis. For example, if we suppose
τ = T/2 in theγ < 0 case, we notice that synchroniza-
tion is unstable whenT0 = 105 while it remains stable
whenT0 = 102 (initial conditions being specified in
Fig. 4).

Therefore, ifτ �= nT , K must be chosen with very
much care. We first have to avoid “standard” instabil-
ity intervals (induced by the linear parametric excita-
tion), but also the above “ambiguous” ones (induced
by nonlinearity). Unfortunately, these latter areas can-
not be determined analytically. Nevertheless, a sum-
mary analysis would advice to always avoid the neigh-
borhood ofK values which induce parametric or non-
linear resonance. These risky resonance frequencies
can be analytically checked, for example, through the
multiple time scales method.

The second incidence of the delayτ on the stability
of the system lies on the standard parametric stability
intervals. In fact, if Eq. (27) was linear, the external
excitation term ofε would have absolutely not induced
any modification to the stability analysis of Section 2.
But in our case, nonlinearity qualitatively modifies
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the stability pattern. For example, in theγ < 0 case,
numerical simulations have shown that the second
(and compact) instability interval rapidly disappears
whenτ is far fromnT .

As far as synchronization is concerned, suitable
values ofK must obviously fulfill all the above sta-
bility conditions, but also the more restrictive syn-
chronization requirements. Rigorously, we are allowed
to speak about synchronization exclusively whenτ =
nT . It is only under this condition that sub-Lyapunov
exponents can decide the occurrence of synchroniza-
tion. When τ �= nT , it would be more appropriate
to speak about the control of a chaotic trajectory to-
wards another chaotic trajectory, because in this case,
the variational variables never exponentially decay to
zero. Nevertheless, since there are exclusively chaotic
oscillators into play, we will continue to speak about
synchronization independently of the value ofτ , and
our synchronization condition will rather be

(30)
∣∣ε(t)∣∣ < h, t > (T0 + Tsyn),

whereh is the precision of the synchronization, and
Tsyn its duration, that is, the interval of time between
the onset time of the driving and the time of its end.
The stability analysis suggests that very largeK val-
ues are always good, but it would be very interesting
to determine the critical valueKcr under which, for
a given precision, synchronization is impossible. The
aim of such an investigation is at least twofold: it first
enables to achieve the process with the lowestK pos-
sible, which corresponds to the lowest energy inputs;
secondly, it permits to know how the parameters of the
system affect this critical value.

Small amplitudes forε are obtained whenΩ0
is far beyondω. Under this latter condition, we
are allowed to neglect nonlinearities (ε � 1) and to
discard the linear parametric excitation (Ω0 � µ)
and therefore,ε approximately obeys to the following
linear differential equation:

(31)ε̈ + λε̇ + Ω2
0ε = −2F sin

ωτ

2
sin

(
ωt − ωτ

2

)
.

After the main resonance peak, the amplitude of the
steady state oscillations ofε is a decreasing function
of Ω0 (i.e., ofK). The critical valueKcr is precisely
found by setting the equality between this amplitude

(a)

(b)

Fig. 4. Kcr as a function ofτ (full lines for analytic results, stars
for numerical results).τ is in units ofT . (a)γ > 0 case.h = 10−1.
Initial conditions for thex andu oscillators are, respectively,(0,0)
and (1,0). (b) γ < 0 case.h = 10−2. Initial conditions for thex
andu oscillators are, respectively,(−0.3,0.7) and(−0.6,0.6).

and the precisionh, so that

Kcr = ω2 − 1− 3

2
γ x̄2

0 +
√(

2F

h
sin

ωτ

2

)2

− (λω)2.

(32)

Figs. 4 and 5 show the excellent concordance
between formula (32) and the results of the numerical
simulation of the differential system (1). It appears
thatKcr is a decreasing function ofh, and a periodic
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(a)

(b)

Fig. 5. Kcr as a function of log10(h) (full lines for analytic
results, stars for numerical results). (a)γ > 0 case.τ = T /4. Initial
conditions for thex and u oscillators are as in Fig. 4. (b)γ < 0
case.τ = T /4. Initial conditions for thex andu oscillators are as in
Fig. 4.

function of τ . It is quite noticing that large values
of K are necessary to ensure the synchronization when
τ �= nT , even for a very poor precision. In these cases,
great energy inputs are required, mainly whenτ =
(2n+ 1)T /2.

It should not be forgotten that the validity of for-
mula (32) is limited by the condition

(33)

∣∣∣∣sin
ωτ

2

∣∣∣∣ > λωh

2F
,

and then does not apply whenτ = nT . In these cases,
very low values are observed (Kcr ∼ 1) for very high
precision (h ∼ 10−5). In fact, the proper analysis
would rather here correspond to the computation of
the θ exponent as a function ofK. Anyway, theseτ
values fit with the most favorable situations in both
dynamic (excellent precision) and energetic (lowK)
points of view.

4. Duration of synchronization

The synchronization process can be considered as
optimized when a low energy input succeeds in ensur-
ing a fast synchronization. This latter aspect should ab-
solutely not be marginalized. If we consider, for exam-
ple, the application of synchronization in secure com-
munications, the range of timeTsyn during which the
chaotic oscillators are not synchronized corresponds to
the range of time during which the encoded message
can unfortunately not be recovered. More than a grave
and irreversible lost of information, this is a catastro-
phe in digital telecommunications, since the first bits
of standardized bit strings always contain signalization
data, i.e., the “identity card” of the message. Hence, it
clearly appears thatTsyn has to be minimized, so that
the chaotic oscillators synchronize as fast as possible.

In our system,Tsyn corresponds to the transient
oscillations, which can be supposed as completely
decayed when they are still belowh, even when added
to steady-state oscillations. From Eq. (31), we can
therefore obtain

(34a)Tsyn= 2

λ
ln




√
ε2(T0) + (ε̇(T0)+λε(T0)/2)2

Ω2
0−λ2/4

h− |2F sin(ωτ/2)|√
(Ω2

0−ω2)2+(λω)2


 .

One can notice thatTsyn increases logarithmically
with the initial separation between chaotic orbits in the
phase plane, but decreases withK towards a minimum
value which is

(34b)Tsyn min= lim
K→+∞Tsyn= 2

λ
ln

[ |ε(T0)|
h

]
.
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(a)

(b)

Fig. 6. Tsyn as a function ofK when τ = 0 (numerical results).

(a) γ > 0 case.T0 = 100 andh = 10−5. Initial conditions for thex
and u oscillators are as in Fig. 4. (b)γ < 0 case.T0 = 100 and
h = 10−5. Initial conditions for thex and u oscillators are as in
Fig. 4.

Hence, our analysis points out a minimal asymp-
totic duration under which no synchronization occurs.
This is of great practical interest, since one could
have naively thought that the synchronization could
have been led as fast as desired, just depending onK.
Therefore, we are hereby prevented from a useless in-
crease ofK, i.e., from an unavailing waste of input
energy. Figs. 6 and 7 confirm that very largeK values
are not necessary to ensure the synchronization with
approximately the minimumTsyn.

Formula (34) does not explain the serrated struc-
ture of the curves in Figs. 6 and 7 obtained through
the numerical simulation of Eqs. (1). In fact, this phe-
nomenon can be explained by the Floquet theory. We
have earlier introduced theθ exponent, whose real part

(a)

(b)

Fig. 7. Tsyn as a function ofK when τ �= 0 (dashed lines for
analytic results, full lines for numerical results). (a)γ > 0 case.
T0 = 100,h = 10−1 andτ = T /16. Initial conditions for thex andu
oscillators are as in Fig. 4. (b)γ < 0 case.T0 = 100,h = 10−2 and
τ = T /8. Initial conditions for thex andu oscillators are as in Fig. 4.

permits to determine the decay rate of the parametric
oscillations. It can be explicitly defined as follows:

−sinh2
(
λπ

4ω

)
<Γ < 0:

θ = ±2i ± 2

π
sinh−1

√−Γ ,

0 � Γ � 1:
θ = ±2i

π
sin−1

√
Γ ,

1<Γ < +cosh2
(
λπ

4ω

)
:

(35)θ = ±i ± 2

π
cosh−1

√
Γ .
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One can therefore derive the associated durations
of synchronization

−sinh2
(
λπ

4ω

)
<Γ < 0:

T̃syn= Tsyn
1

1− 4ω
λπ

sinh−1 √−Γ
,

0 � Γ � 1:
T̃syn= Tsyn,

1<Γ < +cosh2
(
λπ

4ω

)
:

(36)T̃syn= Tsyn
1

1− 4ω
λπ

cosh−1 √+Γ
,

where T̃syn is the new duration of synchronization,
and Tsyn the former one defined by Eqs. (34). An
increase ofK leads to a variation ofΓ (δ,α), and then
induces a modulation ofTsyn mainly whenΓ (δ,α) is
not between 0 and 1.

Further investigations can even allow to foresee the
occurrence of these sharp local maxima observed in
Figs. 6 and 7. From Floquet theory, we know that at the
first approximation, linear parametric resonance arises
when

(37)δ = n2,

n being a positive integer. The correspondingK values
are

(38)Kn = n2ω2 −
(

1+ 3

2
γ x̄2

0 − λ2

4

)

according to Eqs. (13). It is possible to ameliorate
the accuracy of the above statements by a better
analytic approach of the chaotic oscillations, and also
by considering higher- and lower-order nonlinear and
parametric resonance.

5. Conclusion

In this Letter, we have led a stability and optimiza-
tion analysis of the continuous feedback synchroniza-
tion process. Floquet theory has enabled us to explain
the occurrence of stability intervals, as well as the ir-
regular structure of theK–Tsyn curve. The influence of
the delay has also been investigated. It has been found

that the minimal feedback coefficientKcr which en-
ables the synchronization is a periodic function ofτ .
We have also demonstrated that whenK increases, an
asymptotic minimal value ofTsyn is reached.

It would be very interesting to extend the study
to other models of synchronization. For example, the
Boccaletti et al. adaptive synchronization scheme [5]
and the original Pecora and Carroll method [1] can
be mathematically assimilated to some modified ver-
sions of the retroactive method we have considered,
the modification being, respectively, a periodically up-
datedK and an infiniteK. Hence, if we accordingly
modify all the analysis we have developed in this Let-
ter, interesting conclusions may be drawn for these
neighboring cases. One can even investigate how feed-
ing back more variables (through a feedback gain ma-
trix) can ameliorate the synchronization conditions.
A link has also to be made for the synchroniza-
tion of multidimensional and hyperchaotic systems,
in view of practical applications. We are confident
that a more realistic modelization of chaotic oscilla-
tions taking into account stochasticity would probably
strengthen the comprehension of the whole synchro-
nization process, despite its complexity.

Appendix A

For the resolution of Eq. (27), we use the harmonic
balance method. The chaotic variablexτ is replaced
by the related virtual Ritz orbit, and the randomness
of phase shifts allows us to discard them in first
approximation. Exception has been made forψ , for
which we have set〈cos2ψ〉 = 1/2. Therefore, if

Ξc = −3

2
γ x̄0E

2
[
E

(
Ω2

0 − ω2) − 3

4
γ x̄2

0E + 3

4
γE3

]

+
[
2λEωF sin

ωτ

2

]
,

Ξs = −2F sin
ωτ

2

[
E

(
Ω2

0 − ω2) + 3

4
γ x̄2

0E + 3

4
γE3

]

− 3

2
γ x̄0E

2[λEω],

Ξ0 =
[
E

(
Ω2

0 − ω2) + 3

4
γE3

]2

−
[

3

4
γ x̄2

0E

]2

+ [λEω]2,
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the polynomial Eq. (29) hence corresponds to

Ξ2
c + Ξ2

s = Ξ2
0 .

We emphasize that the purpose is not here to ap-
proximateε, but rather to show the occurrence of
hysteresis and its influence upon stability, particularly
when the delayτ is taken into account.
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