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Abstract

In this paper, we study the dynamics of electrostatic transducers described by
two nonlinearly coupled differential equations of motion. The local stability
analysis of fixed points shows a transcritical bifurcation. Frequency responses
and stability boundaries of oscillatory states are obtained. The system shows
chaotic states and conditions for its canonical feedback control from chaos
to regular orbits are derived.

1. Introduction

In recent years, various investigations have been carried out
to analyse the regular and chaotic dynamics of coupled
anharmonic oscillators. The interest devoted to such coupled
oscillators is twofold. In the theoretical or fundamental
point of view, they exhibit rich and complex behaviours.
In the practical point of view, coupled non-linear oscillators
describe the evolution of many biological, chemical,
physical, mechanical and industrial systems (see refs. [1-5]
and references therein).

Among those coupled systems, there are some for which
the coupling has a non-linear character. An example of this
class is the system described by the following set of
non-linear differential equations

1
X4 AmX 4 x +9x° —oc(q—l—EqZ) = Fycos(wi), (1a)
G+ eq + 07(q — x — qx) = Uy cos(wr) (1b)

where x and ¢ are the coordinates of both oscillators, y is a
non-linearity coefficient, « and ¢ are coupling coefficients,
Am and Z. are the viscous damping coefficients. The external
excitations are given by the second terms of equations (1),
where Fy and Uy are the amplitudes, w being the frequency.
t describes the time and the dot over a variable stands
for the time derivative. The coupled equations describe
the motion of various mechanical engineering systems such
as ships, rotating shafts, shells and composite plates [1].
Equations (1) also describe electrodynamical transducers
such as electrostatic microphones and loudspeakers. The
interest on such devices is justified by the fact that with
the revival of the electret old idea, electrostatic microphones
are widely used for various types of technological
applications such as monoscope tubes for TV set signals,
cassette recorders devices and evidently telephone devices
[6]. To the best of our knowledge, studies carried out on elec-
trostatic microphones and loudspeakers have been limited to
linear approximations. However, their equations of motion
naturally possess the non-linear terms ¢> and ¢x, particularly
in the coupling part [6,7] and the effect of high pressure
forces may cause the springs to react nonlinearly (for
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instance with a cubic non-linear term 7x3). Moreover,
due to recent progress on the way of using chaos in engin-
eering and technological applications, one may need to
use chaos generating non-linear components in electrostatic
transducers (non-linear springs and non-linear electrical
components). It is therefore interesting to consider the
behaviour of the devices in the non-linear limit. In the paper,
we analyse the case with Uy = 0 and Fj # 0, e.g. the trans-
ducer working as a microphone.

In our first attempt on the problem, we recently used the
method of multiple time scales to find amplitudes of
oscillations in the resonant and non-resonant cases. We also
obtained bifurcation diagrams showing period-doubling and
torus breakdown routes to chaos [3].

Our aim in this paper is twofold: analysis of the stability of
fixed points and that of oscillatory states — control of insta-
bility and chaos. The study of the stability uses
Routh-Hurwitz criteria and the Floquet theory while the
control is based on the conventional engineering approach
using canonical feedback controllers. The paper is organised
as follows. In Section 2, we first study the stability of fixed
points with particular emphasis on the trivial point O
(0,0,0,0). We then consider the oscillatory states of the
devices around the fixed points. The amplitudes of
oscillations are obtained using the Ritz method, and the
Floquet theory is used to determine analytically the bound-
aries of the stable and unstable regions of a given oscillatory
state. Section 3 deals with feedback control of unstable and
chaotic states to desired goal orbits. We conclude in Section
4. The numerical simulation of the differential equations
uses the fourth-order Runge—Kutta algorithm. Numerical
results hereafter (in stars) refer to the results from the
numerical simulation of equations (1).

2. Fixed points, harmonic oscillations and their stability

The normalised equations (1) in a convenient first order form
give the following fourth-dimensional flow

X1 = x2, (2a)
Xy = —dmXa — X| — X0 + oc(X3 + ;xé) + Fycoswt,  (2b)
X3 = X4, (2¢)
X4 = —AeXg — O'Z(X3 — X| — X1X3) (2d)

where x; = x, x; = x,x3 = ¢ and x4 = ¢.
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In the vector notation, the flow (2) reduces to

u=g(u,t) 3)
with
u = u(xl, X2, X3, X4).

In the analysis which follows in this section 2, we first ana-
lyse the stability of fixed points (autonomous model) in the
natural state where the cubic term yxf is neglected (section
2.1). Then follows in section 2.2 the stability of harmonic
oscillations around fixed points (with yxj still discarded).
Finally, in section 2.3, we consider the whole model
equations to analyse the effects of the cubic term on the
behaviour of the system.

2.1 Fixed points and their stability

The fixed points satisfy g(#) = 0. One can easily find that the
model possesses three fixed points, which are

ugr = (0,0, 0,0), upx = (x02, 0, go2, 0), up3 = (x03, 0, qo3, 0).

4)
where
14 /148 —3+ /148
X02=1—O€f, qo=—"H"":
1—- /148 -3 /1+%¢
xoszl—af’ qos=—"H"-

The local stability analysis of fixed points u; can be deter-
mined by investigating the linearilized system

u=J(uop) - u, (5)

where J(u;) is the Jacobian of g at uy;. The characteristic
equation of the Jacobian matrix is then written as:

S 4 (U 4 20)5 4 (e + 02(1 — x0) + 1)s?
+ (e + 2> (1 = x0)s + 02((1 — xo1) — a1 + goi)*) = 0. (6)

From the classical local stability analysis of Lyapunov, it
is known that the fixed points are stable if the real parts
of the roots of the characteristic equation (6) are all negative.
Otherwise (if at least one root has a positive real part), the
fixed point is unstable. Using Routh-Hurwitz criterion [8§]
for the sign of the real part of roots, we obtain that the stab-
ility of both uy; and uy, depend only on the quantity o which
defines the ratio between electrostatic and mechanical
energies. Moreover, we find that an exchange of stability
occurs at o = 1. Indeed, for « < 1, the equilibrium point
up; 1s stable while up, is unstable, and for o > 1, ug; is
unstable while ug; is stable. Thus, o = 1 corresponds to a
transcritical bifurcation point [9]. The stability of the fixed
point up3; depends on o, G and the damping coefficients
Am and e, but it can not be investigated analytically.

2.2 Harmonic oscillations and their stability

Due to the complexity of the coupled equations, it is difficult
to find analytical forms for a general solution of oscillatory
states which takes into account the effects of the quadratic
non-linearity. An attempt to achieve that goal was con-
sidered in ref. [3] where we used the method of multiple time
scales to analyse the behaviour of the system in the resonant
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and non resonant cases. Here, we are interested by the
amplitudes and stability of the forced oscillations around
the fixed points uy; (i = 1, 2). For this aim, we assume that
the responses of the system (around its fixed points) to exter-
nal sinusoidal excitations are defined as

(7a)
(7b)

Xh = Xo; + A cos(wt — @),
gn = qoi + Bcos(wt — ¢).

A and B are the amplitudes of oscillations while ¢ and ¢
define the phases with respect to the external excitations.

Inserting (7a) and (7b) in equation (1) and making use of
the classical Ritz variational method, we obtain

[ew? + (a*(1 — x0)) — 0?)1F}

A% = y (8a)

g0 +Aqo,->2]F§ ’ (8b)

¢ = Arctan (ji) , (8c)

¢ = Arctan (é) (8d)
Ay

where

4y = [(*(1 = x01) — @)m(0*(1 = X01) — ) + Ze(l — )]
— 2eo[(1 = )0 (1 = X0) — @) = Aedm@” — 00> (1 + qo;)’],
(%a)
Ay = [Im(0*(1 = x0;) — ©%) + Je(1 — )], (9b)
A3 = [(6*(1 = x01) — )1 = @)@ (1 = x0) — %) = Zedm®’
— a0 (1 + o))’ + 2@’ [Am(0”(1 = x07) — %) + Ae(1 — )],
(9¢)
Ay =[(1 — ) 0*(1 = x01) — %) = Jedm@” — 06*(1 + g0:)’]
(9d)

and

A =[(1 — 0?1 = x0) — ®%) = Aedm®” — a5>(1 + qo))* T
+ & [An(0*(1 = Xor) — %) + Ze(1 — ). %e)

It should be noted that for xo; = go; = 0, the above har-
monic solution reduces to what can be obtained in the linear
limit. In Figure 1, we have plotted the amplitudes 4 and B as
functions of w and «. Figure la shows the well known anti-
resonant phenomena. Figure 1b presents the variation of
A as function of «. It is seen that the amplitudes for
o <1 and o > 1 coalesce at o =1 (ie they have the same
value at the transcritical point o« = 1).

An interesting matter related to an oscillating solution is
the analysis of its stability. In particular, for the electrostatic
transducer considered, it is of practical interest to know how
the quadratic non-linearity (always neglected) affects the
stability of the harmonic solutions described above. For this
aim, consider the variational equations of (1) around sol-
utions (7):

0% + Amdx + 0x — a1 + gn)dq = 0,
3G + 2:04 + 0> (1 — xp)0q — o*(1 + g)ox =0

(10a)
(10b)

where dx and dq are perturbations of x, and ¢y, respectively.
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Fig. 1. (a) Frequency responses without cubic non-linearity for oscillations
around the fixed point wup; with a=1.5; ¢ =1.2; 1, =0.3; L= 0.2;
Fy =0.01. (Full line for B and dash for A, stars for numerical results).
(b) Variation of 4 and B as functions, of the parameter o with ¢ = 1.2;
Am = 0.3; .= 0.2; Fy =0.01; @ = 1. (Full line for B and dash for A4, stars
for numerical results).

The solution (7) is stable if dx and dg remain bounded as
the time tends to infinity. The problem can be tackled using
Floquet theory [1,8]. By considering the lower-order Hill
determinant of the equations (a 6th order determinant), it
is found that the hypersurface delimiting stable and unstable
regions is described by the following equation

on—4 0 +4n O12 2715 0
0 (311 0 Y12 512 012
. | -4, 0 6,—-4 0 201, O | _
AGmcd=| 5™ o en_d 2n s, |70
21 021 01 V22 022 022
0 204 021 —4¢, 20 6n—4
(11

where the J; (which are not Kronecker symbols, we
emphasise), 7, 0, Cm and &, coefficients are all defined in
appendix I.

Figures 2a and 2b show two stability boundaries in the
(w, Fy) plane for sets of the system parameters. In stars,
we have depicted results of the same stability boundary
obtained from a direct numerical study of the equations
of motion (1).

Let us note that in Figure 2b, the analytical curve
possesses two branches for low frequencies. In both figures,
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Fig. 2. (a) Stability boundary in the w-Fy plane with o =1.0; ¢ =0.2;
Am = 0.1; 4e = 0.3. (Full line for analytical boundary and stars for numerical
results). (b) Same as fig. 2a with o = 2.5; 6 = 5.0; 4, = 0.2; 4. = 0.1. (Full line
for analytical boundary and stars for numerical results).

we observe an agreement between the analytical prediction
of the Hill determinant and those of the numerical calcu-
lations for low frequencies. For high frequencies, the separ-
ation between the results and the numerical results is
large. We expect that the separation can be reduced if we
increase the order of the Hill determinant.

2.3 Effects of the cubic terms on the behaviour of the system

If the springs have a non-linear character, new interesting
phenomena can appear. But because of the complexity of
the resulting equations of motion, we only concentrate on
the analysis of symmetrical harmonic oscillations around
the fixed point (0,0,0,0). Thus considering solutions of the
form (7) with xp; = go; = 0, and making use as before of
the Ritz procedure, we find that the amplitude 4 of the
dimensionless displacement x satisfies the following
nonlinear algebraic equation

5 E 2| ao?(c? — w?) Iy
oo o] - 7

(12)

24 2
062l
——— | 4> =F.
(02 — w?)” + 2,07

+ |:/1mw +
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Fig. 3. Frequency responses A(w) (Fig. 3a) and B(w) (Fig. 3b) considering the
cubic non-linearity with o« =0.2; ¢ = 1.5; 4, =0.01; 4. =0.05; y =0.6;
Fy = 0.05. (Stars for the numerical simulation).

The amplitude B of the dimensionless charge ¢ is related to 4
by

_ o’ A
\/(62 — 0?)? 4 L20?

B (13)

Figures 3a and 3b show the frequency responses A(w) and
B(w). Superimposed on the plots are the results (in stars)
obtained from a direct numerical simulation of the equations
of motion (1). The initial conditions are (0,0,0,0).

As it appears in Figure 3, there are qualitative and quan-
titative disagreements between the analytical results and
the numerical results. Indeed, the numerical simulation
indicates various jump phenomena at w = 0.4 and 0.72 (this
does not appear in the analytical results). Resonance occurs
at w =2 0.75 and w = 1.5. This corresponds to states where
the second oscillator (g) enters into resonance (w = o)
and subharmonic resonance (w = ¢/2) with the external
excitation. These resonant states can be obtained analyti-
cally using for instance the multiple scale method [1, 3].
We can also notice that for few intervals (for example
0.68 < w < 0.84), the external frequency induces unstable
oscillatory states.
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3. Chaotic states and canonical feedback control

3.1 Chaotic states

During our numerical simulations, it has appeared that the
coupled equations (1) can lead to complex dynamical
behaviours such as multiperiodic, quasiperiodic and chaotic
states. This has already been reported in our ref. [3]. We have
also noticed that without the cubic non-linearity yx?, the sys-
tem does scarcely show chaotic behaviour. It is also found
that there are various routes to chaos (such as sudden
transition and torus breakdown or quasiperiodic route) with
several kinds of periodic and multiperiodic windows. A typi-
cal bifurcation diagram is illustrated in Figure 4 where the
coordinate x in the Poincaré map is plotted versus ¢. Similar
or other types of bifurcations can be obtained for other sets
of parameters, or by varying another parameter (for instance
o or Fy).

As any natural phenomena, and depending on the context
and the usage, the presence of chaos in natural and
man-made devices can be considered as a positive or nega-
tive issue. In fact, in many situations, chaos is undesirable
since it leads to irregular performance and possible cata-
strophic failures. In this case, it should be suppressed or con-
trolled. But in some other cases, chaos appears to be a
beneficial feature such as in mechanical heat and transport
phenomena [10]. Serious progress in the way of using chaos
to secure communication [11] has also been made recently.
Moreover, nowadays, intensive research is carried out to dis-
cuss the wide variety of applications of chaos in various
fields ranging firom natural, physical, engineering and social
sciences. It is in this spirit that we expect that the presence of
chaos in an electrostatic transducer serving as microphone
and loudspeaker can be useful both in its irregular structure
or in a regular structure obtained after the control.

3.2 Canonical feed-back control of chaos

As concerns the control, increasing interest has been devoted
to the subject using mainly feedback and non feedback
methods [see for instance refs. [12-16] and references there-
in]. But let us note that the literature on the subject is still
growing. The control aims at suppressing chaos or take
advantage of the various infinite number of different
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Fig. 4. Bifurcation diagram with o« =0.1; 1, =0.03; 1. =0.30; y =1.0;
w=10; Fp=0.7.
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unstable orbits embedded in the chaos attrattor to tune the
system to a large number of distinct and desired periodic
orbits.

In ref. [14], the conventional engineering approach of
automatic control using canonical feedback controllers
has been used to direct a Duffing oscillator from a chaotic
trajectory to one of its periodic or multiperiodic orbits.
We extend the approach to the coupled equations of motion
of the electrostatic transducers.

Let us assume that the target trajectory in four
dimensional space is u# = (Xi, X2, X3, X4) in the sense that
u(?) (see eq. (3)) tends to u after the control has been applied
on eq. (2) or on eq. (3). The conventional feed-back control-
ler has the form

C = —[K;jl(u — i), (14)

where [Kjj] is a 4 x 4 feedback gain matrix (i =1 to 4 and
j=1 to 4). Theoretically, this gives sixteen degrees of
freedom which can be used to ensure the control. The result-
ing control equation then becomes

=g, 1) — [Kyl(u — ) = g.(u, 1), (15)

where g.(u, ?) is a four dimensional vector function including
the components of the original equation as well as those due
to the controller. For the controller system to be stable, it is
required that the characteristic equation of the 4 x 4
Jacobian matrix

0g..;
Jo=|>=d
¢ [3?%}

at u has all its roots located in the left-half of the complex
plane. The characteristic equation reads

(16)

st +als3 +a2s2 +azs+as =0

(19)

with

ay = Am + e,

@ = dmie + (1 4 393 + K21) + (K3 + 0*(1 — X)),

a3 = Ae(1 + 39X* + K1) + Am(Ky3 + 0°(1 — X)),

ay = (14 39X + Ka)(Kiz + 0*(1 = %)) — a0’(1 + §)*.

The Routh-Hurwitz criteria gives four inequalities
involving the components Kj;, the system parameters and
the target components xi, X, X3, and X4. Let us assume
for simplicity that except the components K;; and Kys,
all the other components of the feedback gain matrix are

suppressed (set equal to zero). The above analysis leads
to the following condition for the control

K >

1+ 3932) + 01 = T L1+ 3752, = 02(1 = TP+ 42021+ i)

2u

where Xmin, Xmax and gmax are extremal values of the periodic
displacement and charge targets.
We have assumed K»; = K, and Ky3 = uK, with u, K > 0.
Let us consider the dynamics of the uncontrolled system
with following set of parameters:

Am = 0.03; 2. =0.30; 0 =0.1;0 =1.0; y = 1.0; F;, = 0.7
and w = 1.0.
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Fig. 5. Chaotic response for o = 0.1; ¢ = 1.0; A, = 0.03; 4. = 0.30; y = 1.0;
w=1.0; F) =0.7.
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Fig. 6. Controlling the chaotic response of Fig. 5 to the target orbit.

As it appears in the bifurcation diagram of Figure 4 and
also in Figure 5, this set of parameters leads the system
to a chaotic state. To test the validity of the control con-
dition (18), we have considered as a target state the following
periodic oscillation

X(f) =0.2coswt and ¢g(f) = 0.2coswt. (19)

In the numerical simulation, the control gain components
K31 = K43 = 50 show how the control tunes the system from
the chaotic states to the desired orbit (Figure 6). A similar
figure can be drawn for the ¢ component of the system.

4. Conclusion

In this paper, we have considered the problem of stability of
fixed points and oscillatory states, and the problem of chaos
control in an electrostatic transducer. This transducer can
serve as a microphone or as a loudspeaker. The local stab-
ility analysis of fixed points has led to a transcritical
bifurcation. For the oscillatory states around fixed points,
frequency responses have been obtained and their stability
diagram plotted from the Floquet theory and from a direct
numerical simulation of the equations of motion.

When a cubic non-linearity is added to the system as a
consequence of the non-linear behaviour of the spring,
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the frequency response for harmonic solution shows the well
known jump phenomena. Moreover, the system exhibits
complex dynamical behaviours such as multiperiodic,
quasiperiodic and chaotic responses. The transition to chaos
follows various routes. A discussion on the usefulness of
chaos in electrostatic transducers is presented. Finally, we
have derived conditions for the canonical feedback control
of the system from chaotic states to desired regular goal
dynamics.

The analysis carried out in this paper can be extended to
other electromechanical or electroacoustical devices.
Furthermore, it is worth mentioning that a possible practical
implementation of the chaos control design is of technologi-
cal interest and will be welcome. Beyond these points which
we think deserve investigations, there is another interesting
problem related to electrostatic transducers. It consists of
the excitation of the device by noises. This problem is also
currently under investigation.

Appendix: Coefficients of equation (11)
The 6;; coefficients are defined by

4 4a(1 + qoy) 40’(1 + qo)
o1 :E; 012 = —TQ 021 = _T;
46%(1 — xo1)
0 = ———5——.
w
Vi and 0;; can be written as
20B 26°B
=0 yp= —Fcosqﬁ; Y21 =T 5 cos ¢;
2624
Voo = — w2 COS Q.
208 26°B .
011 =0; 0pp= —Lzsm(j); 021 =— 62 sin ¢;
w w
0 2624 .
n=-"7 sin ¢,

where A, B, ¢ and ¢ are defined in equations (8).

Physica Scripta 62

We also have

Am Ae
m=—3; & =—.
w w

At last we note that in our calculations, we have used the
fixed point (xg1,¢qo1) for 0 <o <1 and the fixed point
(%02, go2) for o0 > 1.
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